Sign in to use this feature.

Years

Between: -

Subjects

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Journals

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Article Types

Countries / Regions

Search Results (206)

Search Parameters:
Keywords = bowing effect

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
21 pages, 9867 KB  
Article
Time, Space, and Dynamic Split of Loss Sources in LPT by Means of Phase-Locked Proper Orthogonal Decomposition
by Matteo Russo, Matteo Dellacasagrande, Francesca Satta, Davide Lengani, Daniele Simoni, Juri Bellucci, Matteo Giovannini, Angelo Alberto Granata and Monica Gily
Int. J. Turbomach. Propuls. Power 2025, 10(3), 25; https://doi.org/10.3390/ijtpp10030025 - 2 Sep 2025
Viewed by 168
Abstract
In this study, a procedure based on Phase-locked Proper Orthogonal Decomposition (PPOD) was applied to Large Eddy Simulations (LESs) of two low-pressure turbine blades operating with unsteady inflow. This decomposition allows the inspection of the effect of blade loading on loss generation mechanisms, [...] Read more.
In this study, a procedure based on Phase-locked Proper Orthogonal Decomposition (PPOD) was applied to Large Eddy Simulations (LESs) of two low-pressure turbine blades operating with unsteady inflow. This decomposition allows the inspection of the effect of blade loading on loss generation mechanisms, focusing especially on their variation throughout the incoming wake period. After sorting snapshots based on their phase within the wake cycle using temporal POD coefficients associated with wake migration, POD was reapplied to each sub-ensemble of snapshots at a given phase, providing an optimal representation of the dynamics at fixed wake locations. This highlighted the effects of the migration, bowing, tilting, and reorientation of the incoming wake filaments, as well as the breakup of streaky structures in the blade boundary layer and the formation of Von Karman vortices at the blade trailing edge. PPOD offered us the opportunity to observe how all these processes are modulated and change throughout the wake period. The comparison between the two analyzed blades showed that overall loss generation follows similar temporal patterns during the wake-passing cycle, increasing with the propagation of the upstream wake and reaching its maximum value when the wake is in the peak suction position. According to the specific blade loading distribution, the production of TKE was observed in different regions of the computational domain. The described procedure may contribute to the development of advanced design processes based on physically informed strategies. Full article
Show Figures

Figure 1

22 pages, 6240 KB  
Article
A Linear Interpolation Method for Five-Axis Machining Paths on Fan Blisk Surfaces with Constant Theoretical Machining Error
by Zhiwei Wang, Yingjian Tian, Shuanglong Mao, Zhanwang Shi and Hengdi Wang
Machines 2025, 13(9), 768; https://doi.org/10.3390/machines13090768 - 28 Aug 2025
Viewed by 316
Abstract
Blisks are complex thin-walled parts with specific structures that have narrow channels and a large degree of bowed-twisted blades. Five-axis machining technology critically influences blisk surface quality and production efficiency, as the toolpath determines machining accuracy for complex curved blades. A method of [...] Read more.
Blisks are complex thin-walled parts with specific structures that have narrow channels and a large degree of bowed-twisted blades. Five-axis machining technology critically influences blisk surface quality and production efficiency, as the toolpath determines machining accuracy for complex curved blades. A method of optimal cutter location calculation for linear interpolation path based on the constraint of equal theoretical machining error is proposed. Based on the kinematics model of the machine tool, the mapping relationship between the trajectory deviation of the five-axis of machine tool and the tool pose deviation in the workpiece coordinate system is established, and then the maximum overcut/undercut value under the coupling action of the tool tip deviation and the tool orientation deviation is estimated. Based on this, a method to estimate the upper limit of theoretical machining error caused during the movement of the tool along the linear path is proposed. And the algorithm for searching discrete cutter locations on the trajectory of cutting contacts is given to maximize the length of linear path based on the constraint of equal machining error. Experimental results demonstrate that the proposed method effectively reduces redundant cutter locations on linear paths and enhances blisk surface quality by replacing conventional constant chord error control with a more preblisk machining error constraint. Full article
(This article belongs to the Section Advanced Manufacturing)
Show Figures

Figure 1

33 pages, 14579 KB  
Article
Parametric CFD-FEA Study on the Aerodynamic and Structural Performance of NaviScreen for Wind Resistance Reduction in Medium-Sized Commercial Ships
by Jin-Man Kim, Jun-Taek Lim, Kwang Cheol Seo and Joo-Shin Park
J. Mar. Sci. Eng. 2025, 13(9), 1626; https://doi.org/10.3390/jmse13091626 - 26 Aug 2025
Viewed by 370
Abstract
Meeting the International Maritime Organization’s (IMO) 2050 targets for reducing greenhouse gas (GHG) emissions requires cost-effective solutions that minimize wind resistance without compromising safety, particularly for medium-sized multipurpose vessels (MPVs), which have been underrepresented in prior research. This study numerically evaluates 20 bow-mounted [...] Read more.
Meeting the International Maritime Organization’s (IMO) 2050 targets for reducing greenhouse gas (GHG) emissions requires cost-effective solutions that minimize wind resistance without compromising safety, particularly for medium-sized multipurpose vessels (MPVs), which have been underrepresented in prior research. This study numerically evaluates 20 bow-mounted NaviScreen configurations using a coupled high-fidelity computational fluid dynamics (CFD) and finite element analysis (FEA) approach. Key design variables—including contact angle (35–50°), lower-edge height (1.2–2.0 m), and horn position (3.2–5.3 m)—were systematically varied. The sloped Type-15 shield reduced aerodynamic resistance by 17.1% in headwinds and 24.5% at a 30° yaw, lowering total hull resistance by up to 8.9%. Nonlinear FEA under combined dead weight, wind loads, and Korean Register (KR) green-water pressure revealed local buckling risks, which were mitigated by adding carling stiffeners and increasing plate thickness from 6 mm to 8 mm. The reinforced design satisfied KR yield limits, ABS buckling factors (>1.0), and NORSOK displacement criteria (L/100), confirming structural robustness. This dual-framework approach demonstrates the viability of NaviScreens as passive aerodynamic devices that enhance fuel efficiency and reduce GHG emissions, aligning with global efforts to address climate change by targeting not only CO2 but also other harmful emissions (e.g., NOx, SOx) regulated under MARPOL. The study delivers a validated CFD-FEA workflow to optimize performance and safety, offering shipbuilders a scalable solution for MPVs and related vessel classes to meet IMO’s GHG reduction goals. Full article
(This article belongs to the Section Ocean Engineering)
Show Figures

Figure 1

9 pages, 1887 KB  
Article
Tunable High-Power 420 nm Laser with External Cavity Frequency Doubling: Toward Efficient Rubidium Rydberg Excitation
by Zhongxiao Xu, Xin Jia, Keyu Qin, Weisen Wang, Yaoting Zhou and Donghao Li
Photonics 2025, 12(8), 830; https://doi.org/10.3390/photonics12080830 - 21 Aug 2025
Viewed by 574
Abstract
The external cavity frequency doubling technique serves as a potent method for generating short-wavelength lasers, yet achieving high-power outputs remains challenging due to the thermal lens effect. This study systematically investigates the generation mechanism of the thermal lens effect and its impact on [...] Read more.
The external cavity frequency doubling technique serves as a potent method for generating short-wavelength lasers, yet achieving high-power outputs remains challenging due to the thermal lens effect. This study systematically investigates the generation mechanism of the thermal lens effect and its impact on laser performance. By optimizing the bow-tie cavity design and leveraging a large beam waist of 106 µm to suppress thermal-induced distortions, we demonstrate a tunable 420 nm laser with up to 800 mW of output power and a peak conversion efficiency of 77%. The fundamental light source, a Ti:Sa laser locked to an ultra-stable cavity, ensures a narrow linewidth, flexible tunability, and long-term frequency stability. This high-performance blue laser enables the efficient Rydberg excitation of rubidium atoms, presenting critical applications in quantum computing, quantum simulation, and quantum precision measurement. Full article
Show Figures

Figure 1

26 pages, 66652 KB  
Article
Modeling and Analysis of Surface Motion Characteristics for a Dual-Propulsion Amphibious Spherical Robot
by Hongqun Zou, Fengqi Zhang, Meng Wang, You Wang and Guang Li
Appl. Sci. 2025, 15(16), 8998; https://doi.org/10.3390/app15168998 - 14 Aug 2025
Viewed by 483
Abstract
This study introduces an amphibious spherical robot equipped with a dual-propulsion system (ASR-DPS) and investigates its water-surface motion characteristics. Due to its distinctive spherical geometry, the robot exhibits markedly different hydrodynamic behavior compared to conventional vessels. A comparative analysis of the frontal wetted [...] Read more.
This study introduces an amphibious spherical robot equipped with a dual-propulsion system (ASR-DPS) and investigates its water-surface motion characteristics. Due to its distinctive spherical geometry, the robot exhibits markedly different hydrodynamic behavior compared to conventional vessels. A comparative analysis of the frontal wetted area is performed, followed by computational fluid dynamics (CFD) simulations to assess water-surface performance. The results indicate that the hemispherical bow increases hydrodynamic resistance and generates large-scale vortex structures as a consequence of intensified flow separation. Although the resistance is higher than that of traditional hulls, the robot’s greater draft and dual-propulsion configuration enhance stability and maneuverability during surface operations. To validate real-world performance, standard maneuvering tests, including circle and zig-zag maneuvers, are conducted to evaluate the effectiveness of the propeller-based propulsion system. The robot achieves a maximum surface speed of 1.2 m/s and a zero turning radius, with a peak yaw rate of 0.54 rad/s under differential thrust. Additionally, experiments on the pendulum-based propulsion system demonstrate a maximum speed of 0.239 m/s with significantly lower energy consumption (220.6 Wh at 60% throttle). A four-degree-of-freedom kinematic and dynamic model is formulated to describe the water-surface motion. To address model uncertainties and external disturbances, two control strategies are proposed: one employing model simplification and the other adaptive control. Simulation results confirm that the adaptive sliding mode controller provides precise surge speed tracking and smooth yaw regulation with near-zero steady-state error, exhibiting superior robustness and reduced chattering compared to the baseline controller. Full article
(This article belongs to the Special Issue Control Systems in Mechatronics and Robotics)
Show Figures

Figure 1

14 pages, 6710 KB  
Article
Bow Thruster at Normal and Off-Design Conditions
by Mehrdad Kazemi and Nikolai Kornev
J. Mar. Sci. Eng. 2025, 13(8), 1463; https://doi.org/10.3390/jmse13081463 - 30 Jul 2025
Viewed by 344
Abstract
Reliable prediction of tunnel thruster performance under reverse, or off-design, reverse operating direction (ROD) conditions, is crucial for modern vessels that require bidirectional thrust from a single unit—such as yachts and offshore support vessels. Despite the increasing demand for such a capability, there [...] Read more.
Reliable prediction of tunnel thruster performance under reverse, or off-design, reverse operating direction (ROD) conditions, is crucial for modern vessels that require bidirectional thrust from a single unit—such as yachts and offshore support vessels. Despite the increasing demand for such a capability, there remains limited understanding of the unsteady hydrodynamic behavior and performance implications of ROD operation. This study addresses this gap through a scale-resolving computational fluid dynamics (CFD) investigation of a full-scale, fixed-pitch propeller with a diameter of 0.62, installed in a tunnel geometry representative of yacht-class side thrusters. Using advanced turbulence modeling, we compare the thruster’s performance under both the normal operating direction (NOD) and ROD. The results reveal notable differences: in ROD, the upstream separation zone was more compact and elongated, average thrust increases by approximately 3–4%, and torque and pressure fluctuations rise by 15–30%. These findings demonstrate that a single tunnel thruster can meet bidirectional manoeuvring requirements. However, the significantly elevated unsteady loads during ROD operation offer a plausible explanation for the increased noise and vibration frequently observed in practice. Full article
(This article belongs to the Section Ocean Engineering)
Show Figures

Figure 1

34 pages, 12831 KB  
Article
Behavior of Large-Diameter Circular Deep Excavation Under Asymmetric Surface Surcharge
by Ping Zhao, Youqiang Qiu, Feng Liu, Zhanqi Wang and Panpan Guo
Symmetry 2025, 17(8), 1194; https://doi.org/10.3390/sym17081194 - 25 Jul 2025
Viewed by 367
Abstract
Circular deep excavations, characterized by their symmetrical geometry, are commonly employed in constructing foundations for large-span suspension bridges and as launching shafts for shield tunneling. However, the mechanical behavior of such excavations under asymmetric surface surcharge remains inadequately understood due to a paucity [...] Read more.
Circular deep excavations, characterized by their symmetrical geometry, are commonly employed in constructing foundations for large-span suspension bridges and as launching shafts for shield tunneling. However, the mechanical behavior of such excavations under asymmetric surface surcharge remains inadequately understood due to a paucity of relevant investigations. This study addresses this knowledge gap by establishing a three-dimensional finite element model (3D-FEA) based on the anchor deep excavation project of a specific bridge. The model is utilized to investigate the influence of asymmetric surcharge on the forces and deformations within the supporting structure. The results show that both the internal force and displacement cloud diagrams of the support structure exhibit asymmetric characteristics. The distribution of displacement and internal forces has spatial effects, and the maximum values all occur in the areas where asymmetric loads are applied. The maximum values of the displacement, axial force, and shear force of underground continuous walls increase with the increase in the excavation depth. The total displacement curves all show the feature of a “bulging belly”. The maximum displacement is 13.3 mm. The axial force is mainly compression, with a maximum value of −9514 kN/m. The maximum positive and negative values of the shear force are 333 kN/m and −705 kN/m, respectively. The bending moment diagram of different monitoring points shows the characteristics of “bow knot”. The maximum values of the positive bending moment and negative bending moment are 1509.4 kN·m/m and −2394.3 kN·m/m, respectively. The axial force of the ring beam is mainly compression, with a maximum value of −5360 kN, which occurs in ring beams 3, 4, and 5. The displacement cloud diagram of the support structure under symmetrical loads shows symmetrical characteristics. Under different load conditions, the displacement curve of the diaphragm wall shows the characteristics of “bulge belly”. The forms of loads with displacements from largest to smallest at the same position are as follows: asymmetric loads, symmetrical loads, and no loads. These findings provide valuable insights for optimizing the structural design of similar deep excavation projects and contribute to promoting sustainable urban underground development. Full article
(This article belongs to the Special Issue Symmetry, Asymmetry and Nonlinearity in Geomechanics)
Show Figures

Figure 1

21 pages, 11311 KB  
Article
Shore-Based Constant Tension Mooring System Performance and Configuration Study Based on Cross-Domain Collaborative Analysis Method
by Nan Liu, Peijian Qu, Songgui Chen, Hanbao Chen and Shoujun Wang
J. Mar. Sci. Eng. 2025, 13(8), 1385; https://doi.org/10.3390/jmse13081385 - 22 Jul 2025
Viewed by 331
Abstract
In this paper, a new solution is proposed for the problem of mooring safety of large ships in complex sea conditions. Firstly, a dual-mode mooring system is designed to adaptively switch between active control and passive energy storage, adjusting the mooring strategy based [...] Read more.
In this paper, a new solution is proposed for the problem of mooring safety of large ships in complex sea conditions. Firstly, a dual-mode mooring system is designed to adaptively switch between active control and passive energy storage, adjusting the mooring strategy based on real-time sea conditions. Second, a collaborative analysis platform based on AQWA-Python-MATLAB/Simulink was researched and developed. Thirdly, based on the above simulation platform, the performance of the mooring system and the effects of different configurations on the stability of ship motion and dynamic tension of the cable are emphasized. Finally, by comparing the different mooring positions under various sea conditions with the traditional mooring system, the results show that the constant tension mooring system significantly improves the stability and safety of the ship under both conventional and extreme sea conditions, effectively reducing the fluctuation of cable tension. Through the optimization analysis, it is determined that the configuration of bow and stern cables is the optimal solution, which ensures safety while also improving economic benefits. Full article
(This article belongs to the Section Coastal Engineering)
Show Figures

Figure 1

24 pages, 3171 KB  
Article
Hydroclimatic Trends and Land Use Changes in the Continental Part of the Gambia River Basin: Implications for Water Resources
by Matty Kah, Cheikh Faye, Mamadou Lamine Mbaye, Nicaise Yalo and Lischeid Gunnar
Water 2025, 17(14), 2075; https://doi.org/10.3390/w17142075 - 11 Jul 2025
Viewed by 547
Abstract
Hydrological processes in river systems are changing due to climate variability and human activities, making it crucial to understand and quantify these changes for effective water resource management. This study examines long-term trends in hydroclimate variables (1990–2022) and land use/land cover (LULC) changes [...] Read more.
Hydrological processes in river systems are changing due to climate variability and human activities, making it crucial to understand and quantify these changes for effective water resource management. This study examines long-term trends in hydroclimate variables (1990–2022) and land use/land cover (LULC) changes (1988, 2002, and 2022) within the Continental Reach of the Gambia River Basin (CGRB). Trend analyses of the Standardized Precipitation-Evapotranspiration Index (SPEI) at 12-month and 24-month scales, along with river discharge at the Simenti station, reveal a shift from dry conditions to wetter phases post-2008, marked by significant increases in rainfall and discharge variability. LULC analysis revealed significant transformations in the basin. LULC analysis highlights significant transformations within the basin. Forest and savanna areas decreased by 20.57 and 4.48%, respectively, between 1988 and 2002, largely due to human activities such as agricultural expansion and deforestation for charcoal production. Post-2002, forest cover recovered from 32.36 to 36.27%, coinciding with the wetter conditions after 2008, suggesting that climatic shifts promoted vegetation regrowth. Spatial analysis further highlights an increase in bowe and steppe areas, especially in the north, indicating land degradation linked to human land use practices. Bowe areas, marked by impermeable laterite outcrops, and steppe areas with sparse herbaceous cover result from overgrazing and soil degradation, exacerbated by the region’s drier phases. A notable decrease in burned areas from 2.03 to 0.23% suggests improvements in fire management practices, reducing fire frequency, which is also supported by wetter conditions post-2008. Agricultural land and bare soils expanded by 14%, from 2.77 to 3.07%, primarily in the northern and central regions, likely driven by both population pressures and climatic shifts. Correlations between precipitation and land cover changes indicate that wetter conditions facilitated forest regrowth, while drier conditions exacerbated land degradation, with human activities such as deforestation and agricultural expansion potentially amplifying the impact of climatic shifts. These results demonstrate that while climatic shifts played a role in driving vegetation recovery, human activities were key in shaping land use patterns, impacting both precipitation and stream discharge, particularly due to agricultural practices and land degradation. Full article
(This article belongs to the Section Water and Climate Change)
Show Figures

Figure 1

11 pages, 2031 KB  
Article
Electrical Characteristics of the Pantograph-Catenary Arc in Urban Rail Transit Under Different Air Pressure Conditions
by Xiaoying Yu, Liying Song, Yang Su, Junrui Yang, Xiaojuan Lu, Caizhuo Wei, Yongjia Cheng and Yixiao Liu
Sustainability 2025, 17(14), 6285; https://doi.org/10.3390/su17146285 - 9 Jul 2025
Viewed by 321
Abstract
Nowadays, urban rail transit is expanding towards high-elevation zones, and the effect of the low air pressure environment on the pantograph-catenary system is becoming increasingly prominent. As a key indicator for evaluating the electrical contact performance of a pantograph-catenary system, research on the [...] Read more.
Nowadays, urban rail transit is expanding towards high-elevation zones, and the effect of the low air pressure environment on the pantograph-catenary system is becoming increasingly prominent. As a key indicator for evaluating the electrical contact performance of a pantograph-catenary system, research on the electrical characteristics of the pantograph-catenary arc is of great significance. For this reason, this paper established a plasma mathematical model applicable to the arc of the urban rail transit bow network based on the theory of magnetohydrodynamics. The mathematical model of the pantograph-catenary arc was used to set the relevant initial conditions. Based on COMSOL Multiphysics finite element simulation software, this study developed a multi-physics simulation model of the pantograph-catenary arc and systematically analysed its voltage characteristics and current density distribution under varying air pressure conditions. The results showed that as the air pressure decreases, the potential at the axial points declines, the pressure drop across the arc poles becomes more pronounced, and the current density decreases accordingly. This study provides theoretical and technical support for optimizing the design of and promoting the sustainable development of urban rail transit pantograph-catenary systems in high-altitude areas. Full article
Show Figures

Figure 1

20 pages, 994 KB  
Article
Impact of Different Thermal Processing Techniques on the Phytochemical Composition, Antioxidant Capacity, and DNA-Protective Properties of Broccoli
by Karlo Miškec, Marta Frlin and Ivana Šola
Appl. Sci. 2025, 15(13), 7469; https://doi.org/10.3390/app15137469 - 3 Jul 2025
Viewed by 599
Abstract
Vegetables are usually thermally processed before consumption to improve their flavor and safety. In this work, the effect of boiling (BO), blanching (BL), steaming (ST), air-frying (AF), and pan-frying (PF)on the nutritional value and bioactivity of broccoli (Brassica oleracea var. italica) [...] Read more.
Vegetables are usually thermally processed before consumption to improve their flavor and safety. In this work, the effect of boiling (BO), blanching (BL), steaming (ST), air-frying (AF), and pan-frying (PF)on the nutritional value and bioactivity of broccoli (Brassica oleracea var. italica) heads was investigated, including a comparative analysis of the tissue and the cooking water remaining after the treatments. Using spectrophotometric methods, AF broccoli was found to have the highest levels (p ≤ 0.05) of hydroxycinnamic acids (1.58 ± 0.71 mg CAE/g fw), total glucosinolates (3.76 ± 2.09 mg SinE/g fw), carotenoids (6.73 ± 2.89 mg/kg fw), and lycopene (0.91 ± 0.19 mg/kg fw). Steamed and AF broccoli had the highest total phenolics (0.72 ± 0.12 mg GAE/g fw and 0.65 ± 0.15 mg GAE/g fw, respectively; p ≤ 0.05). ST broccoli also had the highest levels of soluble sugars (11.04 ± 2.45 mg SucE/g fw) and total tannins (0.46 ± 0.19 mg GAE/g fw). The water remaining after cooking broccoli (BOW) had the highest total flavonoids (2.72 ± 0.59 mg QE/g fw) and antioxidant capacity (ABTS and FRAP, 57.57 ± 18.22% and 79.34 ± 3.28%, respectively; p ≤ 0.05). The DPPH assay showed that AF (36.12 ± 15.71%) and ST (35.48 ± 2.28%) had the strongest antioxidant potential. DNA nicking assay showed that BOW and BLW were the most effective in preserving plasmid DNA supercoiled form (99.51% and 94.81%, respectively; p ≤ 0.05). These results demonstrate that thermal processing significantly affects the phytochemical composition and functional properties of broccoli, with steaming and air-frying generally preserving the highest nutritional quality. Additionally, cooking water, often discarded, retains high levels of bioactive compounds and exhibits strong antioxidant and DNA-protective effects. To the best of our knowledge, this is the first study to investigate how different thermal processing techniques of vegetables influence their ability to protect plasmid DNA structure. Furthermore, this is the first study to compare the DNA-protective effects of broccoli tissue extracts and the water remaining after cooking broccoli. Full article
(This article belongs to the Special Issue New Trends in the Structure Characterization of Food)
Show Figures

Figure 1

16 pages, 1782 KB  
Systematic Review
Relationship Between Shooting Performance and Biomechanical Parameters Associated with Body Stability in Archery: A Systematic Review
by João Santos, Joana Barreto, Tiago Atalaia and Pedro Aleixo
Biomechanics 2025, 5(3), 48; https://doi.org/10.3390/biomechanics5030048 - 1 Jul 2025
Viewed by 841
Abstract
Background/Objectives: Body stability plays a decisive role in archery, particularly during the aiming phase. A systematic review was conducted, in accordance with PRISMA guidelines, to critically examine the existing evidence on the association between body stability parameters and shooting performance. Methods: [...] Read more.
Background/Objectives: Body stability plays a decisive role in archery, particularly during the aiming phase. A systematic review was conducted, in accordance with PRISMA guidelines, to critically examine the existing evidence on the association between body stability parameters and shooting performance. Methods: A comprehensive search of the MEDLINE Complete, CINAHL Complete, SportDiscus, and Cochrane Reviews databases was performed. Studies published until 12 July 2024 were considered. Results: Sixteen articles were selected, and we analyzed the following biomechanical parameters related to body stability: center of pressure displacement, velocity, and ellipse area; bow sway; and sway of markers placed on the head, sternum, and pelvis. The findings consistently showed that reduced center of pressure displacement and velocity, along with smaller center of pressure ellipse area, were associated with superior shooting outcomes. Although studies are scarce, data suggest that lower bow sway is associated with better shooting performance. The scarcity of research on the sway of markers placed in anatomical points does not allow for conclusions about their effectiveness as performance predictors. Despite its relevance, no studies have assessed the center of gravity data. Therefore, further research is needed to address this important point. Conclusions: Although studies have examined several parameters, the literature remains inconclusive regarding which of these parameters best predicts shooting quality. Full article
(This article belongs to the Section Sports Biomechanics)
Show Figures

Figure 1

17 pages, 4643 KB  
Article
Semiconductor Wafer Flatness and Thickness Measurement Using Frequency Scanning Interferometry Technology
by Weisheng Cheng, Zexiao Li, Xuanzong Wu, Shuangxiong Yin, Bo Zhang and Xiaodong Zhang
Photonics 2025, 12(7), 663; https://doi.org/10.3390/photonics12070663 - 30 Jun 2025
Viewed by 1159
Abstract
Silicon (Si) and silicon carbide (SiC) are second- and third-generation semiconductor materials with excellent properties that are particularly suitable for applications in scenarios such as high temperature, high voltage, and high frequency. Si/SiC wafers face warpage and bending problems during production, which can [...] Read more.
Silicon (Si) and silicon carbide (SiC) are second- and third-generation semiconductor materials with excellent properties that are particularly suitable for applications in scenarios such as high temperature, high voltage, and high frequency. Si/SiC wafers face warpage and bending problems during production, which can seriously affect subsequent processing. Fast, accurate, and comprehensive detection of thickness, thickness variation, and flatness (including bow and warpage) of SiC and Si wafers is an industry-recognized challenge. Frequency scanning interferometry (FSI) can synchronize the upper and lower surfaces and thickness information of transparent parallel thin wafers, but it is still affected by multiple interfacial harmonic reflections, reflectivity asymmetry, and phase modulation uncertainty when measuring SiC thin wafers, which leads to thickness calculation errors and face reconstruction deviations. To this end, this paper proposes a high-precision facet reconstruction method for SiC/Si structures, which combines harmonic spectral domain decomposition, refractive index gradient constraints, and partitioning optimization strategy, and introduces interferometric signal “oversampling” and weighted fusion of multiple sets of data to effectively suppress higher-order harmonic interferences, and to enhance the accuracy of phase resolution. The multi-layer iterative optimization model further enhances the measurement accuracy and robustness of the system. The flatness measurement system constructed based on this method can realize the simultaneous acquisition of three-dimensional top and bottom surfaces on 6-inch Si/SiC wafers, and accurately reconstruct the key parameters, such as flatness, warpage, and thickness variation (TTV). A comparison with the Corning Tropel FlatMaster commercial system shows that this method has high consistency and good applicability. Full article
(This article belongs to the Special Issue Emerging Topics in Freeform Optics)
Show Figures

Figure 1

19 pages, 4551 KB  
Article
Nonlinear Dynamic Analysis on Multi-Fishing Boats Anchored Together Based on Hilbert–Huang Transform
by Yi-Yan Sun, De-Shuang Yu, Yu-Zhang Xiong, Gang Wang, Xing Li and Ding Chen
Water 2025, 17(13), 1852; https://doi.org/10.3390/w17131852 - 21 Jun 2025
Viewed by 575
Abstract
Fishing boats anchored away from the wharf or revetment are typically in side-by-side configurations due to their small size. Expanding on previous physical model tests investigating regular wave interactions with multi-boat and bow-and-stern-anchored fishing arrays, this study examines the hydrodynamic effects of irregular [...] Read more.
Fishing boats anchored away from the wharf or revetment are typically in side-by-side configurations due to their small size. Expanding on previous physical model tests investigating regular wave interactions with multi-boat and bow-and-stern-anchored fishing arrays, this study examines the hydrodynamic effects of irregular wave conditions. The Hilbert–Huang transform (HHT), an adaptive time–frequency processing technique, was applied to investigate multi-order nonlinear oscillatory elements in dynamic systems. It is found that the roll and heave motions of each boat are dominated by the wave-frequency components, whereas the sway motion is dominated by the low-frequency components. When multi-boats are anchored side by side, the roll and heave motion of the lee-side boat has a greater wave-frequency response compared with other boats, while for sway motion, the middle boat seems a little higher than others. The nonlinear dynamics of the roll and sway motion for a single boat is very large. An increase in the number of parallel boats has significant effect on reducing these responses. The variation trends of the three motion responses of the boat on the weather and lee sides are obviously different in each form. Full article
(This article belongs to the Special Issue Coastal Management and Nearshore Hydrodynamics, 2nd Edition)
Show Figures

Figure 1

21 pages, 11264 KB  
Article
Comparative Analysis of Perturbation Characteristics Between LBGM and ETKF Initial Perturbation Methods in Convection-Permitting Ensemble Forecasts
by Jiajun Li, Chaohui Chen, Xiong Chen, Hongrang He, Yongqiang Jiang and Yanzhen Kang
Atmosphere 2025, 16(6), 744; https://doi.org/10.3390/atmos16060744 - 18 Jun 2025
Viewed by 416
Abstract
This study investigates an extreme squall line event that occurred in northern Jiangxi Province, China on 30–31 March 2024. Based on the WRF model, convection-permitting ensemble forecast experiments were conducted using two distinct initial perturbation approaches, namely, the Local Breeding of Growing Modes [...] Read more.
This study investigates an extreme squall line event that occurred in northern Jiangxi Province, China on 30–31 March 2024. Based on the WRF model, convection-permitting ensemble forecast experiments were conducted using two distinct initial perturbation approaches, namely, the Local Breeding of Growing Modes (LBGM) and the Ensemble Transform Kalman Filter (ETKF), to compare their perturbation structures, spatiotemporal evolution, and precipitation forecasting capabilities. The experiments demonstrated the following: (1) The LBGM method significantly improved the root mean square error (RMSE) of mid-upper tropospheric variables, particularly demonstrating superior performance in low-level temperature field forecasts, but the overall ensemble spread of the system was consistently smaller than that of ETKF. (2) The evolution of dynamical spread within the squall line system confirmed that ETKF generated greater spread growth in low-level wind fields, while LBGM exhibited better spatiotemporal alignment between mid-upper tropospheric wind field spread and the synoptic system evolution. (3) Vertical profiles of total moist energy revealed that ETKF initially exhibited higher total moist energy than LBGM. Both methods showed increasing total moist energy with forecast lead time, displaying a bimodal structure dominated by kinetic energy in upper layers (300–100 hPa) and balanced kinetic energy and moist physics terms in lower layers (1000–700 hPa), with ETKF demonstrating larger growth rates. (4) Kinetic energy spectrum analysis indicated that ETKF exhibited significantly higher perturbation energy than LBGM in the 100–1000 km mesoscale range and superior small- to medium-scale perturbation characterization at the 6–60 km scales initially. Precipitation and radar echo verification showed that ETKF effectively corrected positional biases in precipitation forecasts, while LBGM more accurately reproduced the bow-shaped echo structure near Nanchang due to its precise simulation of leading-edge vertical updrafts and rear-sector low pseudo-equivalent potential temperature regions. Full article
Show Figures

Figure 1

Back to TopTop