Sign in to use this feature.

Years

Between: -

Subjects

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Journals

Article Types

Countries / Regions

Search Results (20)

Search Parameters:
Keywords = bionic arm

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
16 pages, 15007 KB  
Article
Analysis of Surface EMG Signals to Control of a Bionic Hand Prototype with Its Implementation
by Adam Pieprzycki, Daniel Król, Bartosz Srebro and Marcin Skobel
Sensors 2025, 25(17), 5335; https://doi.org/10.3390/s25175335 - 28 Aug 2025
Viewed by 316
Abstract
The primary objective of the presented study is to develop a comprehensive system for the acquisition of surface electromyographic (sEMG) data and to perform time–frequency analysis aimed at extracting discriminative features for the classification of hand gestures intended for the control of a [...] Read more.
The primary objective of the presented study is to develop a comprehensive system for the acquisition of surface electromyographic (sEMG) data and to perform time–frequency analysis aimed at extracting discriminative features for the classification of hand gestures intended for the control of a simplified bionic hand prosthesis. The proposed system is designed to facilitate precise finger gesture execution in both prosthetic and robotic hand applications. This article outlines the methodology for multi-channel sEMG signal acquisition and processing, as well as the extraction of relevant features for gesture recognition using artificial neural networks (ANNs) and other well-established machine learning (ML) algorithms. Electromyographic signals were acquired using a prototypical LPCXpresso LPC1347 ARM Cortex M3 (NXP, Eindhoven, Holland) development board in conjunction with surface EMG sensors of the Gravity OYMotion SEN0240 type (DFRobot, Shanghai, China). Signal processing and feature extraction were carried out in the MATLAB 2024b environment, utilizing both the Fourier transform and the Hilbert–Huang transform to extract selected time–frequency characteristics of the sEMG signals. An artificial neural network (ANN) was implemented and trained within the same computational framework. The experimental protocol involved 109 healthy volunteers, each performing five predefined gestures of the right hand. The first electrode was positioned on the brachioradialis (BR) muscle, with subsequent channels arranged laterally outward from the perspective of the participant. Comprehensive analyses were conducted in the time domain, frequency domain, and time–frequency domain to evaluate signal properties and identify features relevant to gesture classification. The bionic hand prototype was fabricated using 3D printing technology with a PETG filament (Spectrum, Pęcice, Poland). Actuation of the fingers was achieved using six MG996R servo motors (TowerPro, Shenzhen, China), each with an angular range of 180, controlled via a PCA9685 driver board (Adafruit, New York, NY, USA) connected to the main control unit. Full article
(This article belongs to the Section Electronic Sensors)
Show Figures

Figure 1

18 pages, 2280 KB  
Article
Theoretical Modeling of a Bionic Arm with Elastomer Fiber as Artificial Muscle Controlled by Periodic Illumination
by Changshen Du, Shuhong Dai and Qinglin Sun
Polymers 2025, 17(15), 2122; https://doi.org/10.3390/polym17152122 - 31 Jul 2025
Viewed by 382
Abstract
Liquid crystal elastomers (LCEs) have shown great potential in the field of soft robotics due to their unique actuation capabilities. Despite the growing number of experimental studies in the soft robotics field, theoretical research remains limited. In this paper, a dynamic model of [...] Read more.
Liquid crystal elastomers (LCEs) have shown great potential in the field of soft robotics due to their unique actuation capabilities. Despite the growing number of experimental studies in the soft robotics field, theoretical research remains limited. In this paper, a dynamic model of a bionic arm using an LCE fiber as artificial muscle is established, which exhibits periodic oscillation controlled by periodic illumination. Based on the assumption of linear damping and angular momentum theorem, the dynamics equation of the model oscillation is derived. Then, based on the assumption of linear elasticity model, the periodic spring force of the fiber is given. Subsequently, the evolution equations for the cis number fraction within the fiber are developed, and consequently, the analytical solution for the light-excited strain is derived. Following that, the dynamics equation is numerically solved, and the mechanism of the controllable oscillation is elucidated. Numerical calculations show that the stable oscillation period of the bionic arm depends on the illumination period. When the illumination period aligns with the natural period of the bionic arm, the resonance is formed and the amplitude is the largest. Additionally, the effects of various parameters on forced oscillation are analyzed. The results of numerical studies on the bionic arm can provide theoretical support for the design of micro-machines, bionic devices, soft robots, biomedical devices, and energy harvesters. Full article
(This article belongs to the Section Polymer Physics and Theory)
Show Figures

Figure 1

25 pages, 10333 KB  
Article
Design of a Bionic Self-Insulating Mechanical Arm for Concealed Space Inspection in the Live Power Cable Tunnels
by Jingying Cao, Jie Chen, Xiao Tan and Jiahong He
Appl. Sci. 2025, 15(13), 7350; https://doi.org/10.3390/app15137350 - 30 Jun 2025
Viewed by 277
Abstract
Adopting mobile robots for high voltage (HV) live-line operations can mitigate personnel casualties and enhance operational efficiency. However, conventional mechanical arms cannot inspect concealed spaces in the power cable tunnel because their joint integrates metallic motors or hydraulic serial-drive mechanisms, which limit the [...] Read more.
Adopting mobile robots for high voltage (HV) live-line operations can mitigate personnel casualties and enhance operational efficiency. However, conventional mechanical arms cannot inspect concealed spaces in the power cable tunnel because their joint integrates metallic motors or hydraulic serial-drive mechanisms, which limit the arm’s length and insulation performance. Therefore, this study proposes a 7-degree-of-freedom (7-DOF) bionic mechanical arm with rigid-flexible coupling, mimicking human arm joints (shoulder, elbow, and wrist) designed for HV live-line operations in concealed cable tunnels. The arm employs a tendon-driven mechanism to remotely actuate joints, analogous to human musculoskeletal dynamics, thereby physically isolating conductive components (e.g., motors) from the mechanical arm. The arm’s structure utilizes dielectric materials and insulation-optimized geometries to reduce peak electric field intensity and increase creepage distance, achieving intrinsic self-insulation. Furthermore, the mechanical design addresses challenges posed by concealed spaces (e.g., shield tunnels and multi-circuit cable layouts) through the analysis of joint kinematics, drive mechanisms, and dielectric performance. The workspace of the proposed arm is an oblate ellipsoid with minor and major axes measuring 1.25 m and 1.65 m, respectively, covering the concealed space in the cable tunnel, while the arm’s quality is 4.7 kg. The maximum electric field intensity is 74.3 kV/m under 220 kV operating voltage. The field value is less than the air breakdown threshold. The proposed mechanical arm design significantly improves spatial adaptability, operational efficiency, and reliability in HV live-line inspection, offering theoretical and practical advancements for intelligent maintenance in cable tunnel environments. Full article
Show Figures

Figure 1

18 pages, 5409 KB  
Article
Research on Motion Transfer Method from Human Arm to Bionic Robot Arm Based on PSO-RF Algorithm
by Yuanyuan Zheng, Hanqi Zhang, Gang Zheng, Yuanjian Hong, Zhonghua Wei and Peng Sun
Biomimetics 2025, 10(6), 392; https://doi.org/10.3390/biomimetics10060392 - 11 Jun 2025
Viewed by 591
Abstract
Although existing motion transfer methods for bionic robot arms are based on kinematic equivalence or simplified dynamic models, they frequently fail to tackle dynamic compliance and real-time adaptability in complex human-like motions. To address this shortcoming, this study presents a motion transfer method [...] Read more.
Although existing motion transfer methods for bionic robot arms are based on kinematic equivalence or simplified dynamic models, they frequently fail to tackle dynamic compliance and real-time adaptability in complex human-like motions. To address this shortcoming, this study presents a motion transfer method from the human arm to a bionic robot arm based on the hybrid PSO-RF (Particle Swarm Optimization-Random Forest) algorithm to improve joint space mapping accuracy and dynamic compliance. Initially, a high-precision optical motion capture (Mocap) system was utilized to record human arm trajectories, and Kalman filtering and a Rauch–Tung–Striebel (RTS) smoother were applied to reduce noise and phase lag. Subsequently, the joint angles of the human arm were computed through geometric vector analysis. Although geometric vector analysis offers an initial estimation of joint angles, its deterministic framework is subject to error accumulation caused by the occlusion of reflective markers and kinematic singularities. To surmount this limitation, this study designed five action sequences for the establishment of the training database for the PSO-RF model to predict joint angles when performing different actions. Ultimately, an experimental platform was built to validate the motion transfer method, and the experimental verification showed that the system attained high prediction accuracy (R2 = 0.932 for the elbow joint angle) and real-time performance with a latency of 0.1097 s. This paper promotes compliant human–robot interaction by dealing with joint-level dynamic transfer challenges, presenting a framework for applications in intelligent manufacturing and rehabilitation robotics. Full article
(This article belongs to the Special Issue Advances in Biological and Bio-Inspired Algorithms)
Show Figures

Figure 1

15 pages, 6147 KB  
Article
Design and Control of Dual-Segment Multi-Wire Driven Bionic Soft Arm with Integrated Suction Cups
by Zhaosheng Wu, Qiuxuan Wu, Fulin Du, Zikai Zhao, Shoucheng Xiang, Hongkun Zhou, Yanbin Luo and Zhiyuan Hu
Biomimetics 2025, 10(3), 133; https://doi.org/10.3390/biomimetics10030133 - 24 Feb 2025
Cited by 2 | Viewed by 940
Abstract
Given the growing complexity of underwater operation tasks, particularly in confined spaces, turbulent environments, and dynamic object manipulation, the limitations of traditional rigid robotic arms are becoming ever more evident. To tackle these challenges, this paper proposes the development of a soft robotic [...] Read more.
Given the growing complexity of underwater operation tasks, particularly in confined spaces, turbulent environments, and dynamic object manipulation, the limitations of traditional rigid robotic arms are becoming ever more evident. To tackle these challenges, this paper proposes the development of a soft robotic arm modeled after octopus tentacles, incorporating biomimetic suckers. To tackle these challenges, this paper proposes the development of a soft robotic arm modeled after octopus tentacles, incorporating biomimetic suckers. By imitating the functional structure and suction cups of an octopus arm, a soft arm with a dual-segment continuous structure and eight-wire drive control is designed, integrating a flexible suction cup at the distal segment. A three-dimensional, dual-segment eight-wire driven segmented constant curvature motion model is developed to enable precise bending and rotational movements. In underwater grasping experiments, the soft robotic arm exhibited enhanced grasping stability, particularly in underwater environments, where it effectively copes with fluid disturbances and the capture of dynamic objects. This substantially increased the reliability and efficiency of underwater operations. Full article
(This article belongs to the Special Issue Bioinspired Engineered Systems)
Show Figures

Figure 1

21 pages, 8015 KB  
Article
Bionic Robot with Multifunctional Leg–Arm Mechanism for In-Orbit Assembly of Space Trusses
by Yuetian Shi, Qingzhang Xu, Rui Shi, Haohang Liu, Meiyang Zhang, Xuyan Hou, Weijun Wang and Zongquan Deng
Biomimetics 2024, 9(9), 550; https://doi.org/10.3390/biomimetics9090550 - 11 Sep 2024
Cited by 1 | Viewed by 2084
Abstract
This article aims to address the in-orbit assembly needs of truss structures in space missions by designing a robot capable of moving on trusses and manipulating parts. To enhance the stability of the robot during movement and part manipulation, inspiration was drawn from [...] Read more.
This article aims to address the in-orbit assembly needs of truss structures in space missions by designing a robot capable of moving on trusses and manipulating parts. To enhance the stability of the robot during movement and part manipulation, inspiration was drawn from the Dynastes Hercules beetle. Building upon detailed research on the Dynastes Hercules beetle, a biomimetic structure was designed for the robot system. Based on specific task requirements, the overall plan of the robot was developed, and its kinematic and dynamic models were derived. A prototype of the robot was created, which is capable of both movement and assembly functions, including handling spherical and rod-like objects. Through a series of experiments conducted with the robot, the research results demonstrated that the proposed design can effectively achieve the intended functions. Full article
(This article belongs to the Special Issue Recent Advances in Robotics and Biomimetics)
Show Figures

Figure 1

12 pages, 9692 KB  
Article
Design of Heavy-Load Soft Robots Based on a Dual Biomimetic Structure
by Liu Yang, Zhilei Zhang, Zengzhi Zhang, Yuzhong Lou, Shijie Han, Jiaqi Liu, Liu Fang and Shangsheng Zhang
Biomimetics 2024, 9(7), 398; https://doi.org/10.3390/biomimetics9070398 - 30 Jun 2024
Cited by 1 | Viewed by 1576
Abstract
This study first draws inspiration from the dual biomimetic design of plant cell walls and honeycomb structures, drawing on their structural characteristics to design a flexible shell structure that can achieve significant deformation and withstand large loads. Based on the staggered bonding of [...] Read more.
This study first draws inspiration from the dual biomimetic design of plant cell walls and honeycomb structures, drawing on their structural characteristics to design a flexible shell structure that can achieve significant deformation and withstand large loads. Based on the staggered bonding of this flexible shell structure, we propose a new design scheme for a large-load pneumatic soft arm and establish a mathematical model for its flexibility and load capacity. The extension and bending deformation of this new type of soft arm come from the geometric variability of flexible shell structures, which can be controlled through two switches, namely, deflation and inflation, to achieve extension or bending actions. The experimental results show that under a driving pressure within the range of 150 kpa, the maximum elongation of the soft arm reaches 23.17 cm, the maximum bending angle is 94.2 degrees, and the maximum load is 2.83 N. This type of soft arm designed based on dual bionic inspiration can have both a high load capacity and flexibility. The research results provide new ideas and methods for the development of high-load soft arms, which are expected to expand from laboratories to multiple fields. Full article
(This article belongs to the Section Locomotion and Bioinspired Robotics)
Show Figures

Figure 1

15 pages, 4612 KB  
Article
An Admittance Control Method Based on Parameters Fuzzification for Humanoid Steering Wheel Manipulation
by Tuochang Wu, Junkai Ren, Chuang Cheng, Xun Liu, Hui Peng and Huimin Lu
Biomimetics 2023, 8(6), 495; https://doi.org/10.3390/biomimetics8060495 - 19 Oct 2023
Cited by 1 | Viewed by 2393
Abstract
Developing a human bionic manipulator to achieve certain humanoid behavioral skills is a rising problem. Enabling robots to operate the steering wheel to drive the vehicle is a challenging task. To address the problem, this work designs a novel 7-DOF (degree of freedom) [...] Read more.
Developing a human bionic manipulator to achieve certain humanoid behavioral skills is a rising problem. Enabling robots to operate the steering wheel to drive the vehicle is a challenging task. To address the problem, this work designs a novel 7-DOF (degree of freedom) humanoid manipulator based on the arm structure of human bionics. The 3-2-2 structural arrangement of the motors and the structural modifications at the wrist allow the manipulator to act more similar to a man. Meanwhile, to manipulate the steering wheel stably and compliantly, an admittance control approach is firstly applied for this case. Considering that the system parameters vary in configuration, we further introduce parameter fuzzification for admittance control. Designed simulations were carried out in Coppeliasim to verify the proposed control approach. As the result shows, the improved method could realize compliant force control under extreme configurations. It demonstrates that the humanoid manipulator can twist the steering wheel stably even in extreme configurations. It is the first exploration to operate a steering wheel similar to a human with a manipulator by using admittance control. Full article
(This article belongs to the Special Issue Biorobotics: 2nd Edition)
Show Figures

Figure 1

11 pages, 3874 KB  
Article
Wearable LIG Flexible Stress Sensor Based on Spider Web Bionic Structure
by Hehui Zheng, Han Wang, Kunran Yi, Jian Lin, An Chen, Lingming Chen, Zebiao Zou, Maolin Liu, Yuchen Ji, Lingzhi Dong and Zhenpei Lin
Coatings 2023, 13(1), 155; https://doi.org/10.3390/coatings13010155 - 11 Jan 2023
Cited by 22 | Viewed by 3669
Abstract
Bionic structures are widely used in scientific research. Through the observation and study of natural biological structure, it is found that spider web structure is composed of many radial silk lines protruding from the center and spiral silk lines surrounding the center. It [...] Read more.
Bionic structures are widely used in scientific research. Through the observation and study of natural biological structure, it is found that spider web structure is composed of many radial silk lines protruding from the center and spiral silk lines surrounding the center. It has high stability and high sensitivity, and is especially suitable for the production of sensors. In this study, a flexible graphene sensor based on a spider web bionic structure is reported. Graphene, with its excellent mechanical properties and high electrical conductivity, is an ideal material for making sensors. In this paper, laser-induced graphene (LIG) is used as a sensing material to make a spider web structure, which is encapsulated onto a polydimethylsiloxane (PDMS) substrate to make a spider web structured graphene flexible strain sensor. The study found that the stress generated by the sensor of the spider web structure in the process of stretching and torsion can be evenly distributed in the spider web structure, which has excellent resonance ability, and the overall structure shows good structural robustness. In the experimental test, it is shown that the flexible stress sensor with spider web structure achieves high sensitivity (GF is 36.8), wide working range (0–35%), low hysteresis (260 ms), high repeatability and stability, and has long-term durability. In addition, the manufacturing process of the whole sensor is simple and convenient, and the manufactured sensor is economical and durable. It shows excellent stability in finger flexion and extension, fist clenching, and arm flexion and extension applications. This shows that the sensor can be widely used in wearable sensing devices and the detection of human biological signals. Finally, it has certain development potential in the practical application of medical health, motion detection, human-computer interaction and other fields. Full article
(This article belongs to the Special Issue Advanced Functional Films and Materials for Sensors Application)
Show Figures

Figure 1

33 pages, 6416 KB  
Article
Impedance Iterative Learning Backstepping Control for Output-Constrained Multisection Continuum Arms Based on PMA
by Yuexuan Xu, Xin Guo, Jian Li, Xingyu Huo, Hao Sun, Gaowei Zhang, Qianqian Xing, Minghe Liu, Tianyi Ma and Qingsong Ding
Micromachines 2022, 13(9), 1532; https://doi.org/10.3390/mi13091532 - 16 Sep 2022
Cited by 9 | Viewed by 2395
Abstract
Background: Pneumatic muscle actuator (PMA) actuated multisection continuum arms are widely applied in various fields with high flexibility and bionic properties. Nonetheless, their kinematic modeling and control strategy proves to be extremely challenging tasks. Methods: The relationship expression between the deformation parameters and [...] Read more.
Background: Pneumatic muscle actuator (PMA) actuated multisection continuum arms are widely applied in various fields with high flexibility and bionic properties. Nonetheless, their kinematic modeling and control strategy proves to be extremely challenging tasks. Methods: The relationship expression between the deformation parameters and the length of PMA with the geometric method is obtained under the assumption of piecewise constant curvature. Then, the kinematic model is established based on the improved D-H method. Considering the limitation of PMA telescopic length, an impedance iterative learning backstepping control strategy is investigated. For one thing, the impedance control is utilized to ensure that the ideal static balance force is maintained constant in the Cartesian space. For another, the iterative learning backstepping control is applied to guarantee that the desired trajectory of each PMA can be accurately tracked with the output-constrained requirement. Moreover, iterative learning control (ILC) is implemented to dynamically estimate the unknown model parameters and the precondition of zero initial error in ILC is released by the trajectory reconstruction. To further ensure the constraint requirement of the PMA tracking error, a log-type barrier Lyapunov function is employed in the backstepping control, whose convergence is demonstrated by the composite energy function. Results: The tracking error of PMA converges to 0.004 m and does not exceed the time-varying constraint function through cosimulation. Conclusion: From the cosimulation results, the superiority and validity of the proposed theory are verified. Full article
(This article belongs to the Special Issue Recent Advance in Medical and Rehabilitation Robots)
Show Figures

Figure 1

14 pages, 3595 KB  
Article
A Multifunctional Light-Driven Swimming Soft Robot for Various Application Scenarios
by Zhen Wang, Dongni Shi, Xiaowen Wang, Yibao Chen, Zheng Yuan, Yan Li, Zhixing Ge and Wenguang Yang
Int. J. Mol. Sci. 2022, 23(17), 9609; https://doi.org/10.3390/ijms23179609 - 25 Aug 2022
Cited by 13 | Viewed by 3459
Abstract
The locomotor behavior of creatures in nature can bring a lot of inspiration for the fabrication of soft actuators. In this paper, we fabricated a bionic light-driven swimming soft robot that can perform grasping of tiny objects and achieve the task of object [...] Read more.
The locomotor behavior of creatures in nature can bring a lot of inspiration for the fabrication of soft actuators. In this paper, we fabricated a bionic light-driven swimming soft robot that can perform grasping of tiny objects and achieve the task of object transfer. By adding carbon nanotubes (CNTs), the temperature-sensitive hydrogels can be endowed with light-responsive properties. The fabricated composite hydrogel structure can control the contraction and expansion of volume by light, which is similar to the contraction and diastole behavior of muscles. The oscillation of the fish tail and the grasping action of the normally closed micromanipulator can be achieved by the control of the irradiation of the xenon light source. The bending of the bionic arm can be controlled by the irradiation of a near-infrared (NIR) laser, which transforms the spatial position and posture of the micromanipulator. The proposed scheme is feasible for miniaturized fabrication and application of flexible actuators. This work provides some important insights for the study of light-driven microrobots and light-driven flexible actuators. Full article
Show Figures

Figure 1

15 pages, 3218 KB  
Article
Flexible Design of the Connecting Plate in Pneumatic Soft Manipulators
by Hui Dong, Lei Yang, Jingyi Li, Hao Sun and Ligang Yao
Appl. Sci. 2022, 12(14), 7224; https://doi.org/10.3390/app12147224 - 18 Jul 2022
Cited by 1 | Viewed by 2422
Abstract
This paper presents a novel connecting plate for achieving a flexible connection in a soft manipulator. The main material used in the connecting plate is silicone, which functions similarly to the bionic oblique muscle (BOM) of an octopus arm and takes over the [...] Read more.
This paper presents a novel connecting plate for achieving a flexible connection in a soft manipulator. The main material used in the connecting plate is silicone, which functions similarly to the bionic oblique muscle (BOM) of an octopus arm and takes over the two actuator segments. Each segment of the actuator consists of three chambers, and the chambers are assembled with the connecting plate via bolts and loops to be a manipulator. By using a flexible plate instead of a rigid one, the manipulator achieves more dexterous movements. This paper establishes a nonlinear model for analyzing the shear and compression deformation of a silicone connecting plate. Additionally, finite element method was used to analyze the mechanical performance of the connecting plate. The deformation of a soft material can reduce the stress concentration during movement of the manipulator. Therefore, in the experiment, the BOM exhibited better motion performance compared with the rigid connection plate. Full article
(This article belongs to the Special Issue Design, Optimization and Performance Analysis of Soft Robots)
Show Figures

Figure 1

16 pages, 5112 KB  
Article
Obstacle Modeling and Structural Optimization of Four-Track Twin-Rocker Rescue Robot
by Xiaobin Xu, Wen Wang, Guangyu Su, Cong Liu, Wei Cai, Haojie Zhang, Yingying Ran, Zhiying Tan and Minzhou Luo
Machines 2022, 10(5), 365; https://doi.org/10.3390/machines10050365 - 10 May 2022
Cited by 12 | Viewed by 3898
Abstract
In order to achieve the best obstacle surmounting performance of a mobile robot in the rescue environment, a four-track twin-rocker bionic rescue robot with an inner and outer concentric shaft was designed in this paper. From the viewpoint of dynamics, the motion process [...] Read more.
In order to achieve the best obstacle surmounting performance of a mobile robot in the rescue environment, a four-track twin-rocker bionic rescue robot with an inner and outer concentric shaft was designed in this paper. From the viewpoint of dynamics, the motion process of the mass center of the robot when climbing steps forward and backward was studied. The maximum obstacle height of the robot was calculated. The relationship between the elevation angle of the car body, the swing angle of the rocker arm and the height of the steps was analyzed by simulation. The simulation results show that the maximum forward and reverse obstacle crossing heights were 92.99 mm and 155.82 mm, respectively. Obstacle climbing experiments of the designed robot prototype were carried out. It was found that the measured maximum height of the step was 95 mm, and the measured maximum height of the reverse obstacle was 165 mm. Finally, bionic particle swarm optimization was used to optimize the structural parameters of the rocker arm with an optimal length of 315.2 mm. The study of this paper can be referenced for the design and analysis of obstacle surmounting rescue robots with similar structures. Full article
(This article belongs to the Special Issue Bio-Inspired Smart Machines: Structure, Mechanisms and Applications)
Show Figures

Figure 1

18 pages, 13152 KB  
Article
High-Speed Handling Robot with Bionic End-Effector for Large Glass Substrate in Clean Environment
by Zhengyong Liu, Youdong Chen, Henan Song, Zhenming Xing, Hongmiao Tian and Xiaobiao Shan
Sensors 2022, 22(1), 149; https://doi.org/10.3390/s22010149 - 27 Dec 2021
Cited by 5 | Viewed by 5290
Abstract
The development of “large display, high performance and low cost” in the FPD industry demands glass substrates to be “larger and thinner”. Therefore, the requirements of handling robots are developing in the direction of large scale, high speed, and high precision. This paper [...] Read more.
The development of “large display, high performance and low cost” in the FPD industry demands glass substrates to be “larger and thinner”. Therefore, the requirements of handling robots are developing in the direction of large scale, high speed, and high precision. This paper presents a novel construction of a glass substrate handling robot, which has a 2.5 m/s travelling speed. It innovatively adopts bionic end-suction technology to grasp the glass substrate more firmly. The structure design is divided into the following three parts: a travel track, a robot body, and an end-effector. The manipulator can be smoothly and rapidly extended by adjusting the transmission ratio of the reducer to 1:2:1, using only one motor to drive two sections of the arm. This robot can transfer two pieces of glass substrate at one time, and improves the working efficiency. The kinematic and dynamic models of the robot are built based on the DH coordinate. Through the positioning accuracy experiment and vibration experiment of the end-effector, it is found that the robot has high precision during handling. The robots developed in this study can be used in large-scale glass substrate handling. Full article
(This article belongs to the Topic New Frontiers in Industry 4.0)
Show Figures

Figure 1

19 pages, 11331 KB  
Article
A Novel Type of Wall-Climbing Robot with a Gear Transmission System Arm and Adhere Mechanism Inspired by Cicada and Gecko
by Shiyuan Bian, Feng Xu, Yuliang Wei and Deyi Kong
Appl. Sci. 2021, 11(9), 4137; https://doi.org/10.3390/app11094137 - 30 Apr 2021
Cited by 22 | Viewed by 4949
Abstract
To support the inspections of different contact walls (rough and smooth), a novel type of wall-climbing robot was proposed. Its design embodied a new gear transmission system arm and an adherence mechanism inspired by cicadas and geckos. The actuating structure consisted of a [...] Read more.
To support the inspections of different contact walls (rough and smooth), a novel type of wall-climbing robot was proposed. Its design embodied a new gear transmission system arm and an adherence mechanism inspired by cicadas and geckos. The actuating structure consisted of a five-bar link and a gear transmission for the arm stretching, which was driven by the servos. The linkers and gears formed the palm of this robot for climbing on a line. Moreover, the robot’s adherence method for the rough surfaces used bionic spine materials inspired by the cicada. For smooth surface, a bionic adhesion material was proposed inspired by the gecko. To assess the adherence mechanism of the cicada and gecko, the electron microscope images of the palm of the cicada and gecko were obtained by an electron microscope. The 3D printing technology and photolithography technology were utilized to manufacture the robot’s structures. The adherence force experiments demonstrated the bionic spines and bionic materials achieved good climbing on cloth, stones, and glass surfaces. Furthermore, a new gait for the robot was designed to ensure its stability. The dynamic characteristics of the robot’s gear transmission were obtained. Full article
(This article belongs to the Special Issue Advances in Bio-Inspired Robots)
Show Figures

Figure 1

Back to TopTop