Processing math: 100%
 
 
Sign in to use this feature.

Years

Between: -

Subjects

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Journals

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Article Types

Countries / Regions

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Search Results (1,111)

Search Parameters:
Keywords = bonding connection

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
22 pages, 232 KiB  
Article
Storytelling as a Method of Supporting Couples in Crisis in the Framework of Religious Community Activities
by Renata Pomarańska
Religions 2025, 16(6), 705; https://doi.org/10.3390/rel16060705 - 30 May 2025
Abstract
Marital crises are common and can arise at any stage of marriage. When facing difficulties, many spouses seek support from religious communities, which provide spiritual and emotional guidance. These communities play a vital role in marriage preparation and helping couples navigate crises. In [...] Read more.
Marital crises are common and can arise at any stage of marriage. When facing difficulties, many spouses seek support from religious communities, which provide spiritual and emotional guidance. These communities play a vital role in marriage preparation and helping couples navigate crises. In response to rising divorce rates, changing gender roles, and economic pressures, religious communities are adapting their pastoral methods. One innovative approach is storytelling, which allows couples to connect with others’ experiences, helping rebuild trust and understanding in their marriages. This article explores the role of storytelling as a tool for supporting couples in crisis, particularly in the context of religious pastoral care, focusing on its impact on communication, marital bonding, and spiritual growth. Full article
(This article belongs to the Special Issue Religion, Theology, and Bioethical Discourses on Marriage and Family)
22 pages, 6513 KiB  
Article
Molybdenum Disulfide and Reduced Graphene Oxide Hybrids as Anodes for Low-Temperature Lithium- and Sodium-Ion Batteries
by Anna A. Vorfolomeeva, Alena A. Zaguzina, Evgeny A. Maksimovskiy, Artem V. Gusel’nikov, Pavel E. Plyusnin, Alexander V. Okotrub and Lyubov G. Bulusheva
Nanomaterials 2025, 15(11), 824; https://doi.org/10.3390/nano15110824 - 29 May 2025
Viewed by 35
Abstract
Lithium- and sodium-ion batteries (LIBs and SIBs) suffer from the significant degradation of electrochemical performance at low temperatures. This work presents promising hybrid anodes synthesized by the rapid thermolysis of ammonium tetrathiomolybdate and graphene oxide (GO) at 600 and 700 °C. Transmission electron [...] Read more.
Lithium- and sodium-ion batteries (LIBs and SIBs) suffer from the significant degradation of electrochemical performance at low temperatures. This work presents promising hybrid anodes synthesized by the rapid thermolysis of ammonium tetrathiomolybdate and graphene oxide (GO) at 600 and 700 °C. Transmission electron microscopy revealed the formation of MoS2 crystallites oriented along or perpendicular to the surface of reduced GO (rGO) layers. X-ray photoelectron spectroscopy found the covalent C–S bonds connecting components in the MoS2/rGO hybrids. The MoS2/rGO_600 hybrid showed higher specific capacities in LIBs of 1370 mAh/g, 835 mAh/g, and 711 mAh/g at a current density of 0.1 A/g and temperatures of 25 °C, 0 °C, and −20 °C, respectively, due to the presence of excess sulfur in the sample. Increasing the current density to 2 A/g retained 78 and 34% of the capacity at 25 °C and −20 °C. In SIBs, the MoS2/rGO_700 hybrid showed more promising results, achieving 550 mAh/g at 0.1 A/g and 400 mAh/g at 2 A/g, while lowering the temperature to −20 °C retained 48 and 17% of the capacity. Such good SIB performance is attributed to the enrichment of the sample with vertically oriented MoS2 layers covalently bonded to the rGO surface. Full article
(This article belongs to the Section Energy and Catalysis)
Show Figures

Figure 1

22 pages, 4758 KiB  
Article
Analysis of Interface Sliding in a Composite I-Steel–Concrete Beam Reinforced by a Composite Material Plate: The Effect of Concrete–Steel Connection Modes
by Tahar Hassaine Daouadji, Boussad Abbès, Tayeb Bensatallah and Fazilay Abbès
J. Compos. Sci. 2025, 9(6), 273; https://doi.org/10.3390/jcs9060273 - 29 May 2025
Viewed by 96
Abstract
This study investigates interface sliding behavior in composite I-steel–concrete beams reinforced with a composite material plate by analyzing various connection configurations combining shear stud connectors and adhesive bonding. The degree of composite action, governed by the shear stiffness at the steel–concrete interface, plays [...] Read more.
This study investigates interface sliding behavior in composite I-steel–concrete beams reinforced with a composite material plate by analyzing various connection configurations combining shear stud connectors and adhesive bonding. The degree of composite action, governed by the shear stiffness at the steel–concrete interface, plays a critical role in structural performance. An analytical model was developed based on the elasticity theory and the strain compatibility approach, assuming constant shear and normal stress across the interface. Five connection modes were considered, ranging from fully mechanical (100% shear studs) to fully adhesive (100% bonding), as well as mixed configurations. The model was validated against finite element simulations, demonstrating strong agreement with relative differences between 0.3% and 10.7% across all cases. A parametric study explored the influence of key factors such as interface layer stiffness and composite plate reinforcement material on the overall interface behavior. The results showed that adhesive bonding significantly reduces slippage at the steel–concrete interface, enhancing bond integrity, while purely mechanical connections tend to increase interface slippage. The findings provide valuable guidance for designing hybrid connection systems in composite structures to optimize performance, durability, and construction efficiency. Full article
(This article belongs to the Special Issue Sustainable Composite Construction Materials, Volume II)
Show Figures

Figure 1

20 pages, 8839 KiB  
Article
Microheterogeneity in Liquid Water Associated with Hydrogen-Bond Cooperativity-IR Spectroscopic and MD Simulation Study of Temperature Effect
by Paulina Filipczak, Marcin Kozanecki, Joanna Szala-Rearick and Dorota Swiatla-Wojcik
Int. J. Mol. Sci. 2025, 26(11), 5187; https://doi.org/10.3390/ijms26115187 - 28 May 2025
Viewed by 39
Abstract
Structural microheterogeneity arising from the cooperative nature of hydrogen bonding is a critical yet often overlooked factor in the mechanistic understanding of physicochemical and biological processes occurring in aqueous environments. MD simulations using a potential that accounts for molecular flexibility and directional interactions [...] Read more.
Structural microheterogeneity arising from the cooperative nature of hydrogen bonding is a critical yet often overlooked factor in the mechanistic understanding of physicochemical and biological processes occurring in aqueous environments. MD simulations using a potential that accounts for molecular flexibility and directional interactions revealed inhomogeneity arising from patches of continuously connected, four-bonded molecules embedded within a less ordered, space-filling hydrogen-bond network. The size of these patches follows a statistical distribution that is strongly temperature-dependent. With increasing temperature, the average size of the patches decreases, whereas the contribution of molecules forming the inter-patch zones becomes more pronounced. The nature of microheterogeneity is evidenced by temperature-dependent changes in the asymmetry of calculated power spectra as well as in the measured IR absorption within the stretching, bending, and combination band regions. A novel method for band analysis incorporates the calculation of skewness and a mirroring procedure for more accurate determination of FWHM of asymmetric bands. Discontinuities in the temperature dependence of spectral parameters observed within the 5–80 °C range correspond to the thermodynamic anomalies of liquid water. We show that structural microheterogeneity persists near 100 °C, suggesting that aqueous processes are better described by statistical distributions than by uniform models. Molecular simulations and IR spectroscopy offer key insights into these distributions. Full article
Show Figures

Figure 1

18 pages, 1313 KiB  
Article
Characteristic of Virulence and Parameters of Mixed Biofilm Formed by Carbapenem-Resistant Pseudomonas aeruginosa and Proteus mirabilis Strains Isolated from Infected Chronic Wounds
by Jana Wełna, Marta Napiórkowska-Mastalerz, Michał Cyrankiewicz, Tomasz Bogiel and Joanna Kwiecińska-Piróg
Pathogens 2025, 14(6), 536; https://doi.org/10.3390/pathogens14060536 - 27 May 2025
Viewed by 66
Abstract
A biofilm is a group of bacterial cells in the polysaccharide matrix bonded to the surface (biotic or abiotic). Clinicians now realize that most infections are biofilm-related. Biofilm infections are often induced by more than one bacterial species. The aim of this study [...] Read more.
A biofilm is a group of bacterial cells in the polysaccharide matrix bonded to the surface (biotic or abiotic). Clinicians now realize that most infections are biofilm-related. Biofilm infections are often induced by more than one bacterial species. The aim of this study is to characterize a mixed biofilm composed of Pseudomonas aeruginosa and Proteus mirabilis strains. Forty-six isolates derived from chronic wound infections were cultivated to establish mature biofilms. The biofilm biomass and cell viability were measured by colorimetric assays. P. aeruginosa strains were tested for the presence of virulence and biofilm-related genes. The quorum sensing assay using the biosensor strain was also performed. A mixed biofilm of P. aeruginosa and P. mirabilis was visualized using fluorescence microscopy. Four groups of P. aeruginosa and P. mirabilis pairs, also visualized with fluorescence microscopy, were distinguished based on the biofilm biomass growth and metabolic activity loss. The exoY gene observed among P. aeruginosa isolates was connected to the metabolic activity loss of the biofilm. Generally, the interactions between P. aeruginosa and P. mirabilis species are not uniform. It is crucial to further research the interactions between microorganisms in biofilms. This may provide information on the mechanisms of biofilm formation in the complicated chronic wound environment. Full article
(This article belongs to the Section Bacterial Pathogens)
Show Figures

Figure 1

31 pages, 3496 KiB  
Review
A Review on Vibration Control Using Piezoelectric Shunt Circuits
by Khaled Al-Souqi, Khaled Kadri and Samir Emam
Appl. Sci. 2025, 15(11), 6035; https://doi.org/10.3390/app15116035 - 27 May 2025
Viewed by 78
Abstract
Vibration control is a critical aspect of engineering, particularly in structures and mechanical systems where excessive oscillations can lead to fatigue, noise, or failure. Vibration suppression is essential in aerospace, automotive, civil, and industrial applications to enhance performance and longevity of systems. Piezoelectric [...] Read more.
Vibration control is a critical aspect of engineering, particularly in structures and mechanical systems where excessive oscillations can lead to fatigue, noise, or failure. Vibration suppression is essential in aerospace, automotive, civil, and industrial applications to enhance performance and longevity of systems. Piezoelectric shunt circuits (PSCs) offer a passive or semi-active approach to damping vibrations by leveraging the electromechanical properties of piezoelectric materials. Traditional passive damping methods, such as viscoelastic materials, are effective but lack adaptability. Active control systems, while tunable, require external power and complex electronics, increasing cost and weight. Piezoelectric shunt circuits provide a middle ground, utilizing piezoelectric transducers bonded to a structure and connected to an electrical circuit to dissipate vibrational energy as heat or store it electrically. This review synthesizes the fundamental mechanisms, circuit designs, and practical applications of this technology. It also presents the modeling of lumped and distributed parameter systems coupled with PSCs. It complements the recent reviews and primarily focuses on the period from 2019 to date in addition to the earlier seminal works on the subject. It explores the principles, configurations, advantages, and limitations of piezoelectric shunt circuits for vibration control, alongside recent advancements and potential future developments. It sheds light on the research gaps in the literature that future work may tackle. Full article
(This article belongs to the Section Acoustics and Vibrations)
Show Figures

Figure 1

20 pages, 7314 KiB  
Article
Zoharite, (Ba,K)6 (Fe,Cu,Ni)25S27, and Gmalimite, K6□Fe2+24S27—New Djerfisherite Group Minerals from Gehlenite-Wollastonite Paralava, Hatrurim Complex, Israel
by Irina O. Galuskina, Biljana Krüger, Evgeny V. Galuskin, Hannes Krüger, Yevgeny Vapnik, Mikhail Murashko, Kamila Banasik and Atali A. Agakhanov
Minerals 2025, 15(6), 564; https://doi.org/10.3390/min15060564 - 26 May 2025
Viewed by 172
Abstract
Zoharite (IMA 2017-049), (Ba,K)6 (Fe,Cu,Ni)25S27, and gmalimite (IMA 2019-007), ideally K6□Fe2+24S27, are two new sulfides of the djerfisherite group. They were discovered in an unusual gehlenite–wollastonite paralava with pyrrhotite nodules located [...] Read more.
Zoharite (IMA 2017-049), (Ba,K)6 (Fe,Cu,Ni)25S27, and gmalimite (IMA 2019-007), ideally K6□Fe2+24S27, are two new sulfides of the djerfisherite group. They were discovered in an unusual gehlenite–wollastonite paralava with pyrrhotite nodules located in the Hatrurim pyrometamorphic complex, Negev Desert, Israel. Zoharite and gmalimite build grained aggregates confined to the peripheric parts of pyrrhotite nodules, where they associate with pentlandite, chalcopyrite, chalcocite, digenite, covellite, millerite, heazlewoodite, pyrite and rudashevskyite. The occurrence and associated minerals indicate that zoharite and gmalimite were formed at temperatures below 800 °C, when sulfides formed on external zones of the nodules have been reacting with residual silicate melt (paralava) locally enriched in Ba and K. Macroscopically, both minerals are bronze in color and have a dark-gray streak and metallic luster. They are brittle and have a conchoidal fracture. In reflected light, both minerals are optically isotropic and exhibit gray color with an olive tinge. The reflectance values for zoharite and gmalimite, respectively, at the standard COM wavelengths are: 22.2% and 21.5% at 470 nm, 25.1% and 24.6% at 546 nm, 26.3% and 25.9% at 589 nm, as well as 27.7% and 26.3% at 650 nm. The average hardness for zoharite and for gmalimite is approximately 3.5 of the Mohs hardness. Both minerals are isostructural with owensite, (Ba,Pb)6(Cu,Fe,Ni)25S27. They crystallize in cubic space group Pm¯3m with the unit-cell parameters a = 10.3137(1) Å for zoharite and a = 10.3486(1) Å for gmalimite. The calculated densities are 4.49 g·cm−3 for the zoharite and 3.79 g·cm−3 for the gmalimite. The primary structural units of these minerals are M8S14 clusters, composed of MS4 tetrahedra surrounding a central MS6 octahedron. The M site is occupied by transition metals such as Fe, Cu, and Ni. These clusters are further connected via the edges of the MS4 tetrahedra, forming a close-packed cubic framework. The channels within this framework are filled by anion-centered polyhedra: SBa9 in zoharite and SK9 in gmalimite, respectively. In the M8S14 clusters, the M atoms are positioned so closely that their d orbitals can overlap, allowing the formation of metal–metal bonds. As a result, the transition metals in these clusters often adopt electron configurations that reflect additional electron density from their local bonding environment, similar to what is observed in pentlandite. Due to the presence of shared electrons in these metal–metal bonds, assigning fixed oxidation states—such as Fe2+/Fe3+ or Cu+/Cu2+—becomes challenging. Moreover, modeling the distribution of mixed-valence cations (Fe2+/3+, Cu+/2+, and Ni2+) across the two distinct M sites—one located in the MS6 octahedron and the other in the MS4 tetrahedra—often results in ambiguous outcomes. Consequently, it is difficult to define an idealized end-member formula for these minerals. Full article
(This article belongs to the Collection New Minerals)
Show Figures

Graphical abstract

16 pages, 4408 KiB  
Article
Evaluation of Adhesive Seams of High-Density Polyethylene Geomembrane Subjected to Wetting and Freeze-Thaw Cycles
by Xianlei Zhang, Jialong Zhai, Yuan Tang and Yunyun Wu
Materials 2025, 18(10), 2368; https://doi.org/10.3390/ma18102368 - 20 May 2025
Viewed by 250
Abstract
The seaming of geomembranes (GMBs) is a critical aspect of their successful functioning as barriers to liquid, with bonding and welding being the commonly employed methods. Due to the limitations of conventional welding methods at the connection points between the geomembrane and the [...] Read more.
The seaming of geomembranes (GMBs) is a critical aspect of their successful functioning as barriers to liquid, with bonding and welding being the commonly employed methods. Due to the limitations of conventional welding methods at the connection points between the geomembrane and the structure, extrusion welding often results in damage at the seams. The bonding method, which has lower requirements for construction conditions, has emerged as a currently viable alternative seaming technique. Bonding techniques are widely applied in small reservoirs and embankments. This study investigates the performance of high-density polyethylene (HDPE) GMB seams bonded using asphalt-based adhesive (ABA) and non-asphalt-based adhesive (NABA). Seam tensile tests were conducted under wetting and freeze-thaw cycles (FTCs) conditions to evaluate the mechanical properties of the seamed GMBs. The results indicated that the seam strength of specimens bonded with ABA increased as wetting time and FTCs increased (with a maximum increase of 113.8%). In contrast, specimens bonded with NABA exhibited decreased seam strength under similar conditions (with a maximum decrease of 93.4%). Both types of specimens exhibited enhanced seam strength with increasing seam width. Due to wetting and FTCs, the seam efficiency of NABA-bonded specimens decreased, while that of ABA-bonded specimens showed slight improvement. However, the improved seam efficiency remained below 1.2%, an extremely small value. The axial tensile strength of bonded specimens was significantly lower than that of seamless specimens, failing to fulfill long-term safety operation requirements. Therefore, bonding method should be used cautiously at non-critical structural components where the welding is impractical but repair and replacement are relatively simple. The findings provide insight for GMB installers and design engineers in order to improve the performance of HDPE GMB seams. Full article
Show Figures

Figure 1

21 pages, 3742 KiB  
Article
Mixed 3d-3d’-Metal Complexes: A Dicobalt(III)Iron(III) Coordination Cluster Based on Pyridine-2-Amidoxime
by Sotiris G. Skiadas, Christina D. Polyzou, Zoi G. Lada, Rodolphe Clérac, Yiannis Sanakis, Pierre Dechambenoit and Spyros P. Perlepes
Inorganics 2025, 13(5), 171; https://doi.org/10.3390/inorganics13050171 - 17 May 2025
Viewed by 403
Abstract
In the present work, we describe the use of the potentially tridentate ligand pyridine-2-amidoxime (NH2paoH) in Fe-Co chemistry. The 1:1:3 FeIII(NO3)3·9H2O/CoII(ClO4)2·6H2O/NH2paoH reaction mixture [...] Read more.
In the present work, we describe the use of the potentially tridentate ligand pyridine-2-amidoxime (NH2paoH) in Fe-Co chemistry. The 1:1:3 FeIII(NO3)3·9H2O/CoII(ClO4)2·6H2O/NH2paoH reaction mixture in MeOH gave complex [CoIII2FeIII(NH2pao)6](ClO4)2(NO3) (1) in ca. 55% yield, the cobalt(II) being oxidized to cobalt(III) under the aerobic conditions. The same complex was isolated using cobalt(II) and iron(II) sources, the oxidation now taking place at both metal sites. The structure of 1 contains two structurally similar, crystallographically independent cations [CoIII2FeIII(NH2pao)6]3+ which are strictly linear by symmetry. The central high-spin FeIII ion is connected to each of the terminal low-spin CoIII ions through the oximato groups of three 2.1110 (Harris notation) NH2pao ligands, in such a way that the six O atoms are bonded to the octahedral FeIII center ({FeIIIO6} coordination sphere). Each terminal octahedral CoIII ions is bonded to six N atoms (three oximato, three 2-pyridyl) from three NH2pao groups ({CoIIIN6} coordination sphere). The IR and Raman spectra of the complex are discussed in terms of the coordination mode of the organic ligand, and the non-coordinating nature of the inorganic ClO4 and NO3 counterions. The UV/VIS spectrum of the complex in EtOH shows the two spin-allowed d-d transitions of the low-spin 3d6 cobalt(III) and a charge-transfer NH2pao → FeIII band. The δ and ΔΕQ 57Fe-Mössbauer parameter of 1 at 80 K show the presence of an isolated high-spin FeIII center. Variable-temperature (1.8 K–300 K) and variable-field (0–7 T) magnetic studies confirm the isolated character of FeIII. A critical discussion of the importance of NH2paoH and its anionic forms (NH2pao, NHpao2−) in homo- and heterometallic chemistry is also attempted. Full article
Show Figures

Figure 1

9 pages, 1603 KiB  
Article
Electron Emission as a Tool for Detecting Fracture and Surface Durability of Tensile-Loaded Epoxy Polymers Modified with SiO2 Nanoparticles
by Agnes Elizabeth Cerpa, Yuri Dekhtyar and Sanda Kronberga
Processes 2025, 13(5), 1546; https://doi.org/10.3390/pr13051546 - 17 May 2025
Viewed by 244
Abstract
Epoxy polymers modified with nanoparticles are increasingly employed due to their enhanced performance in aggressive environments, characterized by mechanical stress, radiation exposure, and extreme temperatures. The mechanical failure of these polymers is attributed to the fracturing of atomic and molecular bonds, that subsequently [...] Read more.
Epoxy polymers modified with nanoparticles are increasingly employed due to their enhanced performance in aggressive environments, characterized by mechanical stress, radiation exposure, and extreme temperatures. The mechanical failure of these polymers is attributed to the fracturing of atomic and molecular bonds, that subsequently excites electrons having the capability to be emitted from the nanolayer of the material. The present study demonstrates that the relationship between mechanical loading and electron emission over time serves as an indicator of surface loading and durability. By utilizing the Kinetic Nature of Solid Material Strength (KSMS) theory alongside near-threshold electron emission measurements, the article presents the behavior of epoxy polymers modified with SiO2 nanoparticles under tensile loading. The results indicate that as mechanical load is applied, photoelectron emission (PE) pulses emerge. Notably, the pulse spectrum highest frequency (fmax) correlates with the time of atomic fluctuations (τ), defined by τ = 1/fmax. Furthermore, ultraviolet (UV) irradiation of the nanoparticles prior to mixing with the polymer is shown to influence the parameter of KSMS responsible for local stress concentration. This suggests that PE is connected with the homogeneity of the composite too. The achieved results demonstrate that PE contactless measurements can be used to detect mechanical destruction of the epoxy polymer composite surface nanolayer, as well as to assess its durability and corresponding activation energy. The results presented in the article may contribute to the development of more reliable epoxy polymer composites and durability measurements of their mechanically loaded surface layer or nanofilms. Full article
(This article belongs to the Special Issue Composite Materials Processing, Modeling and Simulation)
Show Figures

Figure 1

8 pages, 4572 KiB  
Communication
Crystal Structure and Hirshfeld Surface Analysis of Hexakis(acetoxymethyl)benzene
by Manuel Stapf, Wilhelm Seichter and Monika Mazik
Molbank 2025, 2025(2), M2008; https://doi.org/10.3390/M2008 - 16 May 2025
Viewed by 134
Abstract
Representatives of the hexasubstituted benzene derivatives, also known as hexa-hosts, have been the subject of extensive studies in solution and in the solid state, including the investigation of their ability to act as artificial receptors for various substrates, as well as detailed conformational [...] Read more.
Representatives of the hexasubstituted benzene derivatives, also known as hexa-hosts, have been the subject of extensive studies in solution and in the solid state, including the investigation of their ability to act as artificial receptors for various substrates, as well as detailed conformational analyses. In this paper, we describe the X-ray crystal structure of hexakis(acetoxymethyl)benzene (1), a member of the above class of compounds. The molecules of 1 adopt an aaabbb conformation, in which three side-arms point to the same face of the central benzene ring, while the other three point in the opposite direction. As the compound lacks strong hydrogen bond donors, C–H···O hydrogen bonds connect the molecules to a three-dimensional supramolecular network. According to the Hirshfeld surface analysis, the H∙∙∙O/O∙∙∙H interactions represent the major contribution of the molecular Hirshfeld surface. Full article
(This article belongs to the Section Structure Determination)
Show Figures

Graphical abstract

17 pages, 11377 KiB  
Article
A New [PMo12O40]3−-Based NiII Compound: Electrochemical and Photocatalytic Properties for Water Pollutant Removal
by Guoqing Lin, Shufeng Liu, Dai Shi, Ying Yang, Fangle Yu, Tong Lu, Xiao-Yang Yu and Yuguang Zhao
Molecules 2025, 30(10), 2172; https://doi.org/10.3390/molecules30102172 - 15 May 2025
Viewed by 116
Abstract
A polyoxometalate-based metal–organic complex with the ability to treat pollutants in water was obtained under hydrothermal conditions, namely [Ni(H2L)(HL)2](PMo12O40)·3H3O·4H2O (1) (H2L = 4,4′-(1H,1′H-[2,2′-biimidazole]-1,1′-diyl)dibenzoicacid). Structural analysis reveals that [...] Read more.
A polyoxometalate-based metal–organic complex with the ability to treat pollutants in water was obtained under hydrothermal conditions, namely [Ni(H2L)(HL)2](PMo12O40)·3H3O·4H2O (1) (H2L = 4,4′-(1H,1′H-[2,2′-biimidazole]-1,1′-diyl)dibenzoicacid). Structural analysis reveals that the [Ni(H2L)(HL)2] units are interconnected into a 2D layer via hydrogen bonds between adjacent carboxyl groups and water molecules of crystallization. [PMo12O40]3− anions are embedded within the larger pores of the layer and are connected to the adjacent layers through hydrogen bonds, ultimately expanding the structure into a 3D supramolecular architecture. The intermolecular interactions were studied via Hirshfeld surface (HS) analysis. Electrochemical performance tests reveal that 1 exhibits electrocatalytic activity toward the oxidation and reduction of diverse pollutants in water, including NO2, Cr(VI), BrO3, Fe(III), and ascorbic acid (AA). Additionally, it can also serve as an amperometric sensor for the detection of BrO3 and Cr(VI). Photocatalytic studies reveal that compound 1 functions as a bifunctional photocatalyst, which not only achieves efficient degradation of organic dyes but also demonstrates remarkable reduction efficiency for toxic Cr(VI). Compound 1 demonstrates significant potential for practical water remediation applications. Full article
(This article belongs to the Section Inorganic Chemistry)
Show Figures

Graphical abstract

17 pages, 3965 KiB  
Article
Discrete Element Simulations of Damage Evolution of NiAl-Based Material Reconstructed by Micro-CT Imaging
by Arnas Kačeniauskas, Ruslan Pacevič, Eugeniuš Stupak, Jerzy Rojek, Marcin Chmielewski, Agnieszka Grabias and Szymon Nosewicz
Appl. Sci. 2025, 15(10), 5260; https://doi.org/10.3390/app15105260 - 8 May 2025
Viewed by 278
Abstract
Sintered porous materials present challenges for any modeling approach applied to simulate their damage evolution because of their complex microstructure, which is crucial for the initialization and propagation of microcracks. This paper presents discrete element simulations of the damage evolution of a NiAl-based [...] Read more.
Sintered porous materials present challenges for any modeling approach applied to simulate their damage evolution because of their complex microstructure, which is crucial for the initialization and propagation of microcracks. This paper presents discrete element simulations of the damage evolution of a NiAl-based material reconstructed by micro-CT imaging. A novel geometry reconstruction procedure based on micro-CT images and the adapted advancing front algorithm fills the solid phase using well-connected irregular and highly dense sphere packing, which directly represents the microstructure of the porous material. Uniaxial compression experiments were performed to identify the behavior of the NiAl sample and validate the discrete element model. Discrete element simulations based on micro-CT imaging revealed a realistic representation of the damage evolution and stress–strain dependency. The stress and strain of the numerically obtained curve peak differed from the experimentally measured values by 0.1% and 4.2%, respectively. The analysis of damage evolution was performed according to the time variation rate of the broken bond count. Investigation of the stress–strain dependencies obtained by using different values of the compression strain rate showed that the performed simulations approached the quasi-static state and achieved the acceptable accuracy within the limits of the available computational resources. The proposed stress scaling technique allowed a seven times increase of the size of the time step, which reduced the computing time by seven times. Full article
(This article belongs to the Section Mechanical Engineering)
Show Figures

Figure 1

21 pages, 8633 KiB  
Article
Experimental Study on Seismic Performance of Vertical Connection Nodes of Prefabricated Concrete Channel
by Guangyao Zhang, Zhiqi Wang, Wenliang Ma, Zhihao Wang, Luming Li, Yanping Zhou, Yibo Li and Yuxia Suo
Buildings 2025, 15(10), 1581; https://doi.org/10.3390/buildings15101581 - 8 May 2025
Viewed by 272
Abstract
The prefabricated concrete channel, constructed by integrating factory-based prefabrication with on-site assembly, offers enhanced quality, reduced construction time, and minimized environmental impact. To promote its application in water conservancy projects, an innovative concrete joint combining semi-grouting sleeves and shear-resistant steel plates was proposed. [...] Read more.
The prefabricated concrete channel, constructed by integrating factory-based prefabrication with on-site assembly, offers enhanced quality, reduced construction time, and minimized environmental impact. To promote its application in water conservancy projects, an innovative concrete joint combining semi-grouting sleeves and shear-resistant steel plates was proposed. Its seismic performance was assessed through a 1:3 scale low-cycle reversed loading test, focusing on failure mode, hysteretic behavior, skeleton curves, stiffness degradation, ductility, and energy dissipation. Results show that the joint primarily exhibits bending–shear failure, with cracks initiating at the sidewall–base slab interface. Also, the sidewall and base slab are interconnected through semi-grouting sleeves, while the concrete bonding is achieved via grouting and surface chiseling at the joint interface. The results indicated that the innovative concrete joint connection exhibits satisfied seismic performance. The shear-resistant steel plate significantly improves shear strength and enhances water sealing. Compared with cast-in-place specimens, the prefabricated joint shows a 16.04% lower equivalent viscous damping coefficient during failure due to reinforcement slippage, while achieving 16.34% greater cumulative energy dissipation and 52.00% higher ductility. These findings provide theoretical and experimental support for the broader adoption of prefabricated channels in water conservancy engineering. Full article
(This article belongs to the Section Building Structures)
Show Figures

Figure 1

23 pages, 5161 KiB  
Article
Correlating the Effects of UV Aging on the Macro-Micro Behaviors of Asphalt with Its Molecular Mechanisms
by Han Xi, Lingyun Kong, Shixiong Hu and Songxiang Zhu
Materials 2025, 18(10), 2165; https://doi.org/10.3390/ma18102165 - 8 May 2025
Viewed by 330
Abstract
UV radiation can change the internal molecular composition, macroscopic rheological properties, and microscopic chemical composition of asphalt. To study the effect of ultraviolet aging on asphalt and its structure–activity relationship, its rheological properties were measured by dynamic shear rheology and multiple stress recovery [...] Read more.
UV radiation can change the internal molecular composition, macroscopic rheological properties, and microscopic chemical composition of asphalt. To study the effect of ultraviolet aging on asphalt and its structure–activity relationship, its rheological properties were measured by dynamic shear rheology and multiple stress recovery creep tests, its chemical compositions were measured by component composition, elemental composition, and infrared spectrum tests, and its molecular weight, distribution, and molecular structure were determined by gel permeation chromatography and nuclear magnetic resonance tests. Then, the molecular weight and molecular structure, rheological properties, and microchemical aging behavior of asphalt after UV aging were characterized by correlation analysis, and the structure–activity relationship was analyzed. The results show that the deformation resistance and elastic recovery ability of asphalt after UV aging are enhanced, and the flow performance is decreased. The ultraviolet radiation caused the aromatic hydrocarbons containing naphthenes and long alkyl chains in the asphalt to break and connect with asphaltenes with a ring structure. The asphaltene content in each bitumen sample exceeded 46%, and that in KL reached 55%, indicating that the bitumen changed into a gel structure. UV aging causes the aggregation of asphalt molecules, and the aggregation of molecules narrows the molecular distribution boundary and moves in the direction of macromolecules, resulting in the reduction of the dispersion coefficient by 2–10%. Hydrogen atoms will undergo condensation and substitution reactions due to long-chain breaking, cyclization, or aromatization under UV action, and the breaking of C=C bonds in carbon atoms will increase the stable aromatic ring, strengthen the stiffness of the molecular backbone, and make it difficult for the backbone to spin. Through correlation analysis, it was found that the molecular composition index could characterize the aging behavior index of asphalt, and that the aromatic structure was the most critical molecular change. Further, it was found that the sulfoxide group and carbonyl group could be used as evaluation criteria for the UV aging of asphalt because the correlation between them was above 0.7. This study provides an essential index reference for evaluating the performance change of asphalt under ultraviolet aging to save testing time. Moreover, the molecular structure characterization revealed the changes in internal molecular composition that were behind the observed aging properties, providing a theoretical basis for research on asphalt anti-aging technology. Full article
(This article belongs to the Section Construction and Building Materials)
Show Figures

Figure 1

Back to TopTop