Sign in to use this feature.

Years

Between: -

Subjects

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Journals

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Article Types

Countries / Regions

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Search Results (3,614)

Search Parameters:
Keywords = bubble

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
15 pages, 700 KB  
Article
Effect of Gas Holdup on the Performance of Column Flotation of a Low-Grade Apatite Ore
by Larissa R. Demuner, Angelica S. Reis and Marcos A. S. Barrozo
Minerals 2025, 15(9), 901; https://doi.org/10.3390/min15090901 (registering DOI) - 25 Aug 2025
Abstract
As a consequence of the gradual exhaustion of apatite ore reserves, intensive comminution has been implemented in mineral processing operations to enhance phosphorus liberation. Consequently, improving the flotation efficiency of fine particles has remained a persistent challenge within the phosphate industry. The performance [...] Read more.
As a consequence of the gradual exhaustion of apatite ore reserves, intensive comminution has been implemented in mineral processing operations to enhance phosphorus liberation. Consequently, improving the flotation efficiency of fine particles has remained a persistent challenge within the phosphate industry. The performance of flotation columns is strongly affected by the interaction between gas (bubble) and particle. The present research was designed to evaluate how certain process variables and chemical dosages influence gas holdup and its correlation with the column flotation performance of fine particles derived from a low-grade apatite ore. Column flotation experiments were conducted employing a factorial experimental approach to evaluate the effects of air flow rate, surfactant concentration, collector dosage, and depressant dosage on gas holdup, P2O5 grade, and recovery. The results made it possible to identify the levels of gas holdup that lead to appropriate values of P2O5 grade and recovery simultaneously, and their relation with the operating variables and reagent dosage. Gas holdup values higher than 23.5% led to the desired values of P2O5 grade (>30%) and recovery (>60%) simultaneously. Statistical models were developed with high correlation coefficients (R2 > 0.98) to predict P2O5 grade and recovery as functions of the operating variables. This research provides a comprehensive framework of the gas holdup effect on column flotation systems, offering significant potential for improving the economic viability of low-grade phosphate ore processing. Full article
(This article belongs to the Special Issue Surface Chemistry and Reagents in Flotation)
21 pages, 11476 KB  
Article
Effect of Ultrasonic Treatment on Chemical Stripping Behavior of Aluminum Coating on K6509 Co-Based Superalloy
by Yuanyuan Jin, Cheng Xie, Ke Sun, Zehuan Li, Xin Wang, Xin Ma, Hui Wang, Rongrong Shang, Xuxian Zhou, Yidi Li and Yunping Li
Materials 2025, 18(17), 3979; https://doi.org/10.3390/ma18173979 (registering DOI) - 25 Aug 2025
Abstract
In this study, 10% nitric acid was employed to remove the aluminum coating on the cobalt-based superalloy K6509, with a focus on elucidating the corrosion mechanism and evaluating the effect of ultrasonic on the removal process. The results shows that ultrasonic treatment (40 [...] Read more.
In this study, 10% nitric acid was employed to remove the aluminum coating on the cobalt-based superalloy K6509, with a focus on elucidating the corrosion mechanism and evaluating the effect of ultrasonic on the removal process. The results shows that ultrasonic treatment (40 kHz) significantly improves coating removal efficiency, increasing the maximum corrosion rate by 46.49% from 2.5413 × 10−7 g·s−1·mm−2 to 4.7488 × 10−7 g·s−1·mm−2 and reducing removal time from 10 min to 6 min. This enhancement is attributed to cavitation effect of ultrasonic bubbles and the shockwave-accelerated ion diffusion, which together facilitate more efficient coating degradation and results in a smoother surface. In terms of corrosion behavior, the difference in phase composition between the outer layer and the interdiffusion zone (IDZ) plays a decisive role. The outer layer is primarily composed of β-(Co,Ni)Al phase, which is thermodynamically less stable in acidic environments and thus readily dissolves in 10% HNO3. In contrast, the IDZ mainly consists of Cr23C6, which exhibit high chemical stability and a strong tendency to passivate. These characteristics render the IDZ highly resistant to nitric acid attack, thereby forming a protective barrier that limits acid penetration and helps maintain the integrity of the substrate. Full article
Show Figures

Figure 1

14 pages, 1559 KB  
Article
Preparation of Air Nanobubble-Laden Diesel
by Jiajun Yang, Xiao Xu, Hui Jin and Qiang Yang
Nanomaterials 2025, 15(17), 1309; https://doi.org/10.3390/nano15171309 (registering DOI) - 25 Aug 2025
Abstract
This research has successfully addressed the technical challenge of generating nanobubbles in diesel fuel, which inherently lacks hydrophilic structures and charged ions, enabling the effective production of high-concentration nanobubble diesel fuel. This breakthrough lays a solid foundation for subsequent research into the combustion [...] Read more.
This research has successfully addressed the technical challenge of generating nanobubbles in diesel fuel, which inherently lacks hydrophilic structures and charged ions, enabling the effective production of high-concentration nanobubble diesel fuel. This breakthrough lays a solid foundation for subsequent research into the combustion performance and combustion mechanism of high-concentration nanobubble fuels. Furthermore, it holds promising potential to advance high-concentration nanobubble fuel as a viable new type of energy source. A specialized device was designed to generate nanobubble-embedded diesel, and particle tracking analysis with n-hexadecane dilution was employed to quantify nanobubble concentration. The results demonstrate that the nanobubble concentration in diesel increases with both circulation time and pressure, reaching up to 5 × 108 ± 3.1 × 107 bubbles/mL under a pressure of 2.5 MPa. Stability tests indicate an initial rapid decay (50% reduction within one week), followed by a slower decline, which stabilizes at 4.5 × 107 ± 3.13 × 106 bubbles/mL after two months. Notably, nanobubble concentration has a minimal impact on the density and viscosity of diesel but slightly decreases its surface tension. This study presents a feasible method for preparing high-concentration nanobubble diesel, which lays a foundation for investigating the combustion mode and mechanism of nanobubble diesel fuel. With the goal of enhancing combustion efficiency and reducing pollutant emissions, this work further paves the way for the application of high-concentration nanobubble diesel as a new energy source in fields including automotive, marine, and aerospace industries. Full article
(This article belongs to the Special Issue Nanobubbles and Nanodroplets: Current State-of-the-Art)
Show Figures

Figure 1

19 pages, 3846 KB  
Article
Thermal Limitations in Ultrafast Laser Direct Writings in Dielectric Solids
by Bertrand Poumellec and Ruyue Que
Micromachines 2025, 16(9), 970; https://doi.org/10.3390/mi16090970 - 22 Aug 2025
Viewed by 397
Abstract
In the context of an ultrafast laser interacting with solids, temperature plays a special role in the transformation processes. Some of these processes can be thermally activated, while others can be either solely driven or constrained by temperature—such as refractive index change (fictive [...] Read more.
In the context of an ultrafast laser interacting with solids, temperature plays a special role in the transformation processes. Some of these processes can be thermally activated, while others can be either solely driven or constrained by temperature—such as refractive index change (fictive temperature), nanopore erasure, micro-bubble formation, and phase transition-like crystallization. The objective of this paper is to use a recently developed analytic approximation to understand the limitations imposed by the spatial temperature distribution and its evolution over the writing time, based on the key laser parameter combinations, and subsequently determine the boundary conditions of these parameters. Full article
(This article belongs to the Special Issue Ultrafast Laser Micro- and Nanoprocessing, 3rd Edition)
Show Figures

Figure 1

20 pages, 3234 KB  
Article
Thermal Performance Enhancement in Pool Boiling on Copper Surfaces: Contact Angle and Surface Tension Analysis
by Robert Kaniowski and Sylwia Wciślik
Energies 2025, 18(17), 4471; https://doi.org/10.3390/en18174471 - 22 Aug 2025
Viewed by 169
Abstract
The electronics industry has significantly contributed to the development of efficient heat dissipation systems. One widely used technique is pool boiling, a simple method requiring no moving parts or complex structures. It enables the removal of large amounts of heat at relatively low [...] Read more.
The electronics industry has significantly contributed to the development of efficient heat dissipation systems. One widely used technique is pool boiling, a simple method requiring no moving parts or complex structures. It enables the removal of large amounts of heat at relatively low temperature differences. Enhancing pool boiling performance involves increasing the critical heat flux and the heat transfer coefficient, which defines how effectively a surface can transfer heat to a cooling fluid. This method is commonly applied in cooling electronic devices, digital circuits, and power systems. In this study, pool boiling at atmospheric pressure was investigated using copper surfaces. To validate the Rohsenow model used to estimate the maximum bubble departure diameter, a planimetric approach was applied. Measurements included average contact angle (CA), surface tension (σ), and droplet diameter for four working fluids: deionised water, ethanol, Novec-649, and FC-72. For each fluid, at least 15 measurements of CA and σ were conducted using the Young–Laplace model. This study provides a comprehensive analysis of the influence of contact angle and surface tension on nucleate boiling using four different fluids on copper surfaces. The novelty lies in combining high-precision experimental measurements with validation of the Rohsenow model, offering new insights into surface-fluid interactions critical for thermal system performance. Full article
Show Figures

Figure 1

20 pages, 11628 KB  
Article
Optimized Mix Proportion and Microstructural Mechanism of Foamed Concrete for Internal Molds in Hollow Concrete Components
by Bing Luo, Xu Dong, Rong Li, Dunlei Su, Yuanhui Qiao, Lingqiang Meng and Chenhao Zhang
Coatings 2025, 15(8), 976; https://doi.org/10.3390/coatings15080976 - 21 Aug 2025
Viewed by 213
Abstract
To address the issues of numerous influencing factors on material quality, difficulty in determining the optimal mix proportion, and the need to clarify the formation mechanism when foam concrete is used as an internal mold for prefabricated components, this study conducted orthogonal tests [...] Read more.
To address the issues of numerous influencing factors on material quality, difficulty in determining the optimal mix proportion, and the need to clarify the formation mechanism when foam concrete is used as an internal mold for prefabricated components, this study conducted orthogonal tests to investigate the influence laws of fly ash content, foam content, foaming agent dilution ratio, and water–binder ratio on the dry density and compressive strength of foam concrete, and determined the optimal mix proportion via analysis of variance (ANOVA). Additionally, scanning electron microscopy (SEM) tests were performed to analyze the effects of these four factors on the microscopic pore morphology of foam concrete from a microscopic perspective, thereby revealing its formation mechanism, and engineering applications were carried out. The results show that the primary-to-secondary order of factors affecting the dry density and compressive strength of foam concrete is as follows: foam content (B) > water–binder ratio (D) > foaming agent dilution ratio (C) > fly ash content (A). The optimal mix proportion is 5% fly ash content, 18% foam content, a 30-fold foaming agent dilution ratio, and a water–binder ratio of 0.55. Under this mix proportion, the pore size of foam concrete ranges from 200 μm to 500 μm with uniform distribution, and the pore spacing is between 20 μm and 30 μm, with almost no connected pores. When the foam concrete slurry sets and hardens, hydration products such as calcium silicate hydrate (C-S-H) gel, calcium hydroxide, ettringite (AFt), and monosulfate aluminate (AFm) are generated around the bubbles. The mechanical properties of foam concrete are afforded by the combined action of these hydration products and the pore structure. Full article
(This article belongs to the Section Environmental Aspects in Colloid and Interface Science)
Show Figures

Figure 1

18 pages, 3031 KB  
Article
Post-Sunrise Ionospheric Irregularities in Southeast Asia During the Geomagnetic Storm on 19–20 April 2024
by Prayitno Abadi, Ihsan Naufal Muafiry, Teguh Nugraha Pratama, Angga Yolanda Putra, Agri Faturahman, Noersomadi, Edy Maryadi, Febrylian Fahmi Chabibi, Umar Ali Ahmad, Guozhu Li, Wenjie Sun, Haiyong Xie, Yuichi Otsuka, Septi Perwitasari and Punyawi Jamjareegulgran
Remote Sens. 2025, 17(16), 2906; https://doi.org/10.3390/rs17162906 - 20 Aug 2025
Viewed by 297
Abstract
We present new insights into post-sunrise ionospheric irregularities in Southeast Asia during the intense geomagnetic storm of 19–20 April 2024. By utilizing Total Electron Content (TEC) and Rate of TEC Change Index (ROTI) maps, along with ionosondes, we identified the emergence of post-sunset [...] Read more.
We present new insights into post-sunrise ionospheric irregularities in Southeast Asia during the intense geomagnetic storm of 19–20 April 2024. By utilizing Total Electron Content (TEC) and Rate of TEC Change Index (ROTI) maps, along with ionosondes, we identified the emergence of post-sunset Equatorial Plasma Bubbles (EPBs)—plasma depletion structures and irregularities—in western Southeast Asia on 19 April. These EPBs moved eastward, and the irregularities dissipated before midnight after the EPBs covered approximately 10° of longitude. Interestingly, plasma density depletion structures persisted and turned westward after midnight until post-sunrise the following day. Concurrently, an increase in F-region height from midnight to sunrise, possibly induced by the storm’s electric field, facilitated the regeneration of irregularities in the residual plasma depletions during the post-sunrise period. The significant increase in F-region height was particularly pronounced in western Southeast Asia. As a result, post-sunrise irregularities expanded their latitudinal structure while propagating westward. These findings suggest that areas with decayed plasma depletion structures from post-sunset EPBs that last past midnight could be sites for creating post-sunrise irregularities during geomagnetic storms. The storm-induced electric fields produce EPBs and ionospheric irregularities at longitudes where the surviving plasma depletion structures of post-sunset EPBs are present. Full article
(This article belongs to the Section Atmospheric Remote Sensing)
Show Figures

Figure 1

16 pages, 1942 KB  
Article
Ultrasonic Inactivation of Escherichia coli with Multi-Walled Carbon Nanotubes: Effects of Solution Chemistry
by Dong Chen and Elisa I. Chen
Water 2025, 17(16), 2472; https://doi.org/10.3390/w17162472 - 20 Aug 2025
Viewed by 234
Abstract
Disinfection by ultrasound and carbon nanotubes (CNTs) provides attractive alternatives to conventional methods for water and wastewater treatment. This study explored the inactivation of Escherichia coli (E. coli) by 5 mg/L pristine short and long multi-walled CNTs (MWCNTs) and 20 kHz [...] Read more.
Disinfection by ultrasound and carbon nanotubes (CNTs) provides attractive alternatives to conventional methods for water and wastewater treatment. This study explored the inactivation of Escherichia coli (E. coli) by 5 mg/L pristine short and long multi-walled CNTs (MWCNTs) and 20 kHz ultrasound individually or in combinations in DI water, Suwannee River natural organic matter (SRNOM), and sodium dodecyl sulfate (SDS) solution, respectively. The results indicated that the dispersity of MWCNTs was the single most important factor determining the inactivation rate of E. coli. The dispersity of short MWCNTs in solutions increased in the order of DI water <10 mgC/L SRNOM < 2 mM SDS. Correspondingly, the greatest log inactivation of E. coli was achieved in SDS when short MWCNTs were used alone (0.67 ± 0.12) and combined with ultrasound (1.80 ± 0.02) for 10 min. Short MWCNTs alone had a slightly greater inactivation (0.29 ± 0.07) in SRNOM solution than in DI water (0.18 ± 0.05). However, long MWCNTs had a slightly higher inactivation in DI water (0.24 ± 0.03) than short ones (0.18 ± 0.05), because of better dispersity in DI. The observed synergistic inactivation when ultrasound and short MWCNTs were used together in 2 mM SDS shows that ultrasound energized the MWCNTs more effectively when they were well dispersed, although SDS and MWCNTs can occupy the reaction sites at the cavitational bubble–water interfacial regions and scavenge •OH radicals. The results suggest that sonophysical effects are more important to inactivate E. coli than sonochemical effects. Ultrasound inactivates E. coli and/or energizes MWCNTs through the mechanisms of acoustic streaming, microstreaming, microstreamers, transient cavitation collapse-generated shock waves and microjets (transitional forms), and localized hot temperatures. The results of this study indicate that the cytotoxicity of CNTs includes impinging bacterial cells and/or direct contact with the bacteria. Full article
Show Figures

Figure 1

11 pages, 2254 KB  
Article
Behaviors of Gas-Rich Crystalline Fluid Inclusions
by Luis Salgado, François Faure and Gérard Coquerel
Crystals 2025, 15(8), 740; https://doi.org/10.3390/cryst15080740 - 20 Aug 2025
Viewed by 135
Abstract
A novel behavior of fluid inclusions (FIs) in crystals is reported in this study. Typically, at “high” temperature, FIs in molecular crystals become faceted, adopting the morphology of a single crystal. Usually, upon cooling, these faceted FIs develop into rounded cavities containing the [...] Read more.
A novel behavior of fluid inclusions (FIs) in crystals is reported in this study. Typically, at “high” temperature, FIs in molecular crystals become faceted, adopting the morphology of a single crystal. Usually, upon cooling, these faceted FIs develop into rounded cavities containing the mother solution with a retreat gas bubble. After annealing at low temperature, the FIs reshape back into a negative-crystal morphology, but the gas bubble remains. This latter process can take from minutes to very long times depending on the storage temperature and solubility. Investigations into the behavior of FIs of dicumyl peroxide (DCP) under fast cooling rates have revealed a morphological transition from negative crystals to FIs with a holly-leaf shape. The spikes of the holly-leaf-shaped FIs point toward the corners of the former negative crystal, and the sizes of the gas bubbles exceed those of conventional retreat bubbles. Therefore, it is likely that this phenomenon is linked to rapid cooling and an excess of CO2 dissolved in the mother solution from which the DCP single crystals were grown. The concentration of the solution inside the FIs rapidly increases after the nucleation of this large gas bubble. This is consistent with a sharp acceleration of inward crystal growth immediately after its appearance. Interestingly, FIs in pyroclastic olivine crystals grown from CO2-rich lava can also present a holly-leaf shape. Thus, this non-equilibrium morphological transition may be relatively common. Full article
(This article belongs to the Section Industrial Crystallization)
Show Figures

Figure 1

16 pages, 2001 KB  
Article
Research on the Performance of Phosphorus-Building-Gypsum-Based Foamed Lightweight Soil in Road Reconstruction
by Wangchao Sun, Yuchen Cao, Fan Yang, Penghao Zhai, Chuizhong Kong and Fang Xu
Coatings 2025, 15(8), 970; https://doi.org/10.3390/coatings15080970 - 20 Aug 2025
Viewed by 271
Abstract
Current research on foamed lightweight soil primarily focuses on mechanical properties and durability, with few studies addressing its hydraulic characteristics and internal pore structure in road reconstruction applications. However, the material’s high porosity and low bulk density may significantly alter its mechanical properties [...] Read more.
Current research on foamed lightweight soil primarily focuses on mechanical properties and durability, with few studies addressing its hydraulic characteristics and internal pore structure in road reconstruction applications. However, the material’s high porosity and low bulk density may significantly alter its mechanical properties and durability under prolonged rainwater exposure, highlighting the importance of investigating its hydraulic characteristics and internal foam structure. Based on the analysis of water absorption and bulk density in phosphogypsum-based foamed lightweight soil, this study further discusses the material’s softening coefficient and internal pore structure through systematic data comparison. Experimental results demonstrate that the unconfined compressive strength (UCS) of both dry and water-soaked specimens increases linearly with dry density. Notably, soaked specimens with 0.5 g/cm3 dry density achieve compliant 7-day UCS values while displaying a steeper strength increase compared to dry specimens. A dry density of 0.64 g/cm3 ensures a softening coefficient exceeding 0.75, confirming the material’s suitability for humid environments. The material contains predominantly small pores (90% ≤ 0.2 mm diameter), with improved bubble distribution at the edges and higher upper porosity. Spherical pores (roundness 0.5–1) enhance mechanical properties, while phosphogypsum (optimal 10% dosage) effectively improves both strength and workability but requires corrosion control due to its hydration products. Full article
Show Figures

Figure 1

38 pages, 22596 KB  
Article
Parameter Tuning of Detached Eddy Simulation Using Data Assimilation for Enhancing the Simulation Accuracy of Large-Scale Separated Flow Around a Cylinder
by Kyosuke Nomoto and Shigeru Obayashi
Aerospace 2025, 12(8), 736; https://doi.org/10.3390/aerospace12080736 - 19 Aug 2025
Viewed by 153
Abstract
In this study, data assimilation using PIV measurement data of the cylinder wake obtained from wind tunnel tests was applied to tune the simulation model parameters of Detached Eddy Simulation (DES) to improve the accuracy of large-scale separated flow simulations around a cylinder. [...] Read more.
In this study, data assimilation using PIV measurement data of the cylinder wake obtained from wind tunnel tests was applied to tune the simulation model parameters of Detached Eddy Simulation (DES) to improve the accuracy of large-scale separated flow simulations around a cylinder. The use of DES enables more accurate simulation of large-scale separation flows than RANS. However, it increases computational costs and makes parameter tuning using data assimilation difficult. To reduce the computational time required for data assimilation, the conventional data assimilation method was modified. The background values used for data assimilation were constructed by extracting only velocity data from locations corresponding to observation points. This approach reduced the computational time for background error covariance and Kalman gain, thereby significantly reducing the execution time of the filtering step in data assimilation. As a result of tuning, Cdes significantly increased, while Cb1 decreased. This adjustment extended the length of the recirculation bubble, bringing the time-averaged velocity distribution closer to the PIV measurement data. However, the peak frequency in the PSD obtained from the FFT analysis of velocity fluctuations in the wake shifted slightly toward lower frequencies, slightly increasing the discrepancy with the measurement data. Verifying the relationship between parameter values and flow, it was found that parameter tuning stabilized the separation shear layer generated at the leading edge of the cylinder and enlarged the size of the recirculation bubbles. On the other hand, frequency variations did not show consistent changes in response to parameter value changes, indicating that the effect of parameter tuning was limited under the simulation conditions of this study. To bring the frequency fluctuations closer to experimental results, it is suggested that other methods, such as higher-order spatial and temporal accuracy, should be combined. Full article
(This article belongs to the Special Issue Fluid Flow Mechanics (4th Edition))
Show Figures

Figure 1

23 pages, 1917 KB  
Review
Properties of CO2 Micro-Nanobubbles and Their Significant Applications in Sustainable Development
by Zeyun Zheng, Xingya Wang, Tao Tang, Jun Hu, Xingfei Zhou and Lijuan Zhang
Nanomaterials 2025, 15(16), 1270; https://doi.org/10.3390/nano15161270 - 17 Aug 2025
Viewed by 394
Abstract
As an important part of global carbon neutrality strategies, carbon dioxide (CO2) capture, utilization, and storage technologies have emerged as critical solutions for reducing carbon emissions. However, conventional CO2 applications, including food preservation, industrial synthesis, and enhanced oil recovery, face [...] Read more.
As an important part of global carbon neutrality strategies, carbon dioxide (CO2) capture, utilization, and storage technologies have emerged as critical solutions for reducing carbon emissions. However, conventional CO2 applications, including food preservation, industrial synthesis, and enhanced oil recovery, face inherent limitations such as suboptimal gas–liquid mass transfer efficiency and inadequate long-term stability. Recent advancements in CO2 micro-nanobubbles (CO2 MNBs) have demonstrated remarkable potential across multidisciplinary domains, owing to their distinctive physicochemical characteristics encompassing elevated internal pressure, augmented specific surface area, exceptional stability, etc. In this review, we try to comprehensively explore the unique physicochemical properties of CO2 MNBs and their emerging applications, including industrial, agricultural, environmental, and energy fields. Furthermore, we provide a prospective analysis of how these minuscule bubbles can emerge as pivotal in future technological innovations. We also offer novel insights and directions for research and applications across related fields. Finally, we engage in predicting their future development trends as a promising technological pathway for advancing carbon neutrality objectives. Full article
(This article belongs to the Special Issue Nano Surface Engineering: 2nd Edition)
Show Figures

Figure 1

18 pages, 1393 KB  
Article
Deconstructing the Enron Bubble: The Context of Natural Ponzi Schemes and the Financial Saturation Hypothesis
by Darius Karaša, Žilvinas Drabavičius, Stasys Girdzijauskas and Ignas Mikalauskas
J. Risk Financial Manag. 2025, 18(8), 454; https://doi.org/10.3390/jrfm18080454 - 15 Aug 2025
Viewed by 324
Abstract
This study examines the Enron collapse through an integrated theoretical framework combining the financial saturation paradox with the dynamics of a naturally occurring Ponzi process. The central objective is to evaluate whether endogenous market mechanisms—beyond managerial misconduct—played a decisive role in the emergence [...] Read more.
This study examines the Enron collapse through an integrated theoretical framework combining the financial saturation paradox with the dynamics of a naturally occurring Ponzi process. The central objective is to evaluate whether endogenous market mechanisms—beyond managerial misconduct—played a decisive role in the emergence and breakdown of the Enron stock bubble. A logistic-growth-based saturation model is formulated, incorporating positive feedback effects and bifurcation thresholds, and applied to Enron’s stock price data from 1996 to 2001. The computations were performed using LogletLab 4 (version 4.1, 2017) and Microsoft® Excel® 2016 MSO (version 2507). The model estimates market saturation ratios (P/Pp) and logistic growth rate (r), treating market potential, initial price, and time as constants. The results indicate that Enron’s share price approached a saturation level of approximately 0.9, signaling a hyper-accelerated, unsustainable growth phase consistent with systemic overheating. This finding supports the hypothesis that a naturally occurring Ponzi dynamic was underway before the firm’s collapse. The analysis further suggests a progression from market-driven expansion to intentional manipulation as the bubble matured, linking theoretical saturation stages with observed price behavior. By integrating behavioral–financial insights with saturation theory and Natural Ponzi dynamics, this work offers an alternative interpretation of the Enron case and provides a conceptual basis for future empirical validation and comparative market studies. Full article
(This article belongs to the Section Financial Markets)
Show Figures

Figure 1

18 pages, 1345 KB  
Article
Detecting Structural Changes in Bitcoin, Altcoins, and the S&P 500 Using the GSADF Test: A Comparative Analysis of 2024 Trends
by Azusa Yamaguchi
J. Risk Financial Manag. 2025, 18(8), 450; https://doi.org/10.3390/jrfm18080450 - 12 Aug 2025
Viewed by 475
Abstract
Understanding structural regime shifts in crypto asset markets is vital for early detection of systemic risk. This study applies the Generalized Sup Augmented Dickey–Fuller (GSADF) test to daily high-frequency price data of five major crypto assets—BTC, ETH, SOL, AAVE, and BCH—from 2023 to [...] Read more.
Understanding structural regime shifts in crypto asset markets is vital for early detection of systemic risk. This study applies the Generalized Sup Augmented Dickey–Fuller (GSADF) test to daily high-frequency price data of five major crypto assets—BTC, ETH, SOL, AAVE, and BCH—from 2023 to 2025. The results reveal asset-specific structural breaks: BTC and BCH aligned with macroeconomic shocks, while DeFi tokens (e.g., AAVE, SOL) exhibited fragmented, project-driven shifts. The S&P 500 index, in contrast, showed no persistent regime shifts, indicating greater structural stability. To examine inter-asset linkages, we construct co-occurrence matrices based on GSADF breakpoints. These reveal strong co-explosivity between BTC and other assets, and unexpectedly weak synchronization between ETH and AAVE, underscoring the sectoral idiosyncrasies of DeFi tokens. While the GSADF test remains central to our analysis, we also employ a Markov Switching Model (MSM) as a secondary tool to capture short-term volatility clustering. Together, these methods provide a layered view of long- and short-term market dynamics. This study highlights crypto markets’ structural heterogeneity and proposes scalable computational frameworks for real-time monitoring of explosive behavior. Full article
(This article belongs to the Section Risk)
Show Figures

Figure 1

18 pages, 2377 KB  
Article
Dependence of Bubble Size on Magnesite Flotation Recovery Using Sodium Oleate (NaOL) with Different Frothers
by Khandjamts Batjargal, Onur Güven, Orhan Ozdemir, Feridun Boylu and Mehmet Sabri Çelik
Minerals 2025, 15(8), 849; https://doi.org/10.3390/min15080849 - 9 Aug 2025
Viewed by 229
Abstract
Developments of new research tools in flotation studies, including bubble–particle attachment time efficiency and dynamic froth analysis, can help improve our understanding of particle–bubble interactions in flotation processes. In particular, the selection of new collectors and frothers, and their mixtures can provide a [...] Read more.
Developments of new research tools in flotation studies, including bubble–particle attachment time efficiency and dynamic froth analysis, can help improve our understanding of particle–bubble interactions in flotation processes. In particular, the selection of new collectors and frothers, and their mixtures can provide a wide distribution of bubble sizes at their respective concentrations. In the literature, several studies have reported the effect of different frothers and collector mixtures on bubble characteristics like bubble size and critical coalescence concentration (CCC). The general trend obtained from these studies showed that the addition of frothers, along with collectors, which also act as frothers during flotation, resulted in finer bubbles and required lower concentrations of frothers, which in turn positively affected the flotation recoveries. In this study, an attempt was made to study fine-sized magnesite in the presence of sodium oleate (NaOL) and five different types of frothers (PPG600, PPG400, BTPG, BDPG, and MIBC). Bubble–particle attachment time with different sized capillary tubes and dynamic froth analysis values in a liquid–air system, along with flotation recoveries in a micro-flotation cell, were interpreted to show possible correlations and provide an optimum bubble/particle size ratio in the presence of different frothers. Full article
(This article belongs to the Special Issue Particle–Bubble Interactions in the Flotation Process)
Show Figures

Graphical abstract

Back to TopTop