Sign in to use this feature.

Years

Between: -

Subjects

remove_circle_outline
remove_circle_outline

Journals

Article Types

Countries / Regions

Search Results (1)

Search Parameters:
Keywords = bismuth oxyfluoride

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
29 pages, 7862 KB  
Review
Bismuth-Based Oxyfluorides as Emergent Photocatalysts: A Review
by Thomas Erbland, Sara Ibrahim, Lucas Pelat, Kevin Lemoine, Angélique Bousquet and Pierre Bonnet
Molecules 2025, 30(18), 3784; https://doi.org/10.3390/molecules30183784 - 17 Sep 2025
Viewed by 263
Abstract
Bismuth-based oxyfluorides (BiOxF3−2x) have recently emerged as promising photocatalysts due to their unique electronic structures and tunable physicochemical properties. This review provides a comprehensive overview of these materials, focusing on their crystal structures, band gap characteristics, and photocatalytic performance. [...] Read more.
Bismuth-based oxyfluorides (BiOxF3−2x) have recently emerged as promising photocatalysts due to their unique electronic structures and tunable physicochemical properties. This review provides a comprehensive overview of these materials, focusing on their crystal structures, band gap characteristics, and photocatalytic performance. Particular attention is given to BiOF, Bi7O5F11, and β-BiOxF3−2x, highlighting the influence of fluorine’s high electronegativity and internal electric fields on charge separation and light absorption. The potential of Aurivillius-type oxyfluorides is also discussed. Structural modifications, such as the introduction of oxygen vacancies, morphology control, and metal/non-metal doping, are examined for their effects on photocatalytic efficiency. Furthermore, various synthesis techniques and heterojunction engineering strategies involving semiconductors, carbon-based materials, and metal nanoparticles are explored to improve light harvesting and reduce charge recombination. Applications in pollutant degradation and CO2 photoconversion are reviewed, demonstrating the versatility of these materials. Despite their promise, the challenges associated with phase identification and composition control are also emphasized, underlining the need for rigorous structural characterization. Future directions for optimizing the photocatalytic activity of bismuth-based oxyfluorides are outlined, focusing on strategies to enhance their performance. Full article
(This article belongs to the Special Issue Chemical Research on Photosensitive Materials, 2nd Edition)
Show Figures

Figure 1

Back to TopTop