Sign in to use this feature.

Years

Between: -

Subjects

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Journals

Article Types

Countries / Regions

Search Results (4)

Search Parameters:
Keywords = branched-chain alpha-ketoacids a

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
11 pages, 1724 KB  
Brief Report
The Role of Branched Chain Ketoacid Dehydrogenase Kinase (BCKDK) in Skeletal Muscle Biology and Pathogenesis
by Joshua Fernicola, Sagar Vyavahare, Sonu Kumar Gupta, Aditya Kalwaghe, Kate Kosmac, Adam Davis, Matthew Nicholson, Carlos M. Isales, Rahul Shinde and Sadanand Fulzele
Int. J. Mol. Sci. 2024, 25(14), 7601; https://doi.org/10.3390/ijms25147601 - 11 Jul 2024
Cited by 4 | Viewed by 3161
Abstract
Muscle wasting can be caused by nutrition deficiency and inefficient metabolism of amino acids, including Branched Chain Amino Acids (BCAAs). Branched Chain Amino Acids are a major contributor to the metabolic needs of healthy muscle and account for over a tenth of lean [...] Read more.
Muscle wasting can be caused by nutrition deficiency and inefficient metabolism of amino acids, including Branched Chain Amino Acids (BCAAs). Branched Chain Amino Acids are a major contributor to the metabolic needs of healthy muscle and account for over a tenth of lean muscle mass. Branched chain alpha-ketoacid dehydrogenase (BCKD) is the rate limiting enzyme of BCAA metabolism. Inhibition of BCKD is achieved through a reversible phosphorylation event by Branched Chain a-ketoacid dehydrogenase kinase (BCKDK). Our study set out to determine the importance of BCKDK in the maintenance of skeletal muscle. We used the Gene Expression Omnibus Database to understand the role of BCKDK in skeletal muscle pathogenesis, including aging, muscular disease, and interrupted muscle metabolism. We found BCKDK expression levels were consistently decreased in pathologic conditions. These results were most consistent when exploring muscular disease followed by aging. Based on our findings, we hypothesize that decreased BCKDK expression alters BCAA catabolism and impacts loss of normal muscle integrity and function. Further research could offer valuable insights into potential therapeutic strategies for addressing muscle-related disorders. Full article
(This article belongs to the Special Issue Muscle Proteins: Recent Advances and Prospects)
Show Figures

Figure 1

11 pages, 1302 KB  
Review
Metabolic Role of GABA in the Secretory Function of Pancreatic β-Cells: Its Hypothetical Implication in β-Cell Degradation in Type 2 Diabetes
by Jorge Tamarit-Rodriguez
Metabolites 2023, 13(6), 697; https://doi.org/10.3390/metabo13060697 - 27 May 2023
Cited by 8 | Viewed by 2705
Abstract
The stimulus-secretion coupling of a glucose-induced release is generally attributed to the metabolism of the hexose in the β-cells in the glycolytic pathway and the citric acid cycle. Glucose metabolism generates an increased cytosolic concentration of ATP and of the ATP/ADP ratio that [...] Read more.
The stimulus-secretion coupling of a glucose-induced release is generally attributed to the metabolism of the hexose in the β-cells in the glycolytic pathway and the citric acid cycle. Glucose metabolism generates an increased cytosolic concentration of ATP and of the ATP/ADP ratio that closes the ATP-dependent K+-channel at the plasma membrane. The resultant depolarization of the β-cells opens voltage-dependent Ca2+-channels at the plasma membrane that triggers the exocytosis of insulin secretory granules. The secretory response is biphasic with a first and transient peak followed by a sustained phase. The first phase is reproduced by a depolarization of the β-cells with high extracellular KCl maintaining the KATP-channels open with diazoxide (triggering phase); the sustained phase (amplifying phase) depends on the participation of metabolic signals that remain to be determined. Our group has been investigating for several years the participation of the β-cell GABA metabolism in the stimulation of insulin secretion by three different secretagogues (glucose, a mixture of L-leucine plus L-glutamine, and some branched chain alpha-ketoacids, BCKAs). They stimulate a biphasic secretion of insulin accompanied by a strong suppression of the intracellular islet content of gamma-aminobutyric acid (GABA). As the islet GABA release simultaneously decreased, it was concluded that this resulted from an increased GABA shunt metabolism. The entrance of GABA into the shunt is catalyzed by GABA transaminase (GABAT) that transfers an amino group between GABA and alpha-ketoglutarate, resulting in succinic acid semialdehyde (SSA) and L-glutamate. SSA is oxidized to succinic acid that is further oxidized in the citric acid cycle. Inhibitors of GABAT (gamma-vinyl GABA, gabaculine) or glutamic acid decarboxylating activity (GAD), allylglycine, partially suppress the secretory response as well as GABA metabolism and islet ATP content and the ATP/ADP ratio. It is concluded that the GABA shunt metabolism contributes together with the own metabolism of metabolic secretagogues to increase islet mitochondrial oxidative phosphorylation. These experimental findings emphasize that the GABA shunt metabolism is a previously unrecognized anaplerotic mitochondrial pathway feeding the citric acid cycle with a β-cell endogenous substrate. It is therefore a postulated alternative to the proposed mitochondrial cataplerotic pathway(s) responsible for the amplification phase of insulin secretion. It is concluded the new postulated alternative suggests a possible new mechanism of β-cell degradation in type 2 (perhaps also in type 1) diabetes. Full article
Show Figures

Figure 1

12 pages, 946 KB  
Article
Methionine and Arginine Supply Alters Abundance of Amino Acid, Insulin Signaling, and Glutathione Metabolism-Related Proteins in Bovine Subcutaneous Adipose Explants Challenged with N-Acetyl-d-sphingosine
by Yusheng Liang, Nana Ma, Danielle N. Coleman, Fang Liu, Yu Li, Hongyan Ding, Fabiana F. Cardoso, Claudia Parys, Felipe C. Cardoso and Juan J. Loor
Animals 2021, 11(7), 2114; https://doi.org/10.3390/ani11072114 - 16 Jul 2021
Cited by 7 | Viewed by 4586
Abstract
The objective was to perform a proof-of-principle study to evaluate the effects of methionine (Met) and arginine (Arg) supply on protein abundance of amino acid, insulin signaling, and glutathione metabolism-related proteins in subcutaneous adipose tissue (SAT) explants under ceramide (Ce) challenge. SAT from [...] Read more.
The objective was to perform a proof-of-principle study to evaluate the effects of methionine (Met) and arginine (Arg) supply on protein abundance of amino acid, insulin signaling, and glutathione metabolism-related proteins in subcutaneous adipose tissue (SAT) explants under ceramide (Ce) challenge. SAT from four lactating Holstein cows was incubated with one of the following media: ideal profile of amino acid as the control (IPAA; Lys:Met 2.9:1, Lys:Arg 2:1), increased Met (incMet; Lys:Met 2.5:1), increased Arg (incArg; Lys:Arg 1:1), or incMet plus incArg (Lys:Met 2.5:1 Lys:Arg 1:1) with or without 100 μM exogenous cell-permeable Ce (N-Acetyl-d-sphingosine). Ceramide stimulation downregulated the overall abundance of phosphorylated (p) protein kinase B (AKT), p-mechanistic target of rapamycin (mTOR), and p-eukaryotic elongation factor 2 (eEF2). Without Ce stimulation, increased Met, Arg, or Met + Arg resulted in lower p-mTOR. Compared with control SAT stimulated with Ce, increased Met, Arg, or Met + Arg resulted in greater activation of mTOR (p-mTOR/total mTOR) and AKT (p-AKT/total AKT), with a more pronounced response due to Arg. The greatest protein abundance of glutathione S-transferase Mu 1 (GSTM1) was detected in response to increased Met supply during Ce stimulation. Ceramide stimulation decreased the overall protein abundance of the Na-coupled neutral amino acid transporter SLC38A1 and branched-chain alpha-ketoacid dehydrogenase kinase (BCKDK). However, compared with controls, increased Met or Arg supply attenuated the downregulation of BCKDK induced by Ce. Circulating ceramides might affect amino acid, insulin signaling, and glutathione metabolism in dairy cow adipose tissue. Further in vivo studies are needed to confirm the role of rumen-protected amino acids in regulating bovine adipose function. Full article
Show Figures

Figure 1

8 pages, 4379 KB  
Case Report
Challenges in Diagnosing Intermediate Maple Syrup Urine Disease by Newborn Screening and Functional Validation of Genomic Results Imperative for Reproductive Family Planning
by Mona Sajeev, Sharon Chin, Gladys Ho, Bruce Bennetts, Bindu Parayil Sankaran, Bea Gutierrez, Beena Devanapalli, Adviye Ayper Tolun, Veronica Wiley, Janice Fletcher, Maria Fuller and Shanti Balasubramaniam
Int. J. Neonatal Screen. 2021, 7(2), 25; https://doi.org/10.3390/ijns7020025 - 14 May 2021
Cited by 11 | Viewed by 5589
Abstract
Maple syrup urine disease is caused by a deficiency of branched-chain alpha-ketoacid dehydrogenase, responsible for degradation of leucine, isoleucine, and valine. Biallelic pathogenic variants in BCKDHA, BCKDHB, or DBT genes result in enzyme deficiency. We report the case of a female [...] Read more.
Maple syrup urine disease is caused by a deficiency of branched-chain alpha-ketoacid dehydrogenase, responsible for degradation of leucine, isoleucine, and valine. Biallelic pathogenic variants in BCKDHA, BCKDHB, or DBT genes result in enzyme deficiency. We report the case of a female infant who presented with mild gross motor delay at 4 months, and seizures with hypoglycaemia at 5 months. Newborn screening returned total leucine/isoleucine at the 99.5th centile of the population; however, as second-tier testing reported minimal alloisoleucine, the results were considered inconsistent with MSUD. Plasma amino acid and urine organic acid analyses at 5 months were, however, consistent with a diagnosis of MSUD. A brain MRI showed bilateral symmetrical T2 hyperintense signal abnormalities involving white matter, globus pallidus, thalamus, brainstem, and dentate nuclei with restricted diffusion. A repeat MRI 10 months post-dietary-intervention showed the resolution of these changes and progression in myelination. Her clinical phenotype, including protein tolerance, correlated with intermediate MSUD. Molecular analysis of all three genes identified two variants of uncertain significance, c.434-15_434-4del and c.365A>G (p. Tyr122Cys) in the DBT gene. The rate of leucine decarboxylation in fibroblasts was reduced, but not to the extent observed in classical MSUD patients, supporting an intermediate form of MSUD. Previously reported mRNA splicing studies supported a deleterious effect of the c.434-15_434-4del variant. This functional evidence and confirmation that the variants were in trans, permitted their reclassification as pathogenic and likely pathogenic, respectively, facilitating subsequent prenatal testing. This report highlights the challenges in identifying intermediate MSUD by newborn screening, reinforcing the importance of functional studies to confirm variant pathogenicity in this era of molecular diagnostics. Full article
Show Figures

Figure 1

Back to TopTop