Sign in to use this feature.

Years

Between: -

Subjects

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Journals

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Article Types

Countries / Regions

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Search Results (5,800)

Search Parameters:
Keywords = capacity density

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
17 pages, 1470 KB  
Article
Stem-Centered Drought Tolerance in Mikania micrantha During the Dry Season
by Minling Cai, Minghao Chen, Junjie Zhang and Changlian Peng
Int. J. Mol. Sci. 2025, 26(19), 9722; https://doi.org/10.3390/ijms26199722 - 6 Oct 2025
Abstract
Mikania micrantha, commonly known as mile-a-minute weed, is listed among the world’s top 10 worst weeds. Although native to humid regions of South America, it has recently been found to colonize arid habitats as well. Despite pronounced seasonal hydroclimatic variations in South [...] Read more.
Mikania micrantha, commonly known as mile-a-minute weed, is listed among the world’s top 10 worst weeds. Although native to humid regions of South America, it has recently been found to colonize arid habitats as well. Despite pronounced seasonal hydroclimatic variations in South China and increasing drought due to global climate change, the mechanisms underlying M. micrantha’s drought tolerance remain poorly understood. In this study, we compared the photosynthetic responses of M. micrantha leaves and stems between the dry (June) and wet (December) seasons through field experiments. We measured changes in phenotype, photosynthetic characteristics, and the content of antioxidant and osmotic adjustment substances, using the co-occurring native vine Paederia scandens as a control. The results revealed that during the dry season, M. micrantha leaves exhibited wilting, along with significant reductions in relative water content (RWC), chlorophyll (Chl), soluble sugar (SS), and soluble protein (SP). In contrast, the stems of M. micrantha maintained relatively stable phenotypes and chlorophyll levels compared to those of P. scandens. Notably, M. micrantha stems exhibited significant increases in vessel wall thickness, vessel density, total phenol content, and the activities of peroxidase (POD) and ascorbate peroxidase (APX). Furthermore, compared to P. scandens, M. micrantha stems displayed a greater increase in cortex proportion, flavonoid content, and soluble protein content. Expression analysis of bZIP transcription factors further revealed drought-responsive upregulation of specific genes (bZIP60, ZIP42-1), suggesting their potential involvement in drought response. These results indicate that although the leaves of M. micrantha are susceptible to prolonged drought, the stems exhibit considerable resilience, which may be attributed to a combination of traits including structural modifications in stem anatomy, enhanced antioxidant capacity, and osmotic adjustment. These insights suggest that stem-specific adaptations are key to its drought tolerance, providing a theoretical foundation for understanding the habitat distribution of M. micrantha and informing effective management strategies. Full article
(This article belongs to the Section Molecular Plant Sciences)
Show Figures

Figure 1

18 pages, 3531 KB  
Article
Heat, Cold and Power Supply with Thermal Energy Storage in Battery Electric Vehicles: A Holistic Evaluated Concept with High Storage Density, Performance and Scalability
by Volker Dreißigacker
Energies 2025, 18(19), 5287; https://doi.org/10.3390/en18195287 - 6 Oct 2025
Abstract
The successful establishment of battery electric vehicles (BEVs) is strongly linked to criteria such as cost and range. In particular, the need for air conditioning strains battery capacities and limits the availability of BEVs. Thermal energy storage systems (TESs) open up alternative paths [...] Read more.
The successful establishment of battery electric vehicles (BEVs) is strongly linked to criteria such as cost and range. In particular, the need for air conditioning strains battery capacities and limits the availability of BEVs. Thermal energy storage systems (TESs) open up alternative paths for heat and cold supply with excellent scalability and cost efficiency. Previous TES concepts have largely focused on heat during cold seasons, but storage-based air conditioning systems for all seasons are still missing. To fill this gap, a concept based on a Brayton cycle allowing heat and cold supply and, simultaneously, an output of electrical energy at times when no air conditioning is needed was investigated. Central thermal components include water-based cold storage and electrically heated, high-temperature, solid-medium storage, both with innovative TPMS structures and flexible operation managements. With transient simulation studies a system was identified with effective storage densities of up to 100 Wh/kg, reaching a constant heat and cold supply of 5 kW and 2.5 kW, respectively, over 41 min. In addition, the underlying cycle allows an electrical output of up to 1.7 kW during times of inactive air conditioning requirements. Compared to a reference system designed only for winter operation, the moderately lower storage densities are compensated by proportionately longer discharging times. By combining a compact and dynamic Brayton cycle with a TES in BEVs, a storage-based air conditioning system with high utilization potential and high operational flexibility was developed. In addition to further optimizations, the knowledge for TES solutions can also be transferred to today’s air conditioning systems, extending the solution space for storage-supported thermomanagement options in BEVs. Full article
(This article belongs to the Section D: Energy Storage and Application)
Show Figures

Figure 1

17 pages, 1534 KB  
Article
Improving Telenomus remus (Hymenoptera: Scelionidae) Adoption: Contribution of Different Egg Parasitoid Densities, Fed Adults, and Their Storage for Successful Biological Control of Spodoptera frugiperda (Lepidoptera: Noctuidae)
by Weidson P. Sutil, Adeney de F. Bueno, Leonardo Roswadoski, Rafael S. Iasczczaki, Gabriel S. Carneiro and Yelitza C. Colmenarez
Insects 2025, 16(10), 1032; https://doi.org/10.3390/insects16101032 - 6 Oct 2025
Abstract
Egg parasitoids, such as Telenomus remus (Hymenoptera: Scelionidae), face significant challenges after release, as their pupae are exposed to various mortality factors that reduce the efficiency of biological control programs. Therefore, this study aimed to evaluate a honey-solid diet that can feed adults [...] Read more.
Egg parasitoids, such as Telenomus remus (Hymenoptera: Scelionidae), face significant challenges after release, as their pupae are exposed to various mortality factors that reduce the efficiency of biological control programs. Therefore, this study aimed to evaluate a honey-solid diet that can feed adults still inside the capsules without sticking the wasps on its surface, enabling parasitoid storage and later field release. Three independent bioassays were performed, each with 20 completely randomized replications. The first bioassay evaluated the acceptance of a solid feed—honey soaked in cotton thread—compared to the traditional form—honey droplets. In the second bioassay, the storage periods after emergence of adults in capsules with honey-solid food were analyzed at 2, 4, 6, and 8 days post-emergence, and the third bioassay studied the efficacy of different release densities of fed adults under field conditions. Parasitoids fed on the honey-solid diet exhibited a 13.3% reduction in parasitism compared to honey droplets. However, the sticky, viscous nature of honey can lead to parasitoids becoming glued, potentially leading to their death. T. remus feeding on the honey-solid diet resulted in low mortality inside the capsules, living up to six days with only 22.2% reduction in parasitism capacity, making it a viable alternative to release and transport fed adult parasitoids, with an increase of around 30% in the released density of parasitoids compared with the parasitoids fed on honey droplets. This flexibility of releasing T. remus up to six days after emergence provided valuable knowledge to establish T. remus as a biocontrol agent. Furthermore, the highest tested parasitoid density of 20,000 parasitoids per hectare obtained the highest parasitism of Spodoptera frugiperda (Lepidoptera: Noctuidae) eggs. However, future studies are still required with higher releasing densities and less expensive methods of mass rearing the parasitoid for those higher densities to be economically viable. Full article
Show Figures

Figure 1

12 pages, 1955 KB  
Article
A MOF-Mediated Strategy for In Situ Niobium Doping and Synthesis of High-Performance Single-Crystal Ni-Rich Cathodes
by Yinkun Gao, Huazhang Zhou, Shumin Liu, Shuyun Guan, Mingyang Liu, Peng Gao, Yongming Zhu and Xudong Li
Batteries 2025, 11(10), 368; https://doi.org/10.3390/batteries11100368 - 5 Oct 2025
Abstract
The development of single-crystal Ni-rich layered cathode materials (SC-NCMs) is regarded as an effective strategy to address the mechanical failure issues commonly associated with polycrystalline counterparts. However, the industrial production of SC-NCM faces challenges such as lengthy processing steps, high manufacturing costs, and [...] Read more.
The development of single-crystal Ni-rich layered cathode materials (SC-NCMs) is regarded as an effective strategy to address the mechanical failure issues commonly associated with polycrystalline counterparts. However, the industrial production of SC-NCM faces challenges such as lengthy processing steps, high manufacturing costs, and inconsistent product quality. In this study, we innovatively propose a metal/organic framework (MOF)-mediated one-step synthesis strategy to achieve controllable structural preparation and in situ Nb5+ doping in SC-NCM. Using a Ni–Co–Mn-based MOF as both precursor and self-template, we precisely regulated the thermal treatment pathway to guide the nucleation and oriented growth of high-density SC-NCM particles. Simultaneously, Nb5+ was pre-anchored within the MOF framework, enabling atomic-level homogeneous doping into the transition metal layers during crystal growth. Exceptional electrochemical performance is revealed in the in situ Nb-doped SC-NCM, with an initial discharge capacity reaching 176 mAh/g at a 1C rate and a remarkable capacity retention of 86.36% maintained after 200 cycles. This study paves a versatile and innovative pathway for the design of high-stability, high-energy-density cathode materials via a MOF-mediated synthesis strategy, enabling precise manipulation of both morphology and chemical composition. Full article
15 pages, 643 KB  
Article
Determinants of Atherogenic Dyslipidemia and Lipid Ratios: Associations with Sociodemographic Profile, Lifestyle, and Social Isolation in Spanish Workers
by Pere Riutord-Sbert, Pedro Juan Tárraga López, Ángel Arturo López-González, Irene Coll Campayo, Carla Busquets-Cortés and José Ignacio Ramírez Manent
J. Clin. Med. 2025, 14(19), 7039; https://doi.org/10.3390/jcm14197039 - 5 Oct 2025
Abstract
Background: Atherogenic dyslipidemia is defined by the coexistence of high triglyceride concentrations, low levels of high-density lipoprotein cholesterol (HDL-C), and an excess of small, dense particles of low-density lipoprotein cholesterol (LDL-C). This lipid profile is strongly associated with an increased burden of cardiovascular [...] Read more.
Background: Atherogenic dyslipidemia is defined by the coexistence of high triglyceride concentrations, low levels of high-density lipoprotein cholesterol (HDL-C), and an excess of small, dense particles of low-density lipoprotein cholesterol (LDL-C). This lipid profile is strongly associated with an increased burden of cardiovascular disease and represents a leading cause of global morbidity and mortality. To better capture this risk, composite lipid ratios—including total cholesterol to HDL-C (TC/HDL-C), LDL-C to HDL-C (LDL-C/HDL-C), triglycerides to HDL-C (TG/HDL-C), and the atherogenic dyslipidemia index (AD)—have emerged as robust markers of cardiometabolic health, frequently demonstrating superior predictive capacity compared with isolated lipid measures. Despite extensive evidence linking these ratios to cardiovascular disease, few large-scale studies have examined their association with sociodemographic characteristics, lifestyle behaviors, and social isolation in working populations. Methods: We conducted a cross-sectional analysis of a large occupational cohort of Spanish workers evaluated between January 2021 and December 2024. Anthropometric, biochemical, and sociodemographic data were collected through standardized clinical protocols. Indices of atherogenic risk—namely the ratios TC/HDL-C, LDL-C/HDL-C, TG/HDL-C, and the atherogenic dyslipidemia index (AD)—were derived from fasting lipid measurements. The assessment of lifestyle factors included tobacco use, physical activity evaluated through the International Physical Activity Questionnaire (IPAQ), adherence to the Mediterranean dietary pattern using the MEDAS questionnaire, and perceived social isolation measured by the Lubben Social Network Scale. Socioeconomic classification was established following the criteria proposed by the Spanish Society of Epidemiology. Logistic regression models were fitted to identify factors independently associated with moderate-to-high risk for each lipid indicator, adjusting for potential confounders. Results: A total of 117,298 workers (71,384 men and 45,914 women) were included. Men showed significantly higher odds of elevated TG/HDL-C (OR 4.22, 95% CI 3.70–4.75) and AD (OR 2.95, 95% CI 2.70–3.21) compared with women, whereas LDL-C/HDL-C ratios were lower (OR 0.86, 95% CI 0.83–0.89). Advancing age was positively associated with all lipid ratios, with the highest risk observed in participants aged 60–69 years. Lower social class, smoking, physical inactivity, poor adherence to the Mediterranean diet, and low social isolation scores were consistently linked to higher atherogenic risk. Physical inactivity showed the strongest associations across all indicators, with ORs ranging from 3.54 for TC/HDL-C to 7.12 for AD. Conclusions: Atherogenic dyslipidemia and elevated lipid ratios are strongly associated with male sex, older age, lower socioeconomic status, unhealthy lifestyle behaviors, and reduced social integration among Spanish workers. These findings highlight the importance of workplace-based cardiovascular risk screening and targeted prevention strategies, particularly in high-risk subgroups. Interventions to promote physical activity, healthy dietary patterns, and social connectedness may contribute to lowering atherogenic risk in occupational settings. Full article
(This article belongs to the Section Cardiovascular Medicine)
Show Figures

Figure 1

21 pages, 3683 KB  
Article
Quantifying the Contribution of Driving Factors on Distribution and Change in Vegetation NPP in the Huang–Huai–Hai Plain, China
by Zhuang Li, Hongwei Liu, Jinjie Miao, Yaonan Bai, Bo Han, Danhong Xu, Fengtian Yang and Yubo Xia
Sustainability 2025, 17(19), 8877; https://doi.org/10.3390/su17198877 - 4 Oct 2025
Abstract
As a fundamental metric for assessing carbon sequestration, Net Primary Productivity (NPP) and the mechanisms driving its spatiotemporal dynamics constitute a critical research domain within global change science. This research centered on the Huang–Huai–Hai Plain (HHHP), combining 2001–2023 MODIS-NPP data with natural (landform, [...] Read more.
As a fundamental metric for assessing carbon sequestration, Net Primary Productivity (NPP) and the mechanisms driving its spatiotemporal dynamics constitute a critical research domain within global change science. This research centered on the Huang–Huai–Hai Plain (HHHP), combining 2001–2023 MODIS-NPP data with natural (landform, temperature, precipitation, soil) and socio-economic (population density, GDP density, land use) drivers. Trend analysis, coefficient of variation, and Hurst index were applied to clarify the spatiotemporal evolution of NPP and its future trends, while geographic detectors and structural equation models were used to quantify the contribution of drivers. Key findings: (1) Across the HHHP, the multi-year average NPP ranged between 30.05 and 1019.76 gC·m−2·a−1, with higher values found in Shandong and Henan provinces, and lower values concentrated in the northwestern dam-top plateau and central plain regions; 44.11% of the entire region showed a statistically highly significant increasing trend. (2) The overall fluctuation of NPP was low-amplitude, with a stable center of gravity and the standard deviation ellipse retaining a southwest-to-northeast direction. (3) Future changes in NPP exhibited persistence and anti-persistence, with 44.98% of the region being confronted with vegetation degradation risk. (4) NPP variations originated from the synergistic impacts of multiple elements: among individual elements, precipitation, soil type, and elevation had the highest explanatory capacity, while synergistic interactions between two elements notably enhanced the explanatory capacity. (5) Climate variation exerted the strongest influence on NPP (direct coefficient of 0.743), followed by the basic natural environment (0.734), whereas human-related activities had the weakest direct impact (−0.098). This research offers scientific backing for regional carbon sink evaluation, ecological security early warning, and sustainable development policies. Full article
Show Figures

Figure 1

18 pages, 7693 KB  
Article
Assessing Variations in River Networks Under Urbanization Across Metropolitan Plains Using a Multi-Metric Approach
by Zhixin Lin, Shuang Luo, Miao Lu, Shaoqing Dai and Youpeng Xu
Land 2025, 14(10), 1994; https://doi.org/10.3390/land14101994 - 4 Oct 2025
Abstract
Urbanization, characterized by rapid construction land expansion, has transformed natural landscapes and significantly altered river networks in emerging metropolitan areas. Understanding the historical and current conditions of river networks is crucial for policy-making in sustainable urban development planning. Based on the topographic maps [...] Read more.
Urbanization, characterized by rapid construction land expansion, has transformed natural landscapes and significantly altered river networks in emerging metropolitan areas. Understanding the historical and current conditions of river networks is crucial for policy-making in sustainable urban development planning. Based on the topographic maps and remote sensing images, this study employs a multi-metric framework to investigate river network variations in the Suzhou-Wuxi-Changzhou metropolitan area, a rapidly urbanized plain with high-density river networks in the Yangtze River Delta, China. The results indicate a significant decline in the quantity of rivers, with the average river density in built-up areas falling from 2.70 km·km−2 in the 1960s to 1.95 km·km−2 in the 2010s, along with notable variations in the river network’s structure, complexity and its storage and regulation capacity. Moreover, shifts in the structural characteristics of river networks reveal that urbanization has a weaker impact on main streams but plays a dominant role in altering tributaries. The analysis demonstrates the extensive burial and modification of rivers across the metropolitan plains. These findings underscore the essence of incorporating river network protection and restoration into sustainable urban planning, providing insights for water resource management and resilient city development in rapidly urbanizing regions. Full article
(This article belongs to the Section Urban Contexts and Urban-Rural Interactions)
25 pages, 8347 KB  
Article
Integrated Assessment of Pasture Ecosystem Degradation Processes in Arid Zones: A Case Study of Atyrau Region, Kazakhstan
by Kazhmurat Akhmedenov, Nurlan Sergaliev, Murat Makhambetov, Aigul Sergeyeva, Kuat Saparov, Roza Izimova, Akhan Turgumbaev and Dinmuhamed Iskaliev
Sustainability 2025, 17(19), 8869; https://doi.org/10.3390/su17198869 - 4 Oct 2025
Abstract
This article presents an integrated assessment of pasture ecosystem degradation under conditions of extreme aridity in the Atyrau Region, where high livestock density, limited grazing capacity, and institutional fragmentation of land tenure exacerbate degradation risks. The study aimed to conduct a spatio-temporal analysis [...] Read more.
This article presents an integrated assessment of pasture ecosystem degradation under conditions of extreme aridity in the Atyrau Region, where high livestock density, limited grazing capacity, and institutional fragmentation of land tenure exacerbate degradation risks. The study aimed to conduct a spatio-temporal analysis of pasture conditions and identify critical load zones to support sustainable management strategies. The methodology was based on a multi-factor Anthropogenic Load (AL) model integrating (1) calculation of pasture load (PL) using 2023 agricultural statistics with livestock numbers converted into livestock units; (2) spatial analysis of grazing concentration through Kernel Density Estimation in ArcGIS 10.8; (3) assessment of infrastructural accessibility (Accessibility Index, Ai); and (4) quantitative evaluation of institutional land use organization (Institutional Index, Ii). This integrative approach enabled the identification of stable, transitional, and critically overloaded zones and provided a cartographic basis for sustainable management. Results revealed persistent degradation hotspots within 3–5 km of water sources and settlements, while up to 40% of productive pastures remain excluded from use. The proposed AL model demonstrated high reproducibility and applicability for environmental monitoring and regional land use planning in arid regions of Central Asia. Full article
(This article belongs to the Section Sustainability in Geographic Science)
Show Figures

Figure 1

16 pages, 1851 KB  
Article
A Method for Determining Medium- and Long-Term Renewable Energy Accommodation Capacity Considering Multiple Uncertain Influencing Factors
by Tingxiang Liu, Libin Yang, Zhengxi Li, Kai Wang, Pinkun He and Feng Xiao
Energies 2025, 18(19), 5261; https://doi.org/10.3390/en18195261 - 3 Oct 2025
Abstract
Amid the global energy transition, rapidly expanding wind and solar installations challenge power grids with variability and uncertainty. We propose an adaptive framework for renewable energy accommodation assessment under high-dimensional uncertainties, integrating three innovations: (1) Response Surface Methodology (RSM) is adopted for the [...] Read more.
Amid the global energy transition, rapidly expanding wind and solar installations challenge power grids with variability and uncertainty. We propose an adaptive framework for renewable energy accommodation assessment under high-dimensional uncertainties, integrating three innovations: (1) Response Surface Methodology (RSM) is adopted for the first time to construct a closed-form polynomial of renewable energy accommodation in terms of resource hours, load, installed capacity, and transmission limits, enabling millisecond-level evaluation; (2) LASSO-regularized RSM suppresses high-dimensional overfitting by automatically selecting key interaction terms while preserving interpretability; (3) a Bayesian kernel density extension yields full posterior distributions and confidence intervals for renewable energy accommodation in small-sample scenarios, quantifying risk. A case study on a renewable-rich grid in Northwest China validates the framework: two-factor response surface models achieve R2 > 90% with < 0.5% mean absolute error across ten random historical cases; LASSO regression keeps errors below 1.5% in multidimensional space; Bayesian density intervals encompass all observed values. The framework flexibly switches between deterministic, sparse, or probabilistic modes according to data availability, offering efficient and reliable decision support for generation-transmission planning and market clearing under multidimensional uncertainty. Full article
Show Figures

Figure 1

21 pages, 3498 KB  
Article
Effects of Replacing Fishmeal with Soybean Meal on Intestinal Histology, Antioxidation, Endoplasmic Reticulum Stress, Inflammation, Tight Junction, and Microbiota in Olive Flounder (Paralichthys olivaceus)
by Zhenxia Su, Yanjie Zhang, Chaoqing Wei, Fengxiang Zhang, Lei Wang, Yaxuan Li, Zhengqiu Zhang, Jianhe Xu, Zhiguo Dong and Hua Mu
Animals 2025, 15(19), 2895; https://doi.org/10.3390/ani15192895 - 3 Oct 2025
Abstract
A limited supply and price shortages of fishmeal with the expansion of aquaculture make it necessary to seek alternative protein sources. Soybean meal (SM) has been the widely preferred replacer for fishmeal in fish diets. Nevertheless, this substitution, especially when given at high [...] Read more.
A limited supply and price shortages of fishmeal with the expansion of aquaculture make it necessary to seek alternative protein sources. Soybean meal (SM) has been the widely preferred replacer for fishmeal in fish diets. Nevertheless, this substitution, especially when given at high doses, potentially shows adverse impact on fish intestinal health. This study aimed to investigate the effect of replacing fishmeal with SM on intestinal health in olive flounder (Paralichthys olivaceus). A 56-day feeding trial was conducted with 450 juvenile fish (initial weight: 6.32 ± 0.01 g) randomly allocated to five diets with graded SM replacement: 0% (FM), 12% (SM12), 24% (SM24), 36% (SM36), and 48% (SM48). The results demonstrated that concentrations of glucose, total triglyceride, and low-density lipoprotein cholesterol increased, whereas total protein and high-density lipoprotein cholesterol contents, and lysozyme activity decreased in serum with increasing dietary SM levels. Meanwhile, total antioxidant capacity and superoxide dismutase activity significantly decreased at replacement levels exceeding 24%, accompanied by elevated malondialdehyde concentration (p < 0.05). Compared with the FM group, the SM24, SM36, and SM48 groups showed significantly reduced VH and increased lamina propria width (p < 0.05). Increasing dietary SM levels upregulated expression of genes related to endoplasmic reticulum stress (ERS) (chop, perk, and grp78), inflammation (tnf-α and il-6), and apoptosis (bax, casp3, casp6, and casp9), while downregulated anti-inflammatory cytokines (il-10 and tgf-β1) and tight junction-related genes (zo-1, zo-2, claudin-5, ocln, muc-13, and muc-15) in the intestine (p < 0.05). There were significant differences in the abundances of intestinal microbiota at both the phylum and genus levels among the FM, SM24, and SM36 groups (p < 0.05), but the clusters and microbiota composition of the SM24 group were more similar to those of the FM group. In conclusion, replacing 24% of fishmeal with SM induced intestinal dysfunction through evoking ERS, inflammation, barrier disruption, and microbial dysbiosis in olive flounder. Full article
(This article belongs to the Section Animal Nutrition)
Show Figures

Figure 1

21 pages, 11783 KB  
Article
Spatio-Temporal Pattern Analysis of African Swine Fever Spreading in Northwestern Italy—The Role of Habitat Interfaces
by Samuele De Petris, Tommaso Orusa, Annalisa Viani, Francesco Feliziani, Marco Sordilli, Sabatino Troisi, Simona Zoppi, Marco Ragionieri, Riccardo Orusa and Enrico Borgogno-Mondino
Animals 2025, 15(19), 2886; https://doi.org/10.3390/ani15192886 - 2 Oct 2025
Abstract
African swine fever (ASF) is a highly contagious viral disease with significant impacts on domestic pigs and wild boar populations. This study applies GIS-based spatial analysis to monitor ASF outbreaks in northwestern Italy (Piedmont and Liguria) and identify areas at increased risk. Key [...] Read more.
African swine fever (ASF) is a highly contagious viral disease with significant impacts on domestic pigs and wild boar populations. This study applies GIS-based spatial analysis to monitor ASF outbreaks in northwestern Italy (Piedmont and Liguria) and identify areas at increased risk. Key factors considered include pig density, wildlife proximity, and environmental conditions. The spatial analysis revealed that central–western municipalities exhibited higher risk due to favorable environmental conditions and dense wild boar populations, while peripheral areas showed a temporal delay in outbreak emergence. Mapping the spreading rate and habitat interfaces allowed the development of a spatial risk model, which was further analyzed using geostatistical techniques to understand disease dynamics. The results demonstrate the effectiveness of geospatial modeling in identifying high-risk zones, characterizing spatio-temporal patterns, and supporting targeted prevention and surveillance strategies. These findings provide actionable insights for ASF management and resource allocation. Future studies may refine these models by integrating additional datasets and environmental variables, enhancing predictive capacity and applicability across different regions. Full article
Show Figures

Figure 1

13 pages, 1846 KB  
Article
Toward Circular Carbon: Upcycling Coke Oven Waste into Graphite Anodes for Lithium-Ion Batteries
by Seonhui Choi, Inchan Yang, Byeongheon Lee, Tae Hun Kim, Sei-Min Park and Jung-Chul An
Batteries 2025, 11(10), 365; https://doi.org/10.3390/batteries11100365 - 2 Oct 2025
Abstract
This study presents a sustainable upcycling strategy to convert “Pit,” a carbon-rich coke oven by-product from steel manufacturing, into high-purity graphite for use as an anode material in lithium-ion batteries. Despite its high carbon content, raw Pit contains significant impurities and has irregular [...] Read more.
This study presents a sustainable upcycling strategy to convert “Pit,” a carbon-rich coke oven by-product from steel manufacturing, into high-purity graphite for use as an anode material in lithium-ion batteries. Despite its high carbon content, raw Pit contains significant impurities and has irregular particle morphology, which limits its direct application in batteries. We employed a multi-step, additive-free refinement process—including jet milling, spheroidization, and high-temperature graphitization—to enhance carbon purity and structural properties. The processed Pit-derived graphite showed a much-improved particle size distribution (D50 reduced from 25.3 μm to 14.8 μm & Span reduced from 1.72 to 1.23), increased tap density (from 0.54 to 0.80 g/cm3), and reduced BET surface area, making it suitable for high-performance lithium-ion batteries anodes. Structural characterization by XRD and TEM confirmed dramatically enhanced crystallinity after graphitization (graphitization degree increasing from ~13 for raw Pit to 95.7% for graphitized Pit at 3000 °C). The fully processed graphite (denoted S_Pit3000) delivered a reversible discharge capacity of 346.7 mAh/g with an initial Coulombic efficiency of 93.5% in half-cell tests—comparable to commercial artificial graphite. Furthermore, when composited with silicon oxide to form a hybrid anode, the material achieved an even higher capacity of 418.0 mAh/g under high mass loading conditions. These results highlight the feasibility of transforming industrial coke waste into value-added electrode materials through environmentally friendly physical processes. The upcycled graphite anode meets industrial performance standards, demonstrating a promising route toward circular economy solutions in both the steel and battery industries. Full article
Show Figures

Figure 1

13 pages, 2339 KB  
Article
Preparation of Silk Fibroin–Carboxymethyl Cellulose Composite Binder and Its Application in Silicon-Based Anode for Lithium-Ion Batteries
by Shuai Huang, Ruyi Wang, Mingke Lei, Qingxuan Geng, Qingwei Li, Jiwei Zhang and Jingwei Zhang
Nanomaterials 2025, 15(19), 1509; https://doi.org/10.3390/nano15191509 - 2 Oct 2025
Abstract
The molecular structure and mechanical resilience of the binder are crucial for mitigating volume expansion, maintaining electrode structural integrity, and enhancing the cycling stability of silicon-based anode materials in lithium-ion batteries. In this study, from the perspective of binder molecular structural design, commercial [...] Read more.
The molecular structure and mechanical resilience of the binder are crucial for mitigating volume expansion, maintaining electrode structural integrity, and enhancing the cycling stability of silicon-based anode materials in lithium-ion batteries. In this study, from the perspective of binder molecular structural design, commercial carboxymethyl cellulose (CMC) was modified with silk protein (SF), which has good mechanical properties and abundant surface functional groups, to address issues such as high brittleness, poor compliance and easy cracking of the electrode structure during charge and discharge cycles, and to enhance the mechanical properties of the CMC-based binder and its interaction with silicon particles, so as to improve the cycle stability of silicon-based materials. The mechanical properties of the CMC binder were significantly improved and the interaction between the binder and the surface of the silicon particles was enhanced by the addition of SF. When the SF content was optimized at 6 wt%, the electrode exhibited the best electrochemical performance, delivering a specific capacity of 1182 mAh/g at a high current density of 5000 mA/g, and retaining a capacity of 1138 mAh/g after 50 cycles at 1000 mA/g, demonstrating excellent electrochemical durability. Full article
(This article belongs to the Section Energy and Catalysis)
Show Figures

Figure 1

18 pages, 2228 KB  
Article
Linking Elastin in Skeletal Muscle Extracellular Matrix to Metabolic and Aerobic Function in Type 2 Diabetes: A Secondary Analysis of a Lower Leg Training Intervention
by Nicholas A. Hulett, Leslie A. Knaub, Irene E. Schauer, Judith G. Regensteiner, Rebecca L. Scalzo and Jane E. B. Reusch
Metabolites 2025, 15(10), 655; https://doi.org/10.3390/metabo15100655 - 2 Oct 2025
Abstract
Background: Type 2 diabetes (T2D) is associated with reduced cardiorespiratory fitness (CRF), a critical predictor of cardiovascular disease and all-cause mortality. CRF relies upon the coordinated action of multiple systems including the skeletal muscle where the mitochondria metabolize oxygen and substrates to sustain [...] Read more.
Background: Type 2 diabetes (T2D) is associated with reduced cardiorespiratory fitness (CRF), a critical predictor of cardiovascular disease and all-cause mortality. CRF relies upon the coordinated action of multiple systems including the skeletal muscle where the mitochondria metabolize oxygen and substrates to sustain ATP production. Yet, previous studies have shown that impairments in muscle bioenergetics in T2D are not solely due to mitochondrial deficits. This finding indicates that factors outside the mitochondria, particularly within the local tissue microenvironment, may contribute to reduced CRF. One such factor is the extracellular matrix (ECM), which plays structural and regulatory roles in metabolic processes. Despite its potential regulatory role, the contribution of ECM remodeling to metabolic impairment in T2D remains poorly understood. We hypothesize that pathological remodeling of the skeletal muscle ECM in overweight individuals with and without T2D impairs bioenergetics and insulin sensitivity, and that exercise may help to ameliorate these effects. Methods: Participants with T2D (n = 21) and overweight controls (n = 24) completed a 10-day single-leg exercise training (SLET) intervention. Muscle samples obtained before and after the intervention were analyzed for ECM components, including collagen, elastin, hyaluronic acid, dystrophin, and proteoglycans, using second harmonic generation imaging and immunohistochemistry. Results: Positive correlations were observed with elastin content and both glucose infusion rate (p = 0.0010) and CRF (0.0363). The collagen area was elevated in participants with T2D at baseline (p = 0.0443) and showed a trend toward reduction following a 10-day SLET (p = 0.0867). Collagen mass remained unchanged, suggesting differences in density. Dystrophin levels were increased with SLET (p = 0.0256). Conclusions: These findings identify that structural proteins contribute to aerobic capacity and identify elastin as an ECM component linked to insulin sensitivity and CRF. Full article
(This article belongs to the Special Issue Effects of Nutrition and Exercise on Cardiometabolic Health)
Show Figures

Figure 1

25 pages, 2657 KB  
Article
Hydro-Functional Strategies of Sixteen Tree Species in a Mexican Karstic Seasonally Dry Tropical Forest
by Jorge Palomo-Kumul, Mirna Valdez-Hernández, Gerald A. Islebe, Edith Osorio-de-la-Rosa, Gabriela Cruz-Piñon, Francisco López-Huerta and Raúl Juárez-Aguirre
Forests 2025, 16(10), 1535; https://doi.org/10.3390/f16101535 - 1 Oct 2025
Abstract
Seasonally dry tropical forests (SDTFs) are shaped by strong climatic and edaphic constraints, including pronounced rainfall seasonality, extended dry periods, and shallow karst soils with limited water retention. Understanding how tree species respond to these pressures is crucial for predicting ecosystem resilience under [...] Read more.
Seasonally dry tropical forests (SDTFs) are shaped by strong climatic and edaphic constraints, including pronounced rainfall seasonality, extended dry periods, and shallow karst soils with limited water retention. Understanding how tree species respond to these pressures is crucial for predicting ecosystem resilience under climate change. In the Yucatán Peninsula, we characterized sixteen tree species along a spatial and seasonal precipitation gradient, quantifying wood density, predawn and midday water potential, saturated and relative water content, and specific leaf area. Across sites, diameter classes, and seasons, we measured ≈4 individuals per species (n = 319), ensuring replication despite natural heterogeneity. Using a principal component analysis (PCA) based on individual-level data collected during the dry season, we identified five functional groups spanning a continuum from conservative hard-wood species, with high hydraulic safety and access to deep water sources, to acquisitive light-wood species that rely on stem water storage and drought avoidance. Intermediate-density species diverged into subgroups that employed contrasting strategies such as anisohydric tolerance, high leaf area efficiency, or strict stomatal regulation to maintain performance during the dry season. Functional traits were strongly associated with precipitation regimes, with wood density emerging as a key predictor of water storage capacity and specific leaf area responding plastically to spatial and seasonal variability. These findings refine functional group classifications in heterogeneous karst landscapes and highlight the value of trait-based approaches for predicting drought resilience and informing restoration strategies under climate change. Full article
Back to TopTop