Sign in to use this feature.

Years

Between: -

Subjects

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Journals

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Article Types

Countries / Regions

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Search Results (10,839)

Search Parameters:
Keywords = building environment

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
34 pages, 3039 KB  
Article
Research on the Behavioral Strategies of Manufacturing Enterprises for High-Quality Development: A Perspective on Endogenous and Exogenous Factors
by Yongqiang Su, Jinfa Shi and Manman Zhang
Mathematics 2025, 13(19), 3165; https://doi.org/10.3390/math13193165 (registering DOI) - 2 Oct 2025
Abstract
High-quality development highlights the importance of environmental protection and green low-carbon development. The high-quality development of the manufacturing industry is not only the key content for achieving green transformation, but also an important cornerstone for building a modern national industrial system. Current research [...] Read more.
High-quality development highlights the importance of environmental protection and green low-carbon development. The high-quality development of the manufacturing industry is not only the key content for achieving green transformation, but also an important cornerstone for building a modern national industrial system. Current research focuses on companies and governments, ignoring the important value of suppliers and consumers. As a result, existing mechanisms have failed to deliver the desired results. This paper constructs an evolutionary game model involving manufacturing enterprises, local governments, suppliers, and consumers, and systematically analyzes the strategy selection process of the four participating populations. On this basis, the impact of exogenous and endogenous factors on the evolutionarily stable strategy is studied at the microscopic level using numerical simulation methods. The results show that (1) increasing any of the endogenous factors, such as innovative capability, organization building, and industrial resources, can accelerate the evolution of manufacturing enterprises evolve to smart upgrade strategy. (2) Increasing any one of the exogenous factors, such as policy environment, industrial cooperation, and market demand, can accelerate the rate at which manufacturing enterprises choose to adopt the strategy of smart upgrade. The purpose of this paper is to provide a theoretical reference for the behavioral strategies of manufacturing enterprises, and to provide a realistic reference for local governments to build a mechanism to promote the high-quality development of the manufacturing industry. Full article
16 pages, 1250 KB  
Article
Evolution Mechanisms of an Artificial Calco-Magnesian Agglomerate in Seawater: Analysis of Powder by Experiments and Numerical Modeling
by Louis Zadi, Anthony Soive, Philippe Turcry, Alaric Zanibellato, Pierre-Yves Mahieux, René Sabot and Marc Jeannin
Coasts 2025, 5(4), 37; https://doi.org/10.3390/coasts5040037 (registering DOI) - 2 Oct 2025
Abstract
The aim of this work was to investigate the evolutionary mechanisms of an artificial sedimentary agglomerate formed by cathodic polarization in natural seawater during its abandonment to a natural environment. Previous studies indicate that the mineralogical evolution of the material is controlled by [...] Read more.
The aim of this work was to investigate the evolutionary mechanisms of an artificial sedimentary agglomerate formed by cathodic polarization in natural seawater during its abandonment to a natural environment. Previous studies indicate that the mineralogical evolution of the material is controlled by kinetic factors and/or the local precipitation of aragonite on the brucite surface. However, the observation of the precipitation of metastable phase precipitation during the initial immersion of this material (in powder form) has suggested the possibility of a more complex mechanism. The present study builds upon previous experimental work and includes thermogravimetric analysis and infrared spectrometry. The results are analyzed using numerical experimentation to evaluate the proposed hypotheses. Findings show that the transformation mechanism is characterized by the precipitation of metastable calcium carbonate phases. Under supersaturation conditions, these hydrated phases form on the brucite surface, limiting the mineral’s contact with the solution. The subsequent transformation of these amorphous phases into aragonite further reduces brucite–solution interaction, which explains the persistence of brucite both in the residual powder after 120 h of immersion and in the consolidated material after more than 20 years of exposure to natural seawater. Full article
Show Figures

Figure 1

16 pages, 1288 KB  
Article
Urban Geometry and Social Topology: A Computational Simulation of Urban Network Formation
by Daniel Lenz Costa Lima, Daniel Ribeiro Cardoso and Andrés M. Passaro
Buildings 2025, 15(19), 3555; https://doi.org/10.3390/buildings15193555 - 2 Oct 2025
Abstract
When a city decides to undertake a certain urban project, is it modifying just the physical environment or the social fabric that dwells within? This work investigates the relationship between the geometric configuration of urban space (geometry–city) and the topology of the networks [...] Read more.
When a city decides to undertake a certain urban project, is it modifying just the physical environment or the social fabric that dwells within? This work investigates the relationship between the geometric configuration of urban space (geometry–city) and the topology of the networks of encounters of its inhabitants (network–city) that form through daily interactions. The research departs from the hypothesis that changes in geometry–city would not significantly alter the topology of the network–city, testing this proposition conceptually through abstract computational simulations developed specifically for this study. In this simulator, abstract maps with buildings distributed over different primary geometries are generated and have activities (use: home or work) and a population assigned. Encounters of the “inhabitants” are registered while daily commute routines, enough to achieve differentiation and stability, are run. The initial results revealed that the geometry description was not enough, and definitions regarding activity attribution were also necessary. Thus, we could not confirm nor reject the original hypothesis exactly, but it had to be complemented, including the idea of an activity–city dimension. We found that despite the geometry–city per se not determining the structure of the network–city, the spatial (geometric) distribution of activities directly impacts the resulting topology. Urban geometry influences networks–city only insofar as it conforms to activity–city, defining areas for activities or restricting routing between them. But it is the geometry of localization of the activities that has a direct impact on the topology of the network–city. This conceptual discovery can have significant implications for urban planning if corroborated in real-world situations. It could suggest that land use policies may be more effective for intervening in network-based characteristics, like social cohesion and resilience, than purely morphological interventions. Full article
(This article belongs to the Special Issue Emerging Trends in Architecture, Urbanization, and Design)
Show Figures

Figure 1

19 pages, 4734 KB  
Article
Greening Schools for Climate Resilience and Sustainable Co-Design: A Case Study of Thermal Comfort in Coimbra, Portugal
by António M. Rochette Cordeiro, Joaquim Fialho, Carolina Coelho and José Miguel Lameiras
Land 2025, 14(10), 1985; https://doi.org/10.3390/land14101985 - 2 Oct 2025
Abstract
Urban school environments often face significant thermal discomfort due to extensive paved surfaces, limited vegetation, and outdated building designs. This study examines how green spaces can mitigate temperature extremes and improve thermal comfort at two secondary schools in Coimbra, Portugal: Escola Secundária José [...] Read more.
Urban school environments often face significant thermal discomfort due to extensive paved surfaces, limited vegetation, and outdated building designs. This study examines how green spaces can mitigate temperature extremes and improve thermal comfort at two secondary schools in Coimbra, Portugal: Escola Secundária José Falcão (ESJF) and Escola Secundária D. Dinis (ESDD). Using a mixed-methods approach that combined school community surveys with on-site microclimatic measurements, we integrated user feedback on comfort with data on temperature and humidity variations across different indoor and outdoor spaces. Results revealed that tree-shaded areas consistently maintained lower air temperatures and higher relative humidity than unshaded zones, which experienced intense heat accumulation—up to a 5 °C difference. At ESJF, the older infrastructure and large asphalt surfaces led to severe heat retention, with east-facing classrooms recording the highest indoor temperatures. ESDD’s pavilion-style layout and existing green spaces provided comparatively better thermal conditions, although insufficient vegetation maintenance and limited shade reduced their effectiveness. The findings demonstrate a clear correspondence between the school community’s perceptions of thermal comfort and the measured microclimatic data. Vegetation—particularly deciduous trees—plays a critical role in cooling the school microclimate through shading and evapotranspiration. Strategic interventions such as expanding tree cover in high-exposure areas, installing green roofs and walls, and carefully selecting species can significantly reduce temperature extremes and improve outdoor usability. In addition, fostering environmental education and participatory co-design programs can encourage sustainable behaviors within the school community, underlining the importance of inclusive, nature-based solutions for climate adaptation. This research highlights that integrating green infrastructure in school design and management is a cost-effective strategy for thermal regulation. Green spaces, when co-designed with community involvement, not only enhance climate resilience and student well-being but also contribute to broader sustainable urban development goals. Full article
Show Figures

Figure 1

29 pages, 2319 KB  
Article
Research on the Development of a Building Model Management System Integrating MQTT Sensing
by Ziang Wang, Han Xiao, Changsheng Guan, Liming Zhou and Daiguang Fu
Sensors 2025, 25(19), 6069; https://doi.org/10.3390/s25196069 - 2 Oct 2025
Abstract
Existing building management systems face critical limitations in real-time data integration, primarily relying on static models that lack dynamic updates from IoT sensors. To address this gap, this study proposes a novel system integrating MQTT over WebSocket with Three.js visualization, enabling real-time sensor-data [...] Read more.
Existing building management systems face critical limitations in real-time data integration, primarily relying on static models that lack dynamic updates from IoT sensors. To address this gap, this study proposes a novel system integrating MQTT over WebSocket with Three.js visualization, enabling real-time sensor-data binding to Building Information Models (BIM). The architecture leverages MQTT’s lightweight publish-subscribe protocol for efficient communication and employs a TCP-based retransmission mechanism to ensure 99.5% data reliability in unstable networks. A dynamic topic-matching algorithm is introduced to automate sensor-BIM associations, reducing manual configuration time by 60%. The system’s frontend, powered by Three.js, achieves browser-based 3D visualization with sub-second updates (280–550 ms latency), while the backend utilizes SpringBoot for scalable service orchestration. Experimental evaluations across diverse environments—including high-rise offices, industrial plants, and residential complexes—demonstrate the system’s robustness: Real-time monitoring: Fire alarms triggered within 2.1 s (22% faster than legacy systems). Network resilience: 98.2% availability under 30% packet loss. User efficiency: 4.6/5 satisfaction score from facility managers. This work advances intelligent building management by bridging IoT data with interactive 3D models, offering a scalable solution for emergency response, energy optimization, and predictive maintenance in smart cities. Full article
(This article belongs to the Section Intelligent Sensors)
Show Figures

Figure 1

23 pages, 17632 KB  
Article
Multipath Identification and Mitigation for Enhanced GNSS Positioning in Urban Environments
by Qianxia Li, Xue Hou, Yuanbin Ye, Wenfeng Zhang, Qingsong Li and Yuezhen Cai
Sensors 2025, 25(19), 6061; https://doi.org/10.3390/s25196061 - 2 Oct 2025
Abstract
Due to the increasing demand for accurate and robust GNSS positioning for location-based services (LBS) in urban regions, the impacts prevalent in metropolitan areas, like multipath reflections and various interferences, have become persistent challenges. Consequently, developing effective strategies to address these sophisticated influences [...] Read more.
Due to the increasing demand for accurate and robust GNSS positioning for location-based services (LBS) in urban regions, the impacts prevalent in metropolitan areas, like multipath reflections and various interferences, have become persistent challenges. Consequently, developing effective strategies to address these sophisticated influences has become both a primary research focus and a shared priority. In this paper, the authors explore an approach to identify and mitigate the drawbacks arising from multipath effects in urban positioning. Unlike conventional ways for building complex models, an adaptive data-driven methodology is proposed to identify the fingerprints of a multipath in GNSS observations. This approach utilizes the Fourier transform (FT) to examine code multipath and other error sources in terms of frequency, as represented by the power spectrum. Wavelet decomposition and signal spectrum methods are subsequently applied to seek traces of code multipath in multilayer decompositions. Based on the exhibited multipath features, the impacts of multipath in GNSS observations are detected and mitigated in the reconstructed observations. The proposed method is validated for both static and dynamic positioning scenarios, demonstrating seamless integration with existing positioning models. The feasibility has been verified through a series of experiments and tests under urban environments using navigation terminals and smartphones. Full article
(This article belongs to the Special Issue Advances in GNSS Signal Processing and Navigation—Second Edition)
Show Figures

Figure 1

20 pages, 448 KB  
Article
Cultural Empathy in AI-Supported Collaborative Learning: Advancing Inclusive Digital Learning in Higher Education
by Idit Finkelstein and Shira Soffer-Vital
Educ. Sci. 2025, 15(10), 1305; https://doi.org/10.3390/educsci15101305 - 2 Oct 2025
Abstract
The rapid advancement of Artificial Intelligence (AI) technologies is driving a profound transformation in higher education, shifting traditional learning toward digital, remote, and AI-mediated environments. This shift—accelerated by the COVID-19 pandemic—has made computer-supported collaborative learning (CSCL) a central pedagogical model for engaging students [...] Read more.
The rapid advancement of Artificial Intelligence (AI) technologies is driving a profound transformation in higher education, shifting traditional learning toward digital, remote, and AI-mediated environments. This shift—accelerated by the COVID-19 pandemic—has made computer-supported collaborative learning (CSCL) a central pedagogical model for engaging students in virtual, interactive, and peer-based learning. However, while these environments enhance access and flexibility, they also introduce new emotional, social, and intercultural challenges that students must navigate without the benefit of face-to-face interaction. In this evolving context, Social and Emotional Learning (SEL) has become increasingly essential—not only for supporting student well-being but also for fostering the self-efficacy, adaptability, and interpersonal competencies required for success in AI-enhanced academic settings. Despite its importance, the role of SEL in higher education—particularly within CSCL frameworks—remains underexplored. This study investigates how SEL, and specifically cultural empathy, influences students’ learning experiences in multicultural CSCL environments. Grounded in Bandura’s social cognitive theory and Allport’s Contact Theory, this study builds on theoretical insights that position emotional stability, social competence, and cultural empathy as critical SEL dimensions for promoting equity, collaboration, and effective participation in diverse, AI-supported learning settings. A quantitative study was conducted with 258 bachelor’s and master’s students on a multicultural campus. Using the Multicultural Social and Emotional Learning (SEL CASTLE) model, the research examined the relationships among SEL competencies and self-efficacy in CSCL environments. Findings reveal that cultural empathy plays a mediating role between emotional and social competencies and academic self-efficacy, emphasizing its importance in enhancing collaborative learning experiences within AI-driven environments. The results highlight the urgent need to cultivate cultural empathy to support inclusive, effective digital learning across diverse educational settings. This study contributes to the fields of intercultural education and digital pedagogy by presenting the SEL CASTLE model and demonstrating the significance of integrating SEL into AI-supported collaborative learning. Strengthening these competencies is essential for preparing students to thrive in a globally interconnected academic and professional landscape. Full article
(This article belongs to the Special Issue Higher Education Development and Technological Innovation)
Show Figures

Figure 1

25 pages, 759 KB  
Article
How Do Complementary Assets Influence the Value Innovation of Service Platform Enterprises? Evidence from a Dual Case Study in China
by Kexin Rong, Yanzhang Gu and Longying Hu
J. Theor. Appl. Electron. Commer. Res. 2025, 20(4), 267; https://doi.org/10.3390/jtaer20040267 - 2 Oct 2025
Abstract
Service platform enterprises have become a prominent economic form in China’s digital economy in the past two decades. The scope of complementary assets is expanding; for example, big data, precision marketing and user traffic conversion are among the emerging manifestations of complementary assets. [...] Read more.
Service platform enterprises have become a prominent economic form in China’s digital economy in the past two decades. The scope of complementary assets is expanding; for example, big data, precision marketing and user traffic conversion are among the emerging manifestations of complementary assets. Nevertheless, scholars have not yet explored how service platform enterprises utilize and maintain these vast complementary assets in the dynamic environment. Building on value innovation theory, this article attempts to reveal the impacts of complementary assets on the value innovation of service platform enterprises, and the conditioning roles of environmental dynamics. By contrasting findings and theoretical replication, we find that (1) complementary assets (specialized complementary assets, universal complementary assets) have promoting effects on service platform enterprises’ value innovation (customer value, partnership, business model changes); (2) environmental dynamics (market changes, technological changes) have moderating effects on the relationship between complementary assets and the value innovation of service platform enterprise. This research provides a novel and fine-grained theoretical framework to illustrate the multidimensional impacts of complementary assets and the contingent roles of a two-dimensional environmental dynamics on value innovation, thereby enriching the literature on value innovation theory and complementary assets, and providing actionable insights for service platform enterprises in leveraging complementary assets for value innovation, as well as guidance for regulatory departments in digital governance. Full article
Show Figures

Figure 1

22 pages, 2187 KB  
Review
Artificial Intelligence and Digital Twins for Bioclimatic Building Design: Innovations in Sustainability and Efficiency
by Ekaterina Filippova, Sattar Hedayat, Tina Ziarati and Matteo Manganelli
Energies 2025, 18(19), 5230; https://doi.org/10.3390/en18195230 - 1 Oct 2025
Abstract
The integration of artificial intelligence (AI) into bioclimatic building design is reshaping the architecture, engineering, and construction (AEC) industry by addressing critical challenges in sustainability and efficiency. By aligning structures with local climates, bioclimatic design addresses global challenges such as energy consumption, urbanization, [...] Read more.
The integration of artificial intelligence (AI) into bioclimatic building design is reshaping the architecture, engineering, and construction (AEC) industry by addressing critical challenges in sustainability and efficiency. By aligning structures with local climates, bioclimatic design addresses global challenges such as energy consumption, urbanization, and climate change. Complementing these principles, AI technologies—including machine learning, digital twins, and generative algorithms—are revolutionizing the sector by optimizing processes across the entire building lifecycle, from design and construction to operation and maintenance. Amid the diverse array of AI-driven innovations, this research highlights digital twin (DT) technologies as a key to AI-driven transformation, enabling real-time monitoring, simulation, and optimization for sustainable design. Applications like façade optimization, energy flow analysis, and predictive maintenance showcase their role in adaptive architecture, while frameworks like Construction 4.0 and 5.0 promote human-centric, data-driven sustainability. By bridging AI with bioclimatic design, the findings contribute to a vision of a built environment that seamlessly aligns environmental sustainability with technological advancement and societal well-being, setting new standards for adaptive and resilient architecture. Despite the immense potential, AI and DTs face challenges like high computational demands, regulatory barriers, interoperability and skill gaps. Overcoming these challenges will be crucial for maximizing the impact on sustainable building, requiring ongoing research to ensure scalability, ethics, and accessibility. Full article
(This article belongs to the Special Issue New Insights into Hybrid Renewable Energy Systems in Buildings)
Show Figures

Figure 1

27 pages, 2517 KB  
Article
A Guided Self-Study Platform of Integrating Documentation, Code, Visual Output, and Exercise for Flutter Cross-Platform Mobile Programming
by Safira Adine Kinari, Nobuo Funabiki, Soe Thandar Aung and Htoo Htoo Sandi Kyaw
Computers 2025, 14(10), 417; https://doi.org/10.3390/computers14100417 - 1 Oct 2025
Abstract
Nowadays, Flutter with the Dart programming language has become widely popular in mobile developments, allowing developers to build multi-platform applications using one codebase. An increasing number of companies are adopting these technologies to create scalable and maintainable mobile applications. Despite this increasing relevance, [...] Read more.
Nowadays, Flutter with the Dart programming language has become widely popular in mobile developments, allowing developers to build multi-platform applications using one codebase. An increasing number of companies are adopting these technologies to create scalable and maintainable mobile applications. Despite this increasing relevance, university curricula often lack structured resources for Flutter/Dart, limiting opportunities for students to learn it in academic environments. To address this gap, we previously developed the Flutter Programming Learning Assistance System (FPLAS), which supports self-learning through interactive problems focused on code comprehension through code-based exercises and visual interfaces. However, it was observed that many students completed the exercises without fully understanding even basic concepts, if they already had some knowledge of object-oriented programming (OOP). As a result, they may not be able to design and implement Flutter/Dart codes independently, highlighting a mismatch between the system’s outcomes and intended learning goals. In this paper, we propose a guided self-study approach of integrating documentation, code, visual output, and exercise in FPLAS. Two existing problem types, namely, Grammar Understanding Problems (GUP) and Element Fill-in-Blank Problems (EFP), are combined together with documentation, code, and output into a new format called Integrated Introductory Problems (INTs). For evaluations, we generated 16 INT instances and conducted two rounds of evaluations. The first round with 23 master students in Okayama University, Japan, showed high correct answer rates but low usability ratings. After revising the documentation and the system design, the second round with 25 fourth-year undergraduate students in the same university demonstrated high usability and consistent performances, which confirms the effectiveness of the proposal. Full article
Show Figures

Figure 1

4 pages, 858 KB  
Editorial
Towards Resilience of the Built Environment: Designing Buildings for Strength
by Iftekhar Ahmed
Architecture 2025, 5(4), 89; https://doi.org/10.3390/architecture5040089 - 1 Oct 2025
Abstract
The design and construction of buildings for strength, characterised by their durability and safety, is fundamental to the practice of built environment professionals, including architects, civil engineers, construction managers and builders [...] Full article
Show Figures

Figure 1

15 pages, 1705 KB  
Article
Enhancing Two-Step Random Access in LEO Satellite Internet an Attack-Aware Adaptive Backoff Indicator (AA-BI)
by Jiajie Dong, Yong Wang, Qingsong Zhao, Ruiqian Ma and Jiaxiong Yang
Future Internet 2025, 17(10), 454; https://doi.org/10.3390/fi17100454 - 1 Oct 2025
Abstract
Low-Earth-Orbit Satellite Internet (LEO SI), with its capability for seamless global coverage, is a key solution for connecting IoT devices in areas beyond terrestrial network reach, playing a vital role in building a future ubiquitous IoT system. Inspired by the IEEE 802.15.4 Improved [...] Read more.
Low-Earth-Orbit Satellite Internet (LEO SI), with its capability for seamless global coverage, is a key solution for connecting IoT devices in areas beyond terrestrial network reach, playing a vital role in building a future ubiquitous IoT system. Inspired by the IEEE 802.15.4 Improved Adaptive Backoff Algorithm (I-ABA), this paper proposes an Attack-Aware Adaptive Backoff Indicator (AA-BI) mechanism to enhance the security and robustness of the two-step random access process in LEO SI. The mechanism constructs a composite threat intensity indicator that incorporates collision probability, Denial-of-Service (DoS) attack strength, and replay attack intensity. This quantified threat level is smoothly mapped to a dynamic backoff window to achieve adaptive backoff adjustment. Simulation results demonstrate that, with 200 pieces of user equipment (UE), the AA-BI mechanism significantly improves the access success rate (ASR) and jamming resistance rate (JRR) under various attack scenarios compared to the I-ABA and Binary Exponential Backoff (BEB) algorithms. Notably, under high-attack conditions, AA-BI improves ASR by up to 25.1% and 56.6% over I-ABA and BEB, respectively. Moreover, under high-load conditions with 800 users, AA-BI still maintains superior performance, achieving an ASR of 0.42 and a JRR of 0.68, thereby effectively ensuring the access performance and reliability of satellite Internet in malicious environments. Full article
Show Figures

Figure 1

41 pages, 724 KB  
Article
The Impact of Integrity-Related Factors on Consumer Shopping Intention. An Interactive Marketing Approach Based on Digital Integrity Model
by Nicoleta-Valentina Florea, Gabriel Croitoru and Aurelia-Aurora Diaconeasa
J. Theor. Appl. Electron. Commer. Res. 2025, 20(4), 262; https://doi.org/10.3390/jtaer20040262 - 1 Oct 2025
Abstract
The purpose of this study is to examine the impact of integrity-related considerations, such as ethics, privacy, protection, security, and trust, on online consumer shopping intention within the interactive marketing environment. To achieve this, the research uses partial least squares structural equation modelling [...] Read more.
The purpose of this study is to examine the impact of integrity-related considerations, such as ethics, privacy, protection, security, and trust, on online consumer shopping intention within the interactive marketing environment. To achieve this, the research uses partial least squares structural equation modelling (PLS-SEM), analysing data from a sample of 260 respondents collected through an online survey. The findings reveal that protection is the most influential factor driving consumer buying intentions, followed by trust, ethics and security. Privacy, while significant, has a more moderate influence on consumer behaviour compared to other factors. The study makes a key theoretical contribution by advancing the understanding of how these constructs interact to shape consumer behaviour in the digital marketplace, particularly highlighting the importance of data protection and ethical practices. Practically, the research offers actionable recommendations for e-commerce businesses, based on building a digital integrity model, suggesting the focus on enhancing data security and ethical transparency to build consumer trust. Furthermore, the findings highlight the need for policymakers to strengthen data privacy regulations and harmonise international security standards in e-commerce. Future research should consider longitudinal studies and explore these dynamics in different regulatory environments. Full article
Show Figures

Figure 1

40 pages, 8027 KB  
Article
Parametric Visualization, Climate Adaptability Evaluation, and Optimization of Strategies for the Subtropical Hakka Enclosed House: The Guangludi Case in Meizhou
by Yijiao Zhou, Zhe Zhou, Pei Cai and Nangkula Utaberta
Buildings 2025, 15(19), 3530; https://doi.org/10.3390/buildings15193530 - 1 Oct 2025
Abstract
Hakka traditional vernacular dwellings embody regionally specific climatic adaptation strategies. This study takes the Meizhou Guangludi enclosed house as a case study to evaluate its climate adaptability with longevity and passive survivability factors of the Hakka three-hall enclosed house under subtropical climatic conditions. [...] Read more.
Hakka traditional vernacular dwellings embody regionally specific climatic adaptation strategies. This study takes the Meizhou Guangludi enclosed house as a case study to evaluate its climate adaptability with longevity and passive survivability factors of the Hakka three-hall enclosed house under subtropical climatic conditions. A mixed research method is employed, integrating visualized parametric modeling analysis and on-site measurement comparisons to quantify wind, temperature, solar radiation/illuminance, and humidity, along with human comfort zone limits and building environment. The results reveal that nature erosion in the Guangludi enclosed house is the most pronounced during winter and spring, particularly on exterior walls below 2.8 m. Key issues include bulging, spalling, molding, and fractured purlins caused by wind-driven rain, exacerbated by low wind speeds and limited solar exposure, especially at test spots like the E8–E10 and N1–N16 southeast and southern walls below 1.5 m. Fungal growth and plant intrusion are severe where surrounding trees and fengshui forests restrict wind flow and lighting. In terms of passive survivability, the Guangludi enclosed house has strong thermal insulation and buffering, aided by the Huatai mound; however, humidity and day illuminance deficiencies persist in the interstitial spaces between lateral rooms and the central hall. To address these issues, this study proposes strategies such as adding ventilation shafts and flexible partitions, optimizing patio dimensions and window-to-wall ratios, retaining the spatial layout and Fengshui pond to enhance wind airflow, and reinforcing the identified easily eroded spots with waterproofing, antimicrobial coatings, and extended eaves. Through parametric simulation and empirical validation, this study presents a climate-responsive retrofit framework that supports the sustainability and conservation of the subtropical Hakka enclosed house. Full article
(This article belongs to the Section Architectural Design, Urban Science, and Real Estate)
28 pages, 6954 KB  
Article
Incorporating Immersive Technologies to Improve the Design and Management of Temporary Urban Events in Public Spaces
by Hossein Behmanesh and Andre Brown
Urban Sci. 2025, 9(10), 404; https://doi.org/10.3390/urbansci9100404 - 1 Oct 2025
Abstract
Planned events in urban public spaces often face design challenges, and consequent poor performance, due to limited consideration of spatial criteria during the planning process. Our previous work revealed that event designers tend to have no urban design, or similar, training. Consequently, this [...] Read more.
Planned events in urban public spaces often face design challenges, and consequent poor performance, due to limited consideration of spatial criteria during the planning process. Our previous work revealed that event designers tend to have no urban design, or similar, training. Consequently, this paper reports on a Virtual Reality (VR)/Mixed Reality (MR) tool developed as a ‘proof of concept’ to support event designers in evaluating and modifying event layouts using urban design principles. Building on a previous study that identified key design-based criteria, including pedestrian flow, permeability, and geometry, this research applies those criteria through interactive, immersive environments. A VR experiment involving three sessions with users demonstrated how the tool facilitates spatial analysis and encourages reflective design thinking. Insights from the sessions highlight the value of visual representation in decision-making and suggest directions for future tool development, such as expanding the criteria set and incorporating real-time data. The study concludes by proposing that immersive technologies can enhance collaborative and responsive temporary event design for public spaces. Full article
Show Figures

Figure 1

Back to TopTop