Sign in to use this feature.

Years

Between: -

Subjects

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Journals

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Article Types

Countries / Regions

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Search Results (374)

Search Parameters:
Keywords = captive populations

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
18 pages, 17767 KB  
Article
From Broodstock to Progeny: Genetic Variation in Captive-Bred F1 Bahaba taipingensis and Its Relevance to Conservation Release Programs
by Yuting Hu, Qianhui Chen, Jiabo Chen, Wenjun Chen, Jujing Wang, Haimei Lin, Guanlin Chen, Jinsheng Xiao, Hungdu Lin, Wei Feng and Junjie Wang
Diversity 2025, 17(10), 676; https://doi.org/10.3390/d17100676 - 27 Sep 2025
Abstract
Bahaba taipingensis (Chinese bahaba) is a critically endangered fish endemic to China’s coastal waters, valued for both ecological and economic reasons and known as the “panda of the sea”. Captive breeding and stock enhancement are key conservation strategies, yet the genetic composition of [...] Read more.
Bahaba taipingensis (Chinese bahaba) is a critically endangered fish endemic to China’s coastal waters, valued for both ecological and economic reasons and known as the “panda of the sea”. Captive breeding and stock enhancement are key conservation strategies, yet the genetic composition of released individuals directly affects program outcomes. This study combined mitochondrial and whole-genome resequencing to compare F1-generation fish with wild populations. At the mitochondrial level, 60 SNPs were detected in F1 individuals and 72 in wild populations, with haplotype analyses revealing retention of most common maternal lineages but reduced diversity. Nuclear genome analysis showed comparable genetic diversity between groups. Nucleotide diversity (π) was 0.000423 in F1 fish and 0.000401 in the wild population. However, the F1 cohort exhibited a higher inbreeding coefficient (FIS = −0.030) than the wild group (FIS = −0.118), suggesting early allele frequency shifts, thereby suggesting early genotype frequency shifts. Runs of homozygosity (ROH) analysis showed that the total number and length of ROH regions in the F1 cohort (686, 283,089.25 kb) were significantly greater than those in the wild population (171, 52,607.30 kb). Genome-wide FST between groups was 0.035, and PCA indicated genetic homogenization in F1 fish. Ne analysis showed that the wild population declined rapidly over generations and stabilized at a low level, indicating genetic diversity loss under environmental stress and highlighting the role of artificial breeding. These findings highlight the need for improved broodstock management and long-term genetic monitoring. Full article
(This article belongs to the Section Biodiversity Conservation)
Show Figures

Figure 1

12 pages, 1210 KB  
Article
A Survey of the Reproductive Lesions in Captive Female Non-Human Primates in Italy
by Valentina Galietta, Cristiano Cocumelli, Raffaella Parmigiani, Emanuela Bovi, Tiziana Palmerini, Chiara Acri, Pilar Di Cerbo, Marco Aloisi, Antonella Cersini and Claudia Eleni
Vet. Sci. 2025, 12(9), 856; https://doi.org/10.3390/vetsci12090856 - 4 Sep 2025
Viewed by 433
Abstract
Non-human primates (NHPs) are considered important models for the study of reproductive diseases, due to their anatomical and physiological similarities to humans. However, studies on spontaneous lesions of the reproductive system in NHPs housed in zoos remain limited compared to those in laboratory [...] Read more.
Non-human primates (NHPs) are considered important models for the study of reproductive diseases, due to their anatomical and physiological similarities to humans. However, studies on spontaneous lesions of the reproductive system in NHPs housed in zoos remain limited compared to those in laboratory animals. In this study, we report a retrospective analysis of female reproductive pathologies in 103 necropsied non-human primates from Italian zoos between 2007 and 2024. Only adult, intact, non-pregnant females with macroscopically visible reproductive lesions were included. Histopathological examination revealed reproductive tract lesions in 15 individuals (14.6%), including both non-neoplastic (cystic endometrial hyperplasia, adenomyosis, endometriosis) and neoplastic (leiomyomas, cervical and ovarian adenocarcinomas, and metastatic tumors) conditions. Leiomyoma was the most common tumor, particularly in the genus Macaca, while rare malignant neoplasms and metastatic lesions were identified in the great apes and in the New World species. The results suggest an age-related degenerative component and highlight interspecific differences in the distribution of lesions, probably related to the reproductive physiology of the various species. These results underline the importance of systematic post-mortem surveillance to improve the management of reproductive health of these captive populations and provide comparative insights with humans. Full article
Show Figures

Figure 1

26 pages, 2424 KB  
Article
Retrospective Analysis of the Impact of Vaccination with an Inactivated Vaccine on Toxoplasmosis-Associated Mortality in Captive Wildlife
by Angelo Scuotto, Daniela Ogonczyk-Makowska, Alicia Quiévy, Mélanie Berthet, Kévin Schlax, Didier Boussarie, Alexis Maillot, Florine Popelin-Wedlarski, Thomas Charpentier, Maïalen Perot, Benoît Quintard, Marloes van Elderen, Job Benjamin Gérard Stumpel, Stamatios Alan Tahas, Anna Modlinska, Viktória Sós-Koroknai, Alexandre Azevedo, María del Carmen Carmona Muciño, Mariana Castilho Martins, Carlos Madrid, Juliana Peña Stadlin, Lina M. Henao-Montoya and Didier Betbederadd Show full author list remove Hide full author list
Vaccines 2025, 13(9), 910; https://doi.org/10.3390/vaccines13090910 - 27 Aug 2025
Viewed by 707
Abstract
Background/Objectives: Toxoplasma gondii is a major cause of zoonotic infections in both humans and animals, resulting in significant mortality in susceptible species, such as New World primates and marsupials. Toxoplasmosis is particularly concerning in zoos and wildlife reserves, where outbreaks threaten conservation [...] Read more.
Background/Objectives: Toxoplasma gondii is a major cause of zoonotic infections in both humans and animals, resulting in significant mortality in susceptible species, such as New World primates and marsupials. Toxoplasmosis is particularly concerning in zoos and wildlife reserves, where outbreaks threaten conservation efforts for endangered species. In the absence of a commercially available vaccine against toxoplasmosis for humans and captive wild animals, current prevention strategies are limited to restricting the access of cats to enclosures, controlling rodent populations, and maintaining strict food hygiene. Recent research has shown promising results with an intranasal vaccine (VXN-Toxo) composed of maltodextrin nanoparticles conjugated with a purified, inactivated T. gondii parasite. This experimental vaccine does not pose a risk of causing disease and offers advantages such as better stability compared with live pathogen-based vaccines. Methods: This study presents a large-scale evaluation of the effect of VXN-Toxo administered to captive wildlife across 20 zoos in Europe and the Americas between 2017 and 2025. Seven hundred and eighty-four animals, representing over 58 species (including primates, marsupials, rodents, and felids), were vaccinated without any adverse events reported. Results: Retrospective mortality data from 20 participating zoological institutions revealed an overall 96.7% reduction—and, in many cases, a complete elimination—of toxoplasmosis-associated deaths post vaccination. Conclusions: These results demonstrate, for the first time, consistent and broad-spectrum protection against T. gondii of different strains in a wide array of captive wildlife species. This universal vaccine represents a promising tool for toxoplasmosis prevention in zoological collections, with significant implications for animal health and conservation strategies. Full article
(This article belongs to the Special Issue Advances in Vaccines against Infectious Diseases)
Show Figures

Figure 1

22 pages, 1062 KB  
Article
Serum Lipid Reference Intervals of High-Density, Low-Density and Non-High-Density Lipoprotein Cholesterols and Their Association with Atherosclerosis and Other Factors in Psittaciformes
by Matthias Janeczek, Rüdiger Korbel, Friedrich Janeczek, Helen Alber, Helmut Küchenhoff and Monika Rinder
Animals 2025, 15(17), 2493; https://doi.org/10.3390/ani15172493 - 25 Aug 2025
Viewed by 608
Abstract
Atherosclerosis is highly prevalent among captive psittacine populations and is a frequent cause of veterinary consultations. Ante-mortem diagnosis remains challenging, but the serum lipoprotein analysis has been suggested as a useful tool for identifying associated risk factors and improving understanding of its pathogenesis. [...] Read more.
Atherosclerosis is highly prevalent among captive psittacine populations and is a frequent cause of veterinary consultations. Ante-mortem diagnosis remains challenging, but the serum lipoprotein analysis has been suggested as a useful tool for identifying associated risk factors and improving understanding of its pathogenesis. Unlike in humans, the relationship between lipoproteins and atherosclerosis in parrots has not been clearly established. This retrospective cohort study analyzed n = 1199 blood samples from 692 parrots across 14 genera to establish reference intervals for high-density lipoprotein cholesterol (HDL-C), low-density lipoprotein cholesterol (LDL-C) and non-high-density lipoprotein cholesterol (non-HDL-C) following ASVCP guidelines. Lipoprotein levels were evaluated in relation to factors such as genus, age, sex, diet, reproductive status, body condition score, and atherosclerosis prevalence (diagnosed by endoscopy and/or necropsy). The results demonstrated genus-specific differences and significant associations between LDL-C and atherosclerosis, with non-HDL-C showing a similar, less pronounced, trend. Higher LDL-C values were measured in the presence of moderate-severe atherosclerosis. Birds on seed diets had higher lipoprotein levels and were more likely to be diagnosed with atherosclerosis in comparison to birds fed a pelleted or extruded diet. The role of HDL-C remained less conclusively defined. The results of this study provide a foundational framework for the future use of lipoprotein analysis in parrot medicine, offering novel insights into the management of cardiovascular health in pet parrots. Full article
(This article belongs to the Section Birds)
Show Figures

Figure 1

17 pages, 3699 KB  
Article
The Role of MHC-II Diversity over Enclosure Design in Gut Microbiota Structuring of Captive Bengal Slow Lorises
by Rong Jiang, Xiaojia Zhang, Lei Xie, Yan Zhang, Changjun Zeng, Yongfang Yao, Huailiang Xu, Caoyang Yang, Xiao Wang, Qingyong Ni, Meng Xie and Chuanren Li
Biology 2025, 14(8), 1094; https://doi.org/10.3390/biology14081094 - 21 Aug 2025
Viewed by 485
Abstract
The endangered Bengal slow loris (Nycticebus bengalensis) relies heavily on captive/rescue populations for conservation. This study investigated the critical link between Major Histocompatibility Complex (MHC) class II DRB1 exon 2 (DRB1e2) genetic variation and gut microbiota in 46 captive [...] Read more.
The endangered Bengal slow loris (Nycticebus bengalensis) relies heavily on captive/rescue populations for conservation. This study investigated the critical link between Major Histocompatibility Complex (MHC) class II DRB1 exon 2 (DRB1e2) genetic variation and gut microbiota in 46 captive individuals, aiming to improve ex situ management. Using standardized conditions across three enclosure types, we characterized DRB1e2 polymorphism via targeted sequencing and analyzed fecal microbiota using 16S rRNA gene amplicon sequencing. Results demonstrated that high DRB1e2 polymorphism significantly reduced microbial community evenness. Specific genotypes showed distinct microbial associations: G9 strongly correlated with beneficial short-chain fatty acid producers like Fructobacillus, and G2 positively correlated with Bifidobacterium spp., while G2, G3, and G4 correlated negatively with Buchnera (a nutrient-provisioning symbiont). Genotypes and polymorphism collectively explained 9.77% of microbiota variation, exceeding the weaker (5.15%), though significant, influence of enclosure type on β-diversity. These findings reveal that host DRB1e2 variation is a primary driver shaping gut microbiota structure and taxon abundance in captive slow lorises, providing evidence for MHC-mediated host–microbe co-adaptation. This offers a genetically informed framework for optimizing conservation strategies, such as tailoring diets or probiotics to specific genotypes, to enhance gut health and population viability. Full article
Show Figures

Figure 1

15 pages, 455 KB  
Article
White-Tailed Deer Prion Protein Gene Variability Suggests Selection Against Chronic Wasting Disease in Canada’s Prairies
by William Pilot, Maria I. Arifin, Antanas Staskevicius, Nicholas J. Haley, Gordon Mitchell and Jiewen Guan
Viruses 2025, 17(8), 1121; https://doi.org/10.3390/v17081121 - 15 Aug 2025
Viewed by 838
Abstract
Chronic wasting disease (CWD), a transmissible spongiform encephalopathy that targets cervids, has become a significant threat to both free-ranging and captive populations of Canadian white-tailed deer. In an effort to mitigate its spread, research in the past 20 years has demonstrated that the [...] Read more.
Chronic wasting disease (CWD), a transmissible spongiform encephalopathy that targets cervids, has become a significant threat to both free-ranging and captive populations of Canadian white-tailed deer. In an effort to mitigate its spread, research in the past 20 years has demonstrated that the genetic background of deer may influence the pathogenesis of CWD. Specifically, variants located on the 95-, 96-, 116- and 226-codon of the prion protein gene seem to attenuate disease progression in white-tailed deer. The influence of these alleles on the likelihood of being found CWD-positive on Saskatchewan and Albertan farms was assessed using a Bayesian logistic regression model. To assess the presence of selection for favourable prion protein gene alleles, shifts in variant genotype frequencies were examined over the last seventeen years. Our results show that deer harboring the G96S allele have significantly lowered odds of infection within Canadian herds. Furthermore, the prevalence of this allele has increased significantly in farmed deer over the past seventeen years. Establishing the dynamic genetic background of Canadian deer populations will inform future disease management initiatives. Full article
(This article belongs to the Special Issue Chronic Wasting Disease: From Pathogenesis to Prevention)
Show Figures

Figure 1

36 pages, 1587 KB  
Article
Long-Term Noninvasive Genetic Monitoring Guides Recovery of the Endangered Columbia Basin Pygmy Rabbits (Brachylagus idahoensis)
by Stacey A. Nerkowski, Paul A. Hohenlohe, Janet L. Rachlow, Kenneth I. Warheit, Jonathan A. Gallie and Lisette P. Waits
Genes 2025, 16(8), 956; https://doi.org/10.3390/genes16080956 - 13 Aug 2025
Viewed by 1154
Abstract
Background/Objectives: Loss and fragmentation of habitat from agricultural conversion led to the near extirpation of the pygmy rabbit (Brachylagus idahoensis Merriam, 1891) population in the Columbia Basin (CB) of Washington, USA. Recovery efforts began in 2002 and included captive breeding, translocations from [...] Read more.
Background/Objectives: Loss and fragmentation of habitat from agricultural conversion led to the near extirpation of the pygmy rabbit (Brachylagus idahoensis Merriam, 1891) population in the Columbia Basin (CB) of Washington, USA. Recovery efforts began in 2002 and included captive breeding, translocations from other regions for genetic rescue, and reintroduction into native habitat in three sites: Sagebrush Flat (SBF), Beezley Hills (BH), and Chester Butte (CHB). Methods: We used noninvasive and invasive genetic sampling to evaluate demographic and population genetic parameters on three translocated populations of pygmy rabbits over eight years (2011–2020). For each population, our goal was to use fecal DNA sampling and 19 microsatellite loci to monitor spatial distribution, apparent survival rates, genetic diversity, reproduction, effective population size, and the persistence of CB ancestry. Over the course of this study, 1978 rabbits were reintroduced as part of a cooperative conservation effort between state and federal agencies. Results: Through winter and summer monitoring surveys, we detected 168 released rabbits and 420 wild-born rabbits in SBF, 13 released rabbits and 2 wild-born in BH, and 16 released rabbits in CHB. Observed heterozygosity (Ho) values ranged from 0.62–0.84 (SBF), 0.59–0.80 (BH), and 0.73–0.77 (CHB). Allelic richness (AR) ranged from 4.67–5.35 (SBF), 3.71–5.41 (BH), and 3.69–4.65 (CHB). Effective population (Ne) within SBF varied from 12.3 (2012) to 44.3 (2017). CB ancestry persisted in all three wild populations, ranging from 15 to 27%. CB ancestry persisted in 99% of wild-born juveniles identified in SBF. Apparent survival of juvenile rabbits differed across years (1–39%) and was positively associated with release date, release weight, and genetic diversity. Survival of adults (0–43%) was positively influenced by release day, with some evidence that genetic diversity also positively influenced adult apparent survival. Conclusions: Noninvasive genetic sampling has proven to be an effective and efficient tool in monitoring this reintroduced population, assessing both demographic and genetic factors. This data has helped managers address the goals of the Columbia Basin recovery program of establishing multiple sustainable wild populations within the sagebrush steppe habitat of Washington. Full article
(This article belongs to the Special Issue Advances of Genetics in Wildlife Conservation and Management)
Show Figures

Figure 1

41 pages, 827 KB  
Systematic Review
Reviewing Evidence for the Impact of Lion Farming in South Africa on African Wild Lion Populations
by Jennah Green, Angie Elwin, Catherine Jakins, Stephanie-Emmy Klarmann, Louise de Waal, Madeleine Pinkess and Neil D’Cruze
Animals 2025, 15(15), 2316; https://doi.org/10.3390/ani15152316 - 7 Aug 2025
Viewed by 944
Abstract
The scope and scale of commercial captive lion breeding (CLB) in South Africa have rapidly increased since the 1990s. We conducted a qualitative systematic review using the PRISMA protocol to determine whether CLB provides a sustainable supply side intervention to reduce pressure on [...] Read more.
The scope and scale of commercial captive lion breeding (CLB) in South Africa have rapidly increased since the 1990s. We conducted a qualitative systematic review using the PRISMA protocol to determine whether CLB provides a sustainable supply side intervention to reduce pressure on wild lion populations. A search was performed using three academic databases for sources published between 2008 and 2023. We collated and reviewed the data using an evaluation framework to determine the potential benefits and threats of CLB in the context of conservation. Among the 126 peer-reviewed and 37 grey literature articles identified, we found evidence suggesting that the framework’s criteria were not fully met, raising concerns that CLB may facilitate the demand for lions, their parts, and derivatives. Our findings further indicate a reasonable cause to doubt that the CLB provides a sustainable supply side intervention to meet the commercial demand for lions, their parts, and derivatives. This could adversely impact conservation of wild lion populations. We conclude that further research is required to effectively evaluate the purported conservation benefits of CLB. These insights may also have implications for the policy and governance of commercial predator breeding operations in South Africa and globally. Full article
(This article belongs to the Section Ecology and Conservation)
Show Figures

Figure 1

31 pages, 1726 KB  
Article
The Effects of Artificial UV-B Provision on Positional Sleeping Behaviour and Vitamin D3 Metabolites of Captive Aye-Ayes (Daubentonia madagascariensis)
by Danielle Walker, Paige Bwye and Sarah Richdon
J. Zool. Bot. Gard. 2025, 6(3), 39; https://doi.org/10.3390/jzbg6030039 - 6 Aug 2025
Viewed by 1623
Abstract
Zoological environments aim to promote natural behaviours and optimal welfare conditions. Over the past decade, research on the use of artificial ultraviolet-B (UV-B) exposure has improved vitamin D3 levels and reduced incidences of metabolic bone disease in diurnal primates; however, this has [...] Read more.
Zoological environments aim to promote natural behaviours and optimal welfare conditions. Over the past decade, research on the use of artificial ultraviolet-B (UV-B) exposure has improved vitamin D3 levels and reduced incidences of metabolic bone disease in diurnal primates; however, this has not been investigated in nocturnals. Aye-ayes (Daubentonia madagascariensis), nocturnal lemurs often housed indoors in zoos with little to no exposure to natural sunlight, have been reported to have low vitamin D3 levels. This study aims to investigate the impacts of artificial UV-B as a supplemental healthcare strategy for aye-ayes, examining its influences on vitamin D3 levels and positional sleeping behaviour. The 25-hydroxy-vitamin D3 (25OHD3) blood levels were tested before and after exposure to different levels of artificial UV-B and heat sources. Statistical analysis showed no correlation between UV-B and 25OHD3 at group parameter levels. However, one individual showed a positive correlation. Sleeping position duration analysis showed a potential basking behaviour with the use of increased ear exposure and other thermoregulatory responses. Despite representing 8.06% of the European captive aye-aye population, these findings highlight the need for further research on vitamin D3 parameters and responses to UV-B to optimise captive conditions and support the species’ long-term health. Full article
Show Figures

Figure 1

10 pages, 1662 KB  
Article
First Detection and Molecular Identification of Rhabditis (Rhabditella) axei from the Chinese Red Panda (Ailurus styani)
by Chanjuan Yue, Wanjing Yang, Dunwu Qi, Mei Yang, James Edward Ayala, Yanshan Zhou, Chao Chen, Xiaoyan Su, Rong Hou and Songrui Liu
Pathogens 2025, 14(8), 783; https://doi.org/10.3390/pathogens14080783 - 6 Aug 2025
Viewed by 546
Abstract
Rhabditis (Rhabditella) axei is a predominantly free-living nematode commonly found in sewage systems and decomposing organic matter. While primarily saprophytic, it has been documented as an opportunistic pathogen in human urinary and gastrointestinal tracts. The Chinese red panda (Ailurus styani [...] Read more.
Rhabditis (Rhabditella) axei is a predominantly free-living nematode commonly found in sewage systems and decomposing organic matter. While primarily saprophytic, it has been documented as an opportunistic pathogen in human urinary and gastrointestinal tracts. The Chinese red panda (Ailurus styani), a rare and protected species in China, has not previously been reported as a host for Rhabditis (Rhabditella) spp. infections. This study reports the first documented occurrence of R. axei in red panda feces, unambiguously confirmed through integrative taxonomic approaches combining morphological and molecular analyses. The nematodes exhibited key morphological features consistent with R. axei, including a cylindrical rhabditiform esophagus, sexually dimorphic tail structures, and diagnostic spicule morphology. Molecular analysis based on 18S-ITS-28S rDNA sequencing confirmed their identity, showing >99% sequence similarity to R. axei reference strains (GenBank: PP135624.1, PP135622.1). Phylogenetic reconstruction using 18S rDNA and ITS rDNA sequences placed the isolate within a well-supported R. axei clade, clearly distinguishing it from related species such as R. blumi and R. brassicae. The findings demonstrate the ecological plasticity of R. axei as a facultative parasite capable of infecting non-traditional hosts and further highlight potential zoonotic risks associated with environmental exposure in captive wildlife populations. Our results emphasize the indispensable role of molecular diagnostics in accurately distinguishing morphologically similar nematodes within the Rhabditidae family, while providing essential baseline data for health monitoring in both in situ and ex situ conservation programs for this endangered species. Full article
Show Figures

Figure 1

13 pages, 266 KB  
Article
Correlation Between Phase Angle and Body Composition, Strength and Nutritional Habits in Male Gamers
by Catarina N. Matias, Francesco Campa, Joana Cardoso, Margarida L. Cavaca, Rafael Carlos and Filipe J. Teixeira
Sports 2025, 13(8), 257; https://doi.org/10.3390/sports13080257 - 6 Aug 2025
Viewed by 600
Abstract
Gaming has evolved into a cultural phenomenon with a global reach, captivating millions of individuals. Nevertheless, little is known about this population. We aim to physiologically characterise the Portuguese gamers, bearing in mind that phase angle (PhA) is a general indicator of health, [...] Read more.
Gaming has evolved into a cultural phenomenon with a global reach, captivating millions of individuals. Nevertheless, little is known about this population. We aim to physiologically characterise the Portuguese gamers, bearing in mind that phase angle (PhA) is a general indicator of health, to check possible correlations between body composition, strength, and nutrition. A sample of 35 male gamers (individuals who play video games) was evaluated for anthropometry; body composition through DXA for whole-body bone mineral content (BMC), fat-free mass (FFM, kg), fat mass, and visceral adipose tissue, and through BIA (bioelectrical impedance analysis) for total body water (TBW), water pools (extracellular water and intracellular water, ICW), and PhA; strength through maximal isometric handgrip strength using a dynamometer; and nutritional intake using a three-day food record. Results show that participants are within reference metrics for all the analysed variables except regarding protein and carbohydrate intake (all values are above and below the Acceptable Macronutrient Distribution Ranges, respectively). A positive correlation was observed between PhA and TBW, ICW, handgrip strength, BMC and FFM, and a negative correlation with fat mass (absolute, percentage and visceral). In conclusion, PhA correlates with body composition variables, which aligns with previous research as a predictor of health and performance. Full article
8 pages, 222 KB  
Perspective
Exploring the Potential of European Brown Shrimp (Crangon crangon) in Integrated Multi-Trophic Aquaculture: Towards Achieving Sustainable and Diversified Coastal Systems
by Ángel Urzúa and Marina Gebert
Oceans 2025, 6(3), 47; https://doi.org/10.3390/oceans6030047 - 31 Jul 2025
Viewed by 597
Abstract
Global marine coastal aquaculture increased by 6.7 million tons in 2024, with whiteleg shrimp (Penaeus vannamei) dominating crustacean production. However, reliance on a single species raises sustainability concerns, particularly in the face of climate change. Diversifying shrimp farming by cultivating native [...] Read more.
Global marine coastal aquaculture increased by 6.7 million tons in 2024, with whiteleg shrimp (Penaeus vannamei) dominating crustacean production. However, reliance on a single species raises sustainability concerns, particularly in the face of climate change. Diversifying shrimp farming by cultivating native species, such as the European brown shrimp (Crangon crangon), presents an opportunity to develop a sustainable blue bioeconomy in Europe. C. crangon holds significant commercial value, yet overexploitation has led to population declines. Integrated Multi-Trophic Aquaculture (IMTA) offers a viable solution by utilizing fish farm wastewater as a nutrient source, reducing both costs and environmental impact. Research efforts in Germany and other European nations are exploring IMTA’s potential by co-culturing shrimp with species like sea bream, sea bass, and salmon. The physiological adaptability and omnivorous diet of C. crangon further support its viability in aquaculture. However, critical knowledge gaps remain regarding its lipid metabolism, early ontogeny, and reproductive biology—factors essential for optimizing captive breeding. Future interdisciplinary research should refine larval culture techniques and develop sustainable co-culture models. Expanding C. crangon aquaculture aligns with the UN’s Sustainable Development Goals by enhancing food security, ecosystem resilience, and economic stability while reducing Europe’s reliance on seafood imports. Full article
16 pages, 1622 KB  
Article
Simian Foamy Virus Prevalence and Evolutionary Relationships in Two Free-Living Lion Tamarin Populations from Rio de Janeiro, Brazil
by Déa Luiza Girardi, Thamiris Santos Miranda, Matheus Augusto Calvano Cosentino, Caroline Carvalho de Sá, Talitha Mayumi Francisco, Bianca Cardozo Afonso, Flávio Landim Soffiati, Suelen Sanches Ferreira, Silvia Bahadian Moreira, Alcides Pissinatti, Carlos Ramon Ruiz-Miranda, Valéria Romano, Marcelo Alves Soares, Mirela D’arc and André Felipe Santos
Viruses 2025, 17(8), 1072; https://doi.org/10.3390/v17081072 - 31 Jul 2025
Viewed by 700
Abstract
Simian foamy virus (SFV) is a retrovirus that infects primates. However, epidemiological studies of SFV are often limited to captive populations. The southeastern Brazilian Atlantic Forest is home to both an endemic, endangered species, Leontopithecus rosalia, and an introduced species, Leontopithecus chrysomelas [...] Read more.
Simian foamy virus (SFV) is a retrovirus that infects primates. However, epidemiological studies of SFV are often limited to captive populations. The southeastern Brazilian Atlantic Forest is home to both an endemic, endangered species, Leontopithecus rosalia, and an introduced species, Leontopithecus chrysomelas, to which no data on SFV exist. In this study, we assessed the molecular prevalence of SFV, their viral load, and their phylogenetic relationship in these two species of primates. Genomic DNA was extracted from 48 oral swab samples of L. chrysomelas and 102 of L. rosalia. Quantitative PCR (qPCR) was performed to diagnose SFV infection and quantify viral load. SFV prevalence was found to be 23% in L. chrysomelas and 33% in L. rosalia. No age-related differences in prevalence were observed; however, L. rosalia showed a higher mean viral load (3.27 log10/106 cells) compared to L. chrysomelas (3.03 log10/106 cells). The polymerase gene sequence (213 pb) of L. rosalia (SFVlro) was clustered within a distinct SFV lineage found in L. chrysomelas. The estimated origin of SFVlro dated back approximately 0.0836 million years ago. Our study provides the first molecular prevalence data for SFV in free-living Leontopithecus populations while offering insights into the complex evolutionary history of SFV in American primates. Full article
(This article belongs to the Special Issue Spumaretroviruses: Research and Applications)
Show Figures

Figure 1

20 pages, 1822 KB  
Review
Pinna nobilis, the Vanishing Giant: A Comprehensive Review on the Decline of a Mediterranean Icon
by Ilenia Azzena, Chiara Locci, Noemi Pascale, Ilaria Deplano, Riccardo Senigaglia, Fabio Scarpa, Marco Casu and Daria Sanna
Animals 2025, 15(14), 2044; https://doi.org/10.3390/ani15142044 - 11 Jul 2025
Viewed by 919
Abstract
This review addresses the critical conservation challenges faced by Pinna nobilis, the noble pen shell, a keystone umbrella species in Mediterranean marine ecosystems. Since 2016, the species has experienced catastrophic population declines due to mass mortality events likely driven by protozoan, bacterial, [...] Read more.
This review addresses the critical conservation challenges faced by Pinna nobilis, the noble pen shell, a keystone umbrella species in Mediterranean marine ecosystems. Since 2016, the species has experienced catastrophic population declines due to mass mortality events likely driven by protozoan, bacterial, and viral infections. Despite these severe circumstances, small resilient populations persist in select estuaries and coastal lagoons across the Mediterranean, offering potential for recovery. We provide a comprehensive overview on research dedicated to Pinna nobilis’ biology, genetic variation, disease dynamics, and environmental factors influencing its survival, with a focus on refugia where populations still endure. Remarkably, recent studies have revealed signs of resistance in certain individuals and the potential for hybridisation with Pinna rudis. In this context, the possible impact of the increasing occurrence of hybridisation between Pinna nobilis and Pinna rudis on the conservation of their genetic diversity should be carefully considered. This review highlights the importance of ongoing conservation efforts including habitat restoration, protection of remaining populations, assessment of past and present genetic variability, and the development of captive breeding programmes. We aim to elucidate the need for continued studies on Pinna nobilis’ biodiversity, particularly its evolutionary dynamics, genetic makeup, and the interplay of environmental variables influencing its survival and persistence. Full article
(This article belongs to the Section Aquatic Animals)
Show Figures

Figure 1

18 pages, 4937 KB  
Article
Impacts of Captive Domestication and Geographical Divergence on the Gut Microbiome of Endangered Forest Musk Deer
by Huilin Liu, Lu Xiao, Zhiqiang Liu, You Deng, Jinpeng Zhu, Chengzhong Yang, Qing Liu, Di Tian, Xiaojuan Cui and Jianjun Peng
Animals 2025, 15(13), 1954; https://doi.org/10.3390/ani15131954 - 2 Jul 2025
Cited by 1 | Viewed by 377
Abstract
Forest musk deer (Moschus berezovskii Flerov), a critically endangered ruminant species, faces extinction risks, with captive populations further threatened by prevalent digestive and immune disorders. This study utilized comparative metagenomic sequencing to assess intestinal microbiota structure and functional profiles between wild populations [...] Read more.
Forest musk deer (Moschus berezovskii Flerov), a critically endangered ruminant species, faces extinction risks, with captive populations further threatened by prevalent digestive and immune disorders. This study utilized comparative metagenomic sequencing to assess intestinal microbiota structure and functional profiles between wild populations in Chongqing and Hunan and captive individuals. Wild populations exhibited a Pseudomonadota-dominated gut microbiota (significantly more abundant than in captive counterparts), enriched with lignin-degrading genera Novosphingobium and Acinetobacter. In contrast, the captive group demonstrated increased abundances of Bacillota/Bacteroidota, alongside abnormal proliferation of Escherichia and Clostridium. Both alpha and beta diversity analyses confirmed significant compositional divergences among the three groups, with wild populations maintaining higher diversity than captive populations. Notably, while substantial disparities in microbial abundance existed between wild populations (attributed to habitat vegetation differences), core microbial diversity and carbohydrate metabolic functions exhibited convergence. Functional analyses marked divergences in metabolic pathways: Captive microbiota showed enrichment in translation and glycan metabolism pathways, whereas wild populations displayed pronounced enrichment in immune regulation and environmental sensing pathways. These findings establish a theoretical foundation for optimizing wild population conservation strategies and developing science-based captive management protocols. Full article
(This article belongs to the Special Issue Protecting Endangered Species: Second Edition)
Show Figures

Figure 1

Back to TopTop