Sign in to use this feature.

Years

Between: -

Subjects

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Journals

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Article Types

Countries / Regions

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Search Results (831)

Search Parameters:
Keywords = buckling load

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
18 pages, 5492 KB  
Article
Break-Out Resistance of Offshore Pipelines Buried in Inclined Sandy Seabed
by Jingshan Zhu, Siyang Su and Fuquan Chen
J. Mar. Sci. Eng. 2025, 13(9), 1669; https://doi.org/10.3390/jmse13091669 - 30 Aug 2025
Viewed by 106
Abstract
Submarine pipelines are highly susceptible to lateral buckling failure under service conditions of high temperature and pressure. While existing bearing capacity evaluation methods mainly focus on flat seabeds, research on the ultimate bearing capacity of pipelines buried in sloping seabeds is limited. This [...] Read more.
Submarine pipelines are highly susceptible to lateral buckling failure under service conditions of high temperature and pressure. While existing bearing capacity evaluation methods mainly focus on flat seabeds, research on the ultimate bearing capacity of pipelines buried in sloping seabeds is limited. This study applies the FELA method to analyze the ultimate bearing capacity of pipelines buried in inclined sandy seabeds under various loading directions. The results reveal that in sloping seabeds, the minimum ultimate bearing capacity (Pu,b) does not occur in the vertical direction, but rather deviates toward the outward normal direction of the seabed surface, moving toward the foot of the slope. The Pu,b is only 57% of the uplift bearing capacity in the extreme case. A predictive model was proposed to accurately determine the direction of Pu,b. The results also indicated that increasing the seabed slope angle leads to a significant reduction of bearing capacity, while increases in the internal friction angle of the seabed and the pipeline–soil interface friction angle enhance the bearing capacity. Moreover, the design code of DNV (2017) was identified as unsafe due to its omission of seabed inclination effects, and the Pu,b is only 75% of the best estimate of DNV (2017) in the extreme case. A reduction factor model was developed to mitigate this gap, offering a more reliable framework for evaluating the bearing capacity of pipelines. Full article
(This article belongs to the Section Coastal Engineering)
Show Figures

Figure 1

22 pages, 8402 KB  
Article
Analysis of the Compressive Buckling and Post-Buckling Behaviour of Wood-Based Sandwich Panels Used in Light Aviation
by Hajer Hadiji, Joel Serra, Remi Curti and Bruno Castanié
Aerospace 2025, 12(9), 782; https://doi.org/10.3390/aerospace12090782 - 29 Aug 2025
Viewed by 192
Abstract
This work aims to investigate the buckling and post-buckling behaviour of wood-based sandwich structures with and without a manufacturing defect, under compressive loading. The specimens were made by gluing birch veneers to a balsa wood core. The defect consisted of a central zone [...] Read more.
This work aims to investigate the buckling and post-buckling behaviour of wood-based sandwich structures with and without a manufacturing defect, under compressive loading. The specimens were made by gluing birch veneers to a balsa wood core. The defect consisted of a central zone where glue was lacking between the skin and the core. A compression load was applied to the plate using the VERTEX test rig, with the plate placed on the upper surface of a rectangular box and bolted at its borders. The upper surface of the plate was monitored using optical and infrared cameras. The stereo digital image correlation method was used to capture the in-plane and out-of-plane deformations of the specimen, and to calculate the strains and stresses. The infrared camera enabled the failure scenario to be identified. The buckling behaviour of pristine specimens showed small local debonding in the post-buckling range, which was not detrimental to overall performance. In the presence of a manufacturing defect, the decrease in buckling load was only about 15%, but final failure occurred at lower compressive loads. Full article
(This article belongs to the Special Issue Composite Materials and Aircraft Structural Design)
Show Figures

Figure 1

11 pages, 659 KB  
Article
Spectrum Analysis of Thermally Driven Curvature Inversion in Strained Graphene Ripples for Energy Conversion Applications via Molecular Dynamics
by James M. Mangum, Md R. Kabir, Tamzeed B. Amin, Syed M. Rahman, Ashaduzzaman and Paul M. Thibado
Nanomaterials 2025, 15(17), 1332; https://doi.org/10.3390/nano15171332 - 29 Aug 2025
Viewed by 171
Abstract
The extraordinary mechanical flexibility, high electrical conductivity, and nanoscale instability of freestanding graphene make it an excellent candidate for vibration energy harvesting. When freestanding graphene is stretched taut and subject to external forces, it will vibrate like a drum head. Its vibrations occur [...] Read more.
The extraordinary mechanical flexibility, high electrical conductivity, and nanoscale instability of freestanding graphene make it an excellent candidate for vibration energy harvesting. When freestanding graphene is stretched taut and subject to external forces, it will vibrate like a drum head. Its vibrations occur at a fundamental frequency along with higher-order harmonics. Alternatively, when freestanding graphene is compressed, it will arch slightly out of the plane or buckle under the load. Remaining flat under compression would be energetically too costly compared to simple bond rotations. Buckling up or down, also known as ripple formation, naturally creates a bistable situation. When the compressed system vibrates between its two low-energy states, it must pass through the high-energy middle. The greater the compression, the higher the energy barrier. The system can still oscillate but the frequency will drop far below the fundamental drum-head frequency. The low frequencies combined with the large-scale movement and the large number of atoms coherently moving are key factors addressed in this study. Ten ripples with increasing compressive strain were built, and each was studied at five different temperatures. Increasing the temperature has a similar effect as increasing the compressive strain. Analysis of the average time between curvature inversion events allowed us to quantify the energy barrier height. When the low-frequency bistable data were time-averaged, the authors found that the velocity distribution shifts from the expected Gaussian to a heavy-tailed Cauchy (Lorentzian) distribution, which is important for energy harvesting applications. Full article
Show Figures

Figure 1

21 pages, 7268 KB  
Article
Effect of Specimen Dimensions and Strain Rate on the Longitudinal Compressive Strength of Chimonobambusa utilis
by Xudan Wang, Meng Zhang, Chunnan Liu, Bo Xu, Wei Li, Yonghong Deng, Yu Zhang, Chunlei Dong and Qingwen Zhang
Materials 2025, 18(17), 4013; https://doi.org/10.3390/ma18174013 - 27 Aug 2025
Viewed by 180
Abstract
The combined influence of specimen size and strain rate on the mechanical behaviour of small-diameter bamboo culms remains insufficiently characterised. This study investigates the longitudinal compressive strength of Chimonobambusa utilis through axial compression tests on specimens measuring 15 × 15 × 5 mm, [...] Read more.
The combined influence of specimen size and strain rate on the mechanical behaviour of small-diameter bamboo culms remains insufficiently characterised. This study investigates the longitudinal compressive strength of Chimonobambusa utilis through axial compression tests on specimens measuring 15 × 15 × 5 mm, 18 × 18 × 6 mm, and 21 × 21 × 7 mm under strain rates of 10−4, 10−3, and 10−2 s−1. Coupling experimental data with theoretical analysis, this study develops a size–strain rate interaction model to quantitatively assess the effects of specimen size and strain rate on the compressive strength of small-diameter bamboo. Increasing specimen size reduced strength and shifted failure modes from shear to buckling and splitting. At a strain rate of 10−4 s−1, strength decreased from 73.35 MPa for the 15 × 15 × 5 mm specimens to 62.84 MPa for the 21 × 21 × 7 mm specimens. Conversely, increasing the strain rate from 10−4 s−1 to 10−2 s−1 for the 15 × 15 × 5 mm specimens increased strength from 73.35 MPa to 80.27 MPa, indicating suppressed crack propagation. The Type II Weibull model exhibited higher predictive accuracy and parameter stability than the Type I variant. Coupling the Type II Weibull function with a power-law strain rate term and an interaction exponent developed a predictive equation, achieving relative errors below 5%. The findings demonstrate that specimen size predominantly governs strength, whereas strain rate exerts a secondary but enhancing influence. The proposed coupling model enables reliable axial load prediction for small-diameter bamboo culms, supporting material selection and dimensional optimisation in structural applications. Full article
(This article belongs to the Section Mechanics of Materials)
Show Figures

Figure 1

28 pages, 12093 KB  
Article
Static and Free-Boundary Vibration Analysis of Egg-Crate Honeycomb Core Sandwich Panels Using the VAM-Based Equivalent Model
by Ruihao Li, Hui Yuan, Zhenxuan Cai, Zhitong Liu, Yifeng Zhong and Yuxin Tang
Materials 2025, 18(17), 4014; https://doi.org/10.3390/ma18174014 - 27 Aug 2025
Viewed by 171
Abstract
This study proposes a novel egg-crate honeycomb core sandwich panel (SP-EHC) that combines the structural advantages of conventional lattice and grid configurations while mitigating their limitations in stability and mechanical performance. The design employs chamfered intersecting grid walls to create a semi-enclosed honeycomb [...] Read more.
This study proposes a novel egg-crate honeycomb core sandwich panel (SP-EHC) that combines the structural advantages of conventional lattice and grid configurations while mitigating their limitations in stability and mechanical performance. The design employs chamfered intersecting grid walls to create a semi-enclosed honeycomb architecture, enhancing out-of-plane stiffness and buckling resistance and enabling ventilation and drainage. To facilitate efficient and accurate structural analysis, a two-dimensional equivalent plate model (2D-EPM) is developed using the variational asymptotic method (VAM). This model significantly reduces the complexity of three-dimensional elasticity problems while preserving essential microstructural characteristics. A Reissner–Mindlin-type formulation is derived, enabling local field reconstruction for detailed stress and displacement evaluation. Model validation is conducted through experimental testing and three-dimensional finite element simulations. The 2D-EPM demonstrates high accuracy, with static analysis errors in load–displacement response within 10% and a maximum modal frequency error of 10.23% in dynamic analysis. The buckling and bending analyses, with or without initial deformation, show strong agreement with the 3D-FEM results, with deviations in the critical buckling load not exceeding 5.23%. Local field reconstruction achieves stress and displacement prediction errors below 2.7%, confirming the model’s fidelity at both global and local scales. Overall, the VAM-based 2D-EPM provides a robust and computationally efficient framework for the structural analysis and optimization of advanced sandwich panels. Full article
(This article belongs to the Section Construction and Building Materials)
Show Figures

Figure 1

18 pages, 5414 KB  
Article
Axial Compression Properties of Recycled Concrete-Filled Circular Steel Tubular Column Subject to Corrosion
by Dongxia Hu, Jin Wu, Zhe Feng, Renming Liu, Shefeng Guo and Liqiang Liu
Materials 2025, 18(17), 4003; https://doi.org/10.3390/ma18174003 - 27 Aug 2025
Viewed by 273
Abstract
In order to investigate the change in the axial compression performance of circular recycled concrete-filled steel tubular short columns under chloride ion corrosion, 24 circular recycled concrete-filled steel tubular (RCFST) short columns and 12 circular natural concrete-filled steel tubular (NCFST) short columns for [...] Read more.
In order to investigate the change in the axial compression performance of circular recycled concrete-filled steel tubular short columns under chloride ion corrosion, 24 circular recycled concrete-filled steel tubular (RCFST) short columns and 12 circular natural concrete-filled steel tubular (NCFST) short columns for axial compression tests after being subjected to different corrosion degrees were designed. The experimental parameters include the corrosion degree (0, 2, 4, 6, 8, 10, 12, 14%) and the recycled concrete replacement rate (0, 100%). The experimental results show that the damage mode of the specimen after corrosion is localized buckling deformation of the steel tube. Due to the good confinement effect of the steel tube, the internal concrete was crushed only at the localized buckling part of the steel tube. The stiffness and ductility decreased significantly with increasing corrosion degree. As the corrosion degree increased from 0 to 14%, the stiffness of the circular RCFST short columns decreased by approximately 36.3%, and the ductility dropped by around 23.3%. And the corrosion resistance of the circular RCFST short column was worse than that of the circular NCFST short column. Based on the experimental results, the ultimate load capacity calculation model of the circular concrete-filled steel tubular short column is proposed. Full article
(This article belongs to the Section Construction and Building Materials)
Show Figures

Figure 1

35 pages, 14579 KB  
Article
Parametric CFD-FEA Study on the Aerodynamic and Structural Performance of NaviScreen for Wind Resistance Reduction in Medium-Sized Commercial Ships
by Jin-Man Kim, Jun-Taek Lim, Kwang Cheol Seo and Joo-Shin Park
J. Mar. Sci. Eng. 2025, 13(9), 1626; https://doi.org/10.3390/jmse13091626 - 26 Aug 2025
Viewed by 268
Abstract
Meeting the International Maritime Organization’s (IMO) 2050 targets for reducing greenhouse gas (GHG) emissions requires cost-effective solutions that minimize wind resistance without compromising safety, particularly for medium-sized multipurpose vessels (MPVs), which have been underrepresented in prior research. This study numerically evaluates 20 bow-mounted [...] Read more.
Meeting the International Maritime Organization’s (IMO) 2050 targets for reducing greenhouse gas (GHG) emissions requires cost-effective solutions that minimize wind resistance without compromising safety, particularly for medium-sized multipurpose vessels (MPVs), which have been underrepresented in prior research. This study numerically evaluates 20 bow-mounted NaviScreen configurations using a coupled high-fidelity computational fluid dynamics (CFD) and finite element analysis (FEA) approach. Key design variables—including contact angle (35–50°), lower-edge height (1.2–2.0 m), and horn position (3.2–5.3 m)—were systematically varied. The sloped Type-15 shield reduced aerodynamic resistance by 17.1% in headwinds and 24.5% at a 30° yaw, lowering total hull resistance by up to 8.9%. Nonlinear FEA under combined dead weight, wind loads, and Korean Register (KR) green-water pressure revealed local buckling risks, which were mitigated by adding carling stiffeners and increasing plate thickness from 6 mm to 8 mm. The reinforced design satisfied KR yield limits, ABS buckling factors (>1.0), and NORSOK displacement criteria (L/100), confirming structural robustness. This dual-framework approach demonstrates the viability of NaviScreens as passive aerodynamic devices that enhance fuel efficiency and reduce GHG emissions, aligning with global efforts to address climate change by targeting not only CO2 but also other harmful emissions (e.g., NOx, SOx) regulated under MARPOL. The study delivers a validated CFD-FEA workflow to optimize performance and safety, offering shipbuilders a scalable solution for MPVs and related vessel classes to meet IMO’s GHG reduction goals. Full article
(This article belongs to the Section Ocean Engineering)
Show Figures

Figure 1

54 pages, 22778 KB  
Article
On the Structural Design and Additive Construction Process of Martian Habitat Units Using In-Situ Resources on Mars
by Ehsan Dehghani Janabadi, Kasra Amini and Sana Rastegar
Aerospace 2025, 12(9), 761; https://doi.org/10.3390/aerospace12090761 - 25 Aug 2025
Viewed by 358
Abstract
Taking the leap to the secondary and tertiary generations of the missions to Mars, a comprehensive outline was presented for a cluster of Martian Habitat Units (MHUs) designed for long-term settlements of research crew in Melas Chasma, Valles Marineris, Mars. Unlike initial exploration [...] Read more.
Taking the leap to the secondary and tertiary generations of the missions to Mars, a comprehensive outline was presented for a cluster of Martian Habitat Units (MHUs) designed for long-term settlements of research crew in Melas Chasma, Valles Marineris, Mars. Unlike initial exploration missions, where primary survival is ensured through basic engineering solutions, this concept targets later-stage missions focused on long-term human presence. Accordingly, the MHUs are designed not only for functionality but also to support the social and cultural well-being of scientific personnel, resulting in larger and more complex structures than those typically proposed for early-stage landings. To address the construction and structural integrity of the MHUs, the current work presents a comprehensive analysis of the feasibility of semi-3D-printed structural systems using in situ material to minimize the cost and engineering effort of logistics and construction of the units. Regolith-based additive manufacturing was utilized as the primary material, and the response of the structure, not only to the gravitational loads but also to those applied from the exterior flow field and wind pressure distributions, was simulated, as well as the considerations regarding the contribution of the extreme interior/exterior pressure differences. The full analyses and structural results are presented and discussed in this manuscript, as well as insights on manufacturing and its feasibility on Mars. The analyses demonstrate the feasibility of constructing the complex architectural requirements of the MHUs and their cost-effectiveness through the use of in situ resources. The manuscript presents an iterative structural optimization process, with results detailed at each step. Structural elements were modeled using FEM-based analysis in Karamba-3D to minimize near-yielding effects such as buckling and excessive displacements. The final structural system was integrated with the architectural design to preserve the intended spatial and functional qualities. Full article
(This article belongs to the Special Issue Space System Design)
Show Figures

Figure 1

15 pages, 2814 KB  
Article
Numerical Design Calculation According to EN 1993-1-14 of Innovative Thin-Walled Columns with Sectional Transverse Strengthening
by Szymon Szewczyk, Volodymyr Semko and Robert Studziński
Materials 2025, 18(16), 3878; https://doi.org/10.3390/ma18163878 - 19 Aug 2025
Viewed by 428
Abstract
This paper presents a numerical analysis of cold-formed thin-walled columns reinforced with sectional transverse stiffeners (STSs) based on the recent part of EC3 concerning the finite element analysis. Columns that are 1 m tall with various arrangements of STSs were modeled in the [...] Read more.
This paper presents a numerical analysis of cold-formed thin-walled columns reinforced with sectional transverse stiffeners (STSs) based on the recent part of EC3 concerning the finite element analysis. Columns that are 1 m tall with various arrangements of STSs were modeled in the AxisVM environment. Numerical design calculations were completed using an analysis requiring a subsequent design check. This included a geometrically nonlinear analysis considering imperfections (GNIA) along with linear analysis (LBA) to assess the columns’ susceptibility to second-order effects. Reinforcing columns with STSs did not show a significant effect on the local buckling behavior of the elements. However, the results indicated that increasing the number of STSs positively influenced the columns’ resistance. This modification reduced the magnitudes of distortional, global flexural, and torsional buckling. Additionally, adding more than three STSs increased the critical loads related to distortional, flexural, and torsional buckling by 58–90%, 52–119%, and 19–154%, respectively. For the GNIA, two combinations of imperfections were analyzed: global flexural imperfection paired with either local or distortional imperfection. LBA was used to apply the imperfect geometry of the columns with the appropriate magnitudes of imperfections. The results between LBA and GNIA for the single-branched columns varied by 8–24%, while for the double-branched columns, the differences were less than 3%. Full article
(This article belongs to the Section Construction and Building Materials)
Show Figures

Figure 1

20 pages, 10204 KB  
Article
Design Simulation and Applied Research of a New Disc Spring-Laminated Rubber Dissipating Device Used in Corrugated Steel Plate Shear Walls
by Xianghong Sun, Zhaoyuan Gan, Bingxue Wu, Yuemei Shen and Zikang Zhao
Buildings 2025, 15(16), 2903; https://doi.org/10.3390/buildings15162903 - 16 Aug 2025
Viewed by 307
Abstract
Addressing the issue of stress concentration at the toe of steel plate shear walls, which is susceptible to local buckling and brittle failure under seismic loading, this paper innovatively proposes a disc spring-laminated rubber energy dissipation device (DSLRDD) newly designed for application at [...] Read more.
Addressing the issue of stress concentration at the toe of steel plate shear walls, which is susceptible to local buckling and brittle failure under seismic loading, this paper innovatively proposes a disc spring-laminated rubber energy dissipation device (DSLRDD) newly designed for application at the wall toe of the shear wall structures. Firstly, the structure characteristics and energy dissipation principle of the DSLRDD are described. Secondly, the finite element model of the DSLRDD is established in ABAQUS. Furthermore, the optimal design parameters’ values of DSLRDD are analyzed and given by taking the stacking arrangement of disc springs, the thickness ratio of steel plate to rubber layer, and the yield strength of steel plate as three main parameters. It is recommended that in DSLRDD, the disc spring stacking arrangement adopts either two pieces in series or a composite of series–parallel. At the same time, the range of the thickness ratio between the steel plate and the rubber layer is defined as being between 1.25 and 2.5, and the yield strength value of the steel plate is determined as 400 MPa. Finally, to verify the energy dissipation capacity of the DSLRDD, a double corrugated steel plate shear wall (DCSPSW) is taken as the experimental structure. The model has been verified against the test data, with a maximum damping force error of 14.4%, ensuring reliable modeling. DSLRDD models with the disc spring stacking arrangements of two pieces in series and composite of series–parallel were established, respectively, and they were installed at the toe of the DCSPSW. The seismic performance of the DCSPSW before and after the installation of two different DSLRDDs is studied. The results show that the DSLRDDs have obvious energy absorption capabilities. The energy dissipation factors of DCSPSW before and after installing DSLRDD were increased by 10.0% and 8.9%, respectively. DCSPSW with DSLRDD exhibits better plasticity and bearing capacity under seismic action, and the stress and deformation are mainly concentrated on the DSLRDD instead of the wall toe. Moreover, it is recommended to use the stacking arrangement of two series disc springs with a simple structure. In conclusion, the DSLRDD has excellent energy dissipation capacity and can be fully applied to practical projects. Full article
(This article belongs to the Special Issue Damping Control of Building Structures and Bridge Structures)
Show Figures

Figure 1

22 pages, 2608 KB  
Article
Fast Buckling Analysis of Stiffened Composite Structures for Preliminary Aerospace Design
by Dimitrios G. Stamatelos and George N. Labeas
Aerospace 2025, 12(8), 726; https://doi.org/10.3390/aerospace12080726 - 14 Aug 2025
Viewed by 344
Abstract
Predicting buckling in large-scale composite structures is hindered by the need for highly detailed Finite Element (FE) models, which are computationally expensive and impractical for early-stage design iterations. This study introduces a macromodelling buckling framework that reduces those models to plate-level size without [...] Read more.
Predicting buckling in large-scale composite structures is hindered by the need for highly detailed Finite Element (FE) models, which are computationally expensive and impractical for early-stage design iterations. This study introduces a macromodelling buckling framework that reduces those models to plate-level size without sacrificing accuracy. An equivalent bending stiffness matrix is derived from strain–energy equivalence, rigorously retaining orthotropic in-plane terms, bending–extensional coupling, and—crucially—the eccentricity of compressive loads about an unsymmetrically stiffened mid-plane, effects overlooked by conventional Parallel-Axis smearing. These stiffness terms contribute to closed-form analytical solutions for homogeneous orthotropic plates, providing millisecond-level evaluations ideal for gradient-based design optimisation. The method is benchmarked against detailed FE simulations of panels with three to ten stringers under longitudinal and transverse compression, showing less than 5% deviation in critical load prediction. Its utility is demonstrated in the sizing optimisation of the upper cover of a scaled Airbus A330 composite wing-box, where the proposed model explores the design space in minutes on a standard workstation, orders of magnitude faster than full FE analyses. By combining analytical plate theory, enhanced smearing, and rapid optimisation capability, the framework provides an accurate, ultra-fast tool for buckling analysis and the preliminary design of large-scale stiffened composite structures. Full article
(This article belongs to the Section Aeronautics)
Show Figures

Figure 1

19 pages, 3924 KB  
Article
Seismic Performance of Steel Structures with Base-Hinged Columns Under Rigidly and Flexibly Braced Systems
by Chenwei Shi, Chuntao Zhang, Renbing An and Yongxiang Cai
Buildings 2025, 15(16), 2881; https://doi.org/10.3390/buildings15162881 - 14 Aug 2025
Viewed by 312
Abstract
Steel structures with base-hinged columns are one of the typical forms adopted for rural housing in villages and towns due to their superior seismic resistance, energy efficiency, and environmental benefits. The lateral bracing system plays a crucial role in the ability of steel [...] Read more.
Steel structures with base-hinged columns are one of the typical forms adopted for rural housing in villages and towns due to their superior seismic resistance, energy efficiency, and environmental benefits. The lateral bracing system plays a crucial role in the ability of steel frames with base-hinged columns to resist horizontal forces. This study investigates the impact of rigid and flexible bracing on the seismic performance of such structures, emphasizing that enhanced ductility—particularly in flexibly braced frames—is essential for seismic resilience in earthquake-prone areas. Two full-scale steel frame models, one with rigid bracing and the other with flexible bracing, were fabricated based on typical rural housing designs and subjected to low-cycle reversed loading tests. The results indicate that the rigidly braced frame undergoes brittle failure, characterized by fractures and buckling at bracing intersections. In contrast, the flexibly braced frame exhibits ductile failure, identified by the bending deformation of tension rods. Despite the flexibly braced frame reaching a peak-load bearing capacity that is only 69.1% (positive direction) and 76.0% (negative direction) of the rigidly braced frame, it achieves ultimate displacements 2.7 times (positive direction) and 2.5 times (negative direction) greater. Additionally, the flexibly braced frame exhibits a stable energy dissipation capacity, with cumulative energy dissipation 1.49 times that of the rigidly braced frame. Numerical simulations were conducted to develop finite element models for both rigidly and flexibly braced frames. The resulting failure characteristics and bearing capacities of the frames were obtained, providing further validation of the experimental results. These findings provide data-supported evidence for promoting steel structures with base-hinged columns in rural housing applications. Full article
Show Figures

Figure 1

33 pages, 7351 KB  
Article
Constructal Design and Numerical Simulation Applied to Geometric Evaluation of Stiffened Steel Plates Subjected to Elasto-Plastic Buckling Under Biaxial Compressive Loading
by Andrei Ferreira Lançanova, Raí Lima Vieira, Elizaldo Domingues dos Santos, Luiz Alberto Oliveira Rocha, Thiago da Silveira, João Paulo Silva Lima, Emanuel da Silva Diaz Estrada and Liércio André Isoldi
Metals 2025, 15(8), 879; https://doi.org/10.3390/met15080879 - 6 Aug 2025
Viewed by 385
Abstract
Widely employed in diverse engineering applications, stiffened steel plates are often subjected to biaxial compressive loads. Under these conditions, buckling may occur, initially within the elastic range but potentially progressing into the elasto-plastic domain, which can lead to permanent deformations or structural collapse. [...] Read more.
Widely employed in diverse engineering applications, stiffened steel plates are often subjected to biaxial compressive loads. Under these conditions, buckling may occur, initially within the elastic range but potentially progressing into the elasto-plastic domain, which can lead to permanent deformations or structural collapse. To increase the ultimate buckling stress of plates, the implementation of longitudinal and transverse stiffeners is effective; however, this complexity makes analytical stress calculations challenging. As a result, numerical methods like the Finite Element Method (FEM) are attractive alternatives. In this study, the Constructal Design method and the Exhaustive Search technique were employed and associated with the FEM to optimize the geometric configuration of stiffened plates. A steel plate without stiffeners was considered, and 30% of its volume was redistributed into stiffeners, creating multiple configuration scenarios. The objective was to investigate how different arrangements and geometries of stiffeners affect the ultimate buckling stress under biaxial compressive loading. Among the configurations evaluated, the optimal design featured four longitudinal and two transverse stiffeners, with a height-to-thickness ratio of 4.80. This configuration significantly improved the performance, achieving an ultimate buckling stress 472% higher than the unstiffened reference plate. In contrast, the worst stiffened configuration led to a 57% reduction in performance, showing that not all stiffening strategies are beneficial. These results demonstrate that geometric optimization of stiffeners can significantly enhance the structural performance of steel plates under biaxial compression, even without increasing material usage. The approach also revealed that intermediate slenderness values lead to better stress distribution and delayed local buckling. Therefore, the methodology adopted in this work provides a practical and effective tool for the design of more efficient stiffened plates. Full article
Show Figures

Figure 1

28 pages, 6413 KB  
Article
Scaling the Dynamic Buckling Behavior of a Box Girder Based on the Finite Similitude Approach
by Chongxi Xu, Zhuo Wang, Xiangshao Kong, Hu Zhou, Cheng Zheng and Weiguo Wu
J. Mar. Sci. Eng. 2025, 13(8), 1496; https://doi.org/10.3390/jmse13081496 - 4 Aug 2025
Viewed by 272
Abstract
In the design of small-scale test models for hull structures, the directional dimensional analysis method is commonly employed. However, conventional dimensional analysis based on elasticity theory may be insufficient to capture the nonlinear behaviors of structural materials under dynamic loading, which restricts its [...] Read more.
In the design of small-scale test models for hull structures, the directional dimensional analysis method is commonly employed. However, conventional dimensional analysis based on elasticity theory may be insufficient to capture the nonlinear behaviors of structural materials under dynamic loading, which restricts its applicability in ultimate strength tests for small-scale hull structure models. This paper presents a scaling method grounded in the theory of finite similitude. Based on the finite similitude theory, this paper deduces similarity scaling criteria applicable to the static and dynamic responses of box girders and designs a series of trial models of box girders. The scaling criteria are verified and analyzed through numerical tests conducted under static and dynamic loads. On the basis of the numerical test results of dynamic responses, the dynamic response similarity criteria considering the similarity relationship of material constitutive parameters are modified and verified. By applying the static response scaling criteria in this paper to select appropriate materials, the prediction deviation of the box girder trial models under static loads is less than 2%. With the modified dynamic response scaling criteria proposed in this paper, the prediction deviations of each trial model under dynamic loads are less than 2% and 7%. A comprehensive analysis of material parameters was conducted to examine their impact on the nonlinear similarities observed in the processes. To validate the ultimate strength and nonlinear response scaling criterion based on the finite similitude approach, numerical experiments were performed to assess the ultimate strength and dynamic buckling response characteristics of the box girder across various scaling ratios and material parameters. The analysis demonstrated that the ultimate strength scaling criterion and the nonlinear response scaling criterion derived from the finite similitude approach effectively captured material nonlinearity. The results from the small-scale model provided accurate predictions of the ultimate strength of the full-scale model. Full article
(This article belongs to the Special Issue Safety and Reliability of Ship and Ocean Engineering Structures)
Show Figures

Figure 1

21 pages, 2799 KB  
Article
Structural Integrity Assessments of an IMO Type C LCO2 Cargo Tank
by Joon Kim, Kyu-Sik Park, Inhwan Cha and Joonmo Choung
J. Mar. Sci. Eng. 2025, 13(8), 1479; https://doi.org/10.3390/jmse13081479 - 31 Jul 2025
Viewed by 345
Abstract
With the rise of carbon capture and storage, liquefied carbon dioxide (LCO2) has emerged as a promising medium for large-scale marine transport. This study evaluates the structural integrity of an IMO Type C cargo tank for a medium-range LCO2 carrier [...] Read more.
With the rise of carbon capture and storage, liquefied carbon dioxide (LCO2) has emerged as a promising medium for large-scale marine transport. This study evaluates the structural integrity of an IMO Type C cargo tank for a medium-range LCO2 carrier under four conditions: ultimate limit state, accidental limit state, hydrostatic pressure test, and fatigue limit state, based on IGC Code and classification rules. Seventeen load cases were analyzed using finite element methods with multi-step loading to ensure stability. The highest stress occurred at the pump dome–shell junction due to geometric discontinuities, but all stress and buckling criteria were satisfied. The fatigue damage from wave-induced loads was negligible, with low-cycle fatigue from loading/unloading operations governing the fatigue life, which exceeded 31,000 years. The findings confirm the tank’s structural robustness and its suitability for safe, efficient medium-pressure LCO2 transport. Full article
(This article belongs to the Special Issue New Advances in the Analysis and Design of Marine Structures)
Show Figures

Figure 1

Back to TopTop