Sign in to use this feature.

Years

Between: -

Subjects

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Journals

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Article Types

Countries / Regions

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Search Results (387)

Search Parameters:
Keywords = carbon credits

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
29 pages, 1515 KB  
Review
Greenhouse Gas Emissions from Livestock-Driven Deforestation in the Amazon: A Bibliometric Analysis 2004–2024
by Diego Hernandez Guzman, Seweryn Zielinski, Adriana Hernandez Guzman, Beliña Annery Herrera Tapias, Omar Ramírez and Celene B. Milanés
Land 2025, 14(8), 1695; https://doi.org/10.3390/land14081695 - 21 Aug 2025
Viewed by 705
Abstract
The Amazon rainforest, a vital global carbon sink, is experiencing extensive forest loss due to environmental pressures, particularly from livestock production. While research on this topic has grown, a comprehensive synthesis is needed to map the intellectual landscape of this critical field and [...] Read more.
The Amazon rainforest, a vital global carbon sink, is experiencing extensive forest loss due to environmental pressures, particularly from livestock production. While research on this topic has grown, a comprehensive synthesis is needed to map the intellectual landscape of this critical field and inform actionable policies. Unlike a systematic review, which synthesizes findings qualitatively, this analysis focuses on a quantitative overview of research trends, key authors, and collaborative networks regarding greenhouse gas emissions from livestock-driven deforestation in the Amazon from 2004 to 2024. Additionally, the study makes a thematic synthesis of reviewed literature providing overview on emissions, mitigation, and biodiversity impacts. The review, based on data from Scopus and Web of Science processed through Bibliometrix and VOSviewer software, reveals a growing and increasingly collaborative field, with research output showing significant growth post-2010, dominated by institutions in Brazil and the United States, with a conceptual focus that has shifted from basic deforestation metrics to sophisticated analyses of mitigation strategies and policy impacts. The findings highlight recurrent deforestation drivers, including export-oriented agriculture and weak land tenure, and demonstrate the effectiveness of specific mitigation options. Key mitigation strategies identified include silvopastoral systems with more than 30% tree cover, rotational grazing, and targeted pasture restoration, which can halve emissions within 5–7 years when combined with credit incentives and secure land tenure. The review underscores the evolution of research toward more policy-relevant and interdisciplinary approaches, but also highlights the need for more empirical validation and collaborative efforts to translate these findings into scalable climate solutions. Full article
Show Figures

Figure 1

35 pages, 11074 KB  
Article
How Can We Achieve Carbon Neutrality During Urban Expansion? An Empirical Study from Qionglai City, China
by Xinmei Wang, Dinghua Ou, Chang Shu, Yiliang Liu, Zijia Yan, Maocuo La and Jianguo Xia
Land 2025, 14(8), 1689; https://doi.org/10.3390/land14081689 - 21 Aug 2025
Viewed by 481
Abstract
While technologies like renewable energy and low-carbon transportation are known to mitigate carbon emissions from urban expansion, achieving carbon neutrality during this process remains a critical unresolved challenge. This issue is particularly pressing for developing countries striving to balance urbanization with carbon reduction. [...] Read more.
While technologies like renewable energy and low-carbon transportation are known to mitigate carbon emissions from urban expansion, achieving carbon neutrality during this process remains a critical unresolved challenge. This issue is particularly pressing for developing countries striving to balance urbanization with carbon reduction. Taking Qionglai City as a case study, this study simulated the territorial spatial functional patterns (TSFPs) and carbon emission distribution for 2025 and 2030. Based on the key drivers of carbon emissions from urban expansion identified through the Geographical and Temporal Weighted Regression (GTWR) model, carbon-neutral pathways were designed for two scenarios: urban expansion scenarios under historical evolution patterns (Scenario I) and urban expansion scenarios optimized under carbon neutrality targets (Scenario II). The results indicate that (1) urban space is projected to expand from 6094.73 hm2 in 2020 to 6249.77 hm2 in 2025 and 6385.75 hm2 in 2030; (2) total carbon emissions are forecasted to reach 1.25 × 106 t (metric tons) and 1.40 × 106 t in 2025 and 2030, respectively, exhibiting a spatial pattern of “high in the central-eastern regions, low in the west”; (3) GDP, Net Primary Productivity (NPP), and the number of fuel vehicles are the dominant drivers of carbon emissions from urban expansion; and (4) a four-pronged strategy, optimizing urban green space vegetation types, replacing fuel vehicles with new energy vehicles, controlling carbon emissions per GDP, and purchasing carbon credits, proves effective. Scenario II presents the optimal pathway: carbon neutrality in the expansion zone can be achieved by 2025 using the first three measures (e.g., optimizing 66.73 hm2 of green space, replacing 800 fuel vehicles, and maintaining emissions at 0.21 t/104 CNY per GDP). By 2030, carbon neutrality can be achieved by implementing all four measures (e.g., optimizing 67.57 hm2 of green space, replacing 1470 fuel vehicles, and achieving 0.15 t/104 CNY per GDP). This study provides a methodological basis for local governments to promote low-carbon urban development and offers practical insights for developing nations to reconcile urban expansion with carbon neutrality goals. Full article
Show Figures

Figure 1

23 pages, 2671 KB  
Article
The Spatiotemporal Patterns and Driving Mechanism of the Synergistic Effects in Industrial Green Production
by Chuang Li, Hui Deng and Liping Wang
Sustainability 2025, 17(16), 7439; https://doi.org/10.3390/su17167439 - 17 Aug 2025
Viewed by 425
Abstract
Making full utilisation of the synergies that exist among the various stages of industrial green production is beneficial to the realisation of the dual-carbon goal. However, the synergistic effects among the three stages of industrial green production have not yet been explored in [...] Read more.
Making full utilisation of the synergies that exist among the various stages of industrial green production is beneficial to the realisation of the dual-carbon goal. However, the synergistic effects among the three stages of industrial green production have not yet been explored in depth from a microscopic perspective. Based on the analytic hierarchy process, the entropy weighting method, the coupled synergy degree model, the spatial autocorrelation test, and the geographically weighted regression model (GWR), the spatiotemporal evolution characteristics and driving mechanism of the synergistic effects among the three stages of industrial green production were explored by utilising the relevant data of industrial enterprises in 30 provinces of China from 2012 to 2022. The results showed that the synergistic effect of industrial green production exhibited an upward trend over time, and displayed a regional distribution characteristic of decreasing from east to west. The spatial differences in the synergistic effects of industrial green production gradually narrowed and the number of provinces with high–high (H-H) agglomerations increased. The level of digital economy development, the urbanisation level, the optimisation of industrial structure, the level of green credit, and the intensity of environmental regulation were the main driving factors for the synergistic effects of industrial green production, and there were significant spatial differences. This study provides a basis for the formulation of differentiated regional green development policies from the perspective of synergizing the various stages of industrial green production. Full article
Show Figures

Figure 1

22 pages, 2483 KB  
Article
Carbon Footprint of Crop Rotation Systems and Mitigation Options for Net Zeroing Greenhouse Gas Balance in Farms of Central Brazil
by Eduardo Barretto de Figueiredo
AgriEngineering 2025, 7(8), 258; https://doi.org/10.3390/agriengineering7080258 - 11 Aug 2025
Viewed by 568
Abstract
Different crop production scenarios and crop rotation systems should be investigated with lower greenhouse gas (GHG) intensity levels, with it being possible to reach net-zero GHG emissions from grain production farms. This study was divided into three stages—the development of spreadsheets for data [...] Read more.
Different crop production scenarios and crop rotation systems should be investigated with lower greenhouse gas (GHG) intensity levels, with it being possible to reach net-zero GHG emissions from grain production farms. This study was divided into three stages—the development of spreadsheets for data acquisition for each crop rotation, calculations of GHG emissions based on IPCC methodologies and specific regional emission factors, and an analysis of the main emissions and sinks sources we evaluated, including the potential for soil and biomass carbon (C) sequestration to offset agricultural emissions. The system C footprints were 2413, 2209, and 2096 kg CO2eq ha−1 for farms K, M, and G, respectively, demanding estimated C sequestration (soil or biomass) rates of 657, 602, and 571 kg C ha−1 year−1 to offset all emissions of agricultural phases. Mitigating practices can reduce GHG emissions, but compensation via sequestration (soil or biomass C) shall be required to achieve zero GHG emissions. Reserving approximately 10–15% of the farm’s total agricultural production area to plant native trees or eucalyptus in marginal areas or even introducing crop–livestock–forest integration or crop–forest integration systems can offset the GHG emissions of the entire agricultural production phase, considering the potential for soil and biomass C sequestration, showing that it is a feasible option for producing C credit from the agricultural sector. Full article
Show Figures

Figure 1

21 pages, 1788 KB  
Article
Investigation, Prospects, and Economic Scenarios for the Use of Biochar in Small-Scale Agriculture in Tropical
by Vinicius John, Ana Rita de Oliveira Braga, Criscian Kellen Amaro de Oliveira Danielli, Heiriane Martins Sousa, Filipe Eduardo Danielli, Newton Paulo de Souza Falcão, João Guerra, Dimas José Lasmar and Cláudia S. C. Marques-dos-Santos
Agriculture 2025, 15(15), 1700; https://doi.org/10.3390/agriculture15151700 - 6 Aug 2025
Viewed by 636
Abstract
This study investigates the production and economic feasibility of biochar for smallholder and family farms in Central Amazonia, with potential implications for other tropical regions. The costs of construction of a prototype mobile kiln and biochar production were evaluated, using small-sized biomass from [...] Read more.
This study investigates the production and economic feasibility of biochar for smallholder and family farms in Central Amazonia, with potential implications for other tropical regions. The costs of construction of a prototype mobile kiln and biochar production were evaluated, using small-sized biomass from acai (Euterpe oleracea Mart.) agro-industrial residues as feedstock. The biochar produced was characterised in terms of its liming capacity (calcium carbonate equivalence, CaCO3eq), nutrient content via organic fertilisation methods, and ash analysis by ICP-OES. Field trials with cowpea assessed economic outcomes, as well scenarios of fractional biochar application and cost comparison between biochar production in the prototype kiln and a traditional earth-brick kiln. The prototype kiln showed production costs of USD 0.87–2.06 kg−1, whereas traditional kiln significantly reduced costs (USD 0.03–0.08 kg−1). Biochar application alone increased cowpea revenue by 34%, while combining biochar and lime raised cowpea revenues by up to 84.6%. Owing to high input costs and the low value of the crop, the control treatment generated greater net revenue compared to treatments using lime alone. Moreover, biochar produced in traditional kilns provided a 94% increase in net revenue compared to liming. The estimated externalities indicated that carbon credits represented the most significant potential source of income (USD 2217 ha−1). Finally, fractional biochar application in ten years can retain over 97% of soil carbon content, demonstrating potential for sustainable agriculture and carbon sequestration and a potential further motivation for farmers if integrated into carbon markets. Public policies and technological adaptations are essential for facilitating biochar adoption by small-scale tropical farmers. Full article
(This article belongs to the Special Issue Converting and Recycling of Agroforestry Residues)
Show Figures

Figure 1

32 pages, 5440 KB  
Article
Spatially Explicit Tactical Planning for Redwood Harvest Optimization Under Continuous Cover Forestry in New Zealand’s North Island
by Horacio E. Bown, Francesco Latterini, Rodolfo Picchio and Michael S. Watt
Forests 2025, 16(8), 1253; https://doi.org/10.3390/f16081253 - 1 Aug 2025
Viewed by 340
Abstract
Redwood (Sequoia sempervirens (Lamb. ex D. Don) Endl.) is a fast-growing, long-lived conifer native to a narrow coastal zone along the western seaboard of the United States. Redwood can accumulate very high amounts of carbon in plantation settings and continuous cover forestry [...] Read more.
Redwood (Sequoia sempervirens (Lamb. ex D. Don) Endl.) is a fast-growing, long-lived conifer native to a narrow coastal zone along the western seaboard of the United States. Redwood can accumulate very high amounts of carbon in plantation settings and continuous cover forestry (CCF) represents a highly profitable option, particularly for small-scale forest growers in the North Island of New Zealand. We evaluated the profitability of conceptual CCF regimes using two case study forests: Blue Mountain (109 ha, Taranaki Region, New Zealand) and Spring Creek (467 ha, Manawatu-Whanganui Region, New Zealand). We ran a strategic harvest scheduling model for both properties and used its results to guide a tactical-spatially explicit model harvesting small 0.7 ha units over a period that spanned 35 to 95 years after planting. The internal rates of return (IRRs) were 9.16 and 10.40% for Blue Mountain and Spring Creek, respectively, exceeding those considered robust for other forest species in New Zealand. The study showed that small owners could benefit from carbon revenue during the first 35 years after planting and then switch to a steady annual income from timber, maintaining a relatively constant carbon stock under a continuous cover forestry regime. Implementing adjacency constraints with a minimum green-up period of five years proved feasible. Although small coupes posed operational problems, which were linked to roading and harvesting, these issues were not insurmountable and could be managed with appropriate operational planning. Full article
(This article belongs to the Section Forest Operations and Engineering)
Show Figures

Figure 1

20 pages, 2327 KB  
Article
From Climate Liability to Market Opportunity: Valuing Carbon Sequestration and Storage Services in the Forest-Based Sector
by Attila Borovics, Éva Király, Péter Kottek, Gábor Illés and Endre Schiberna
Forests 2025, 16(8), 1251; https://doi.org/10.3390/f16081251 - 1 Aug 2025
Viewed by 561
Abstract
Ecosystem services—the benefits humans derive from nature—are foundational to environmental sustainability and economic well-being, with carbon sequestration and storage standing out as critical regulating services in the fight against climate change. This study presents a comprehensive financial valuation of the carbon sequestration, storage [...] Read more.
Ecosystem services—the benefits humans derive from nature—are foundational to environmental sustainability and economic well-being, with carbon sequestration and storage standing out as critical regulating services in the fight against climate change. This study presents a comprehensive financial valuation of the carbon sequestration, storage and product substitution ecosystem services provided by the Hungarian forest-based sector. Using a multi-scenario framework, four complementary valuation concepts are assessed: total carbon storage (biomass, soil, and harvested wood products), annual net sequestration, emissions avoided through material and energy substitution, and marketable carbon value under voluntary carbon market (VCM) and EU Carbon Removal Certification Framework (CRCF) mechanisms. Data sources include the National Forestry Database, the Hungarian Greenhouse Gas Inventory, and national estimates on substitution effects and soil carbon stocks. The total carbon stock of Hungarian forests is estimated at 1289 million tons of CO2 eq, corresponding to a theoretical climate liability value of over EUR 64 billion. Annual sequestration is valued at approximately 380 million EUR/year, while avoided emissions contribute an additional 453 million EUR/year in mitigation benefits. A comparative analysis of two mutually exclusive crediting strategies—improved forest management projects (IFMs) avoiding final harvesting versus long-term carbon storage through the use of harvested wood products—reveals that intensified harvesting for durable wood use offers higher revenue potential (up to 90 million EUR/year) than non-harvesting IFM scenarios. These findings highlight the dual role of forests as both carbon sinks and sources of climate-smart materials and call for policy frameworks that integrate substitution benefits and long-term storage opportunities in support of effective climate and bioeconomy strategies. Full article
(This article belongs to the Section Forest Economics, Policy, and Social Science)
Show Figures

Graphical abstract

23 pages, 2546 KB  
Article
Flexible Job-Shop Scheduling Integrating Carbon Cap-And-Trade Policy and Outsourcing Strategy
by Like Zhang, Wenpu Liu, Hua Wang, Guoqiang Shi, Qianwang Deng and Xinyu Yang
Sustainability 2025, 17(15), 6978; https://doi.org/10.3390/su17156978 - 31 Jul 2025
Viewed by 303
Abstract
Carbon cap-and-trade is a practical policy in guiding manufacturers to produce economic and environmental production plans. However, previous studies on carbon cap-and-trade are from a macro level to guide manufacturers to make production plans, rather than from a perspective of specific production scheduling, [...] Read more.
Carbon cap-and-trade is a practical policy in guiding manufacturers to produce economic and environmental production plans. However, previous studies on carbon cap-and-trade are from a macro level to guide manufacturers to make production plans, rather than from a perspective of specific production scheduling, which leads to a lack of theoretical guidance for manufacturers to develop reasonable production scheduling schemes for specific production orders. This article investigates a specific scheduling problem in a flexible job-shop environment that considers the carbon cap-and-trade policy, aiming to provide guidance for specific production scheduling (i.e., resource allocation). In the proposed problem, carbon emissions have an upper limit. A penalty will be generated if the emissions overpass the predetermined cap. To satisfy the carbon emission cap, the manufacturer can trade carbon credits or adopt outsourcing strategy, that is, outsourcing partial orders to partners at the expense of outsourcing costs. To solve the proposed model, a novel and efficient memetic algorithm (NEMA) is proposed. An initialization method and four local search operators are developed to enhance the search ability. Numerous experiments are conducted and the results validate that NEMA is a superior algorithm in both solution quality and efficiency. Full article
Show Figures

Figure 1

17 pages, 594 KB  
Article
Diversifying Rural Economies: Identifying Factors That Discourage Primary Producers from Engaging in Emerging Carbon and Environmental Offsetting Markets in Queensland, Australia
by Lila Singh-Peterson, Fynn De Daunton, Andrew Drysdale, Lorinda Otto, Wim Linström and Ben Lyons
Sustainability 2025, 17(15), 6847; https://doi.org/10.3390/su17156847 - 28 Jul 2025
Viewed by 421
Abstract
Commitments to carbon neutrality at both international and national levels have spurred the development of market-based mechanisms that incentivize low-carbon technologies while penalizing emissions-intensive activities. These policies have wide ranging impacts for the Australian agricultural sector, and associated rural communities, where the majority [...] Read more.
Commitments to carbon neutrality at both international and national levels have spurred the development of market-based mechanisms that incentivize low-carbon technologies while penalizing emissions-intensive activities. These policies have wide ranging impacts for the Australian agricultural sector, and associated rural communities, where the majority of carbon credits and biodiversity credits are sourced in Australia. Undeniably, the introduction of carbon and environmental markets has created the opportunity for an expansion and diversification of local, rural economies beyond a traditional agricultural base. However, there is much complexity for the agricultural sector to navigate as environmental markets intersect and compete with food and fiber livelihoods, and entrenched ideologies of rural identity and purpose. As carbon and environmental markets focused on primary producers have expanded rapidly, there is little understanding of the associated situated and relational impacts for farming households and rural communities. Nor has there been much work to identify the barriers to engagement. This study explores these tensions through qualitative research in Stanthorpe and Roma, Queensland, offering insights into the barriers and benefits of market engagement. The findings inform policy development aimed at balancing climate goals with agricultural sustainability and rural community resilience. Full article
Show Figures

Figure 1

18 pages, 296 KB  
Perspective
Integrating Community Well-Being into Natural Climate Solutions: A Framework for Enhanced Verification Standards and Project Permanence
by Beth Allgood, John Waugh, Craig A. Talmage, Dehara Weeraman and Laura Musikanski
Reg. Sci. Environ. Econ. 2025, 2(3), 22; https://doi.org/10.3390/rsee2030022 - 25 Jul 2025
Viewed by 473
Abstract
Natural Climate Solutions (NCSs) represent a critical tool for addressing climate change, yet their long-term success is threatened by inadequate consideration of community impacts in current verification standards. While Article 6 of the Paris Agreement establishes rigorous requirements for carbon sequestration and emission [...] Read more.
Natural Climate Solutions (NCSs) represent a critical tool for addressing climate change, yet their long-term success is threatened by inadequate consideration of community impacts in current verification standards. While Article 6 of the Paris Agreement establishes rigorous requirements for carbon sequestration and emission avoidance verification, existing standards lack comprehensive frameworks for assessing and ensuring community well-being, undermining project permanence and market confidence. We developed an integrated framework combining community well-being assessment with verification requirements through analysis of Article 6 implementation requirements, existing voluntary carbon offset credit standards, emerging national standards, and community engagement mechanisms. Our analysis yielded a framework establishing five core tenets for community engagement (inclusion, engagement, contribution, ownership, and well-being) and nine essential well-being assessment domains, each with specific measurable indicators. The framework provides clear verification alignment protocols that integrate with existing standards while maintaining rigorous requirements and offering practical implementation guidance. Integration of community well-being assessment into NCS verification standards strengthens project permanence while meeting verification requirements, providing practical tools for standards bodies, project developers, and market participants to ensure both environmental and social benefits. As Article 6 mechanisms mature, this integration becomes increasingly crucial for project success. Full article
27 pages, 2736 KB  
Article
Estimation of Tree Diameter at Breast Height (DBH) and Biomass from Allometric Models Using LiDAR Data: A Case of the Lake Broadwater Forest in Southeast Queensland, Australia
by Zibonele Mhlaba Bhebhe, Xiaoye Liu, Zhenyu Zhang and Dev Raj Paudyal
Remote Sens. 2025, 17(14), 2523; https://doi.org/10.3390/rs17142523 - 20 Jul 2025
Viewed by 1183
Abstract
Light Detection and Ranging (LiDAR) provides three-dimensional information that can be used to extract tree parameter measurements such as height (H), canopy volume (CV), canopy diameter (CD), canopy area (CA), and tree stand density. LiDAR data does not directly give diameter at breast [...] Read more.
Light Detection and Ranging (LiDAR) provides three-dimensional information that can be used to extract tree parameter measurements such as height (H), canopy volume (CV), canopy diameter (CD), canopy area (CA), and tree stand density. LiDAR data does not directly give diameter at breast height (DBH), an important input into allometric equations to estimate biomass. The main objective of this study is to estimate tree DBH using existing allometric models. Specifically, it compares three global DBH pantropical models to calculate DBH and to estimate the aboveground biomass (AGB) of the Lake Broadwater Forest located in Southeast (SE) Queensland, Australia. LiDAR data collected in mid-2022 was used to test these models, with field validation data collected at the beginning of 2024. The three DBH estimation models—the Jucker model, Gonzalez-Benecke model 1, and Gonzalez-Benecke model 2—all used tree H, and the Jucker and Gonzalez-Benecke model 2 additionally used CD and CA, respectively. Model performance was assessed using five statistical metrics: root mean squared error (RMSE), mean absolute error (MAE), mean absolute percentage error (MAPE), percentage bias (MBias), and the coefficient of determination (R2). The Jucker model was the best-performing model, followed by Gonzalez-Benecke model 2 and Gonzalez-Benecke model 1. The Jucker model had an RMSE of 8.7 cm, an MAE of −13.54 cm, an MAPE of 7%, an MBias of 13.73 cm, and an R2 of 0.9005. The Chave AGB model was used to estimate the AGB at the tree, plot, and per hectare levels using the Jucker model-calculated DBH and the field-measured DBH. AGB was used to estimate total biomass, dry weight, carbon (C), and carbon dioxide (CO2) sequestered per hectare. The Lake Broadwater Forest was estimated to have an AGB of 161.5 Mg/ha in 2022, a Total C of 65.6 Mg/ha, and a CO2 sequestered of 240.7 Mg/ha in 2022. These findings highlight the substantial carbon storage potential of the Lake Broadwater Forest, reinforcing the opportunity for landholders to participate in the carbon credit systems, which offer financial benefits and enable contributions to carbon mitigation programs, thereby helping to meet national and global carbon reduction targets. Full article
Show Figures

Graphical abstract

31 pages, 1708 KB  
Systematic Review
Circular Economy and Water Sustainability: Systematic Review of Water Management Technologies and Strategies (2018–2024)
by Gary Christiam Farfán Chilicaus, Luis Edgardo Cruz Salinas, Pedro Manuel Silva León, Danny Alonso Lizarzaburu Aguinaga, Persi Vera Zelada, Luis Alberto Vera Zelada, Elmer Ovidio Luque Luque, Rolando Licapa Redolfo and Emma Verónica Ramos Farroñán
Sustainability 2025, 17(14), 6544; https://doi.org/10.3390/su17146544 - 17 Jul 2025
Cited by 1 | Viewed by 1015
Abstract
The transition toward a circular water economy addresses accelerating water scarcity and pollution. A PRISMA-2020 systematic review of 50 peer-reviewed articles (January 2018–April 2024) mapped current technologies and management strategies, seeking patterns, barriers, and critical bottlenecks. Bibliometric analysis revealed the following three dominant [...] Read more.
The transition toward a circular water economy addresses accelerating water scarcity and pollution. A PRISMA-2020 systematic review of 50 peer-reviewed articles (January 2018–April 2024) mapped current technologies and management strategies, seeking patterns, barriers, and critical bottlenecks. Bibliometric analysis revealed the following three dominant patterns: (i) rapid diffusion of membrane bioreactors, constructed wetlands, and advanced oxidation processes; (ii) research geographically concentrated in Asia and the European Union; (iii) industry’s marked preference for by-product valorization. Key barriers—high energy costs, fragmented regulatory frameworks, and low social acceptance—converge as critical constraints during scale-up. The following three practical action lines emerge: (1) adopt progressive tariffs and targeted tax credits that internalize environmental externalities; (2) harmonize water-reuse regulations with comparable circularity metrics; (3) create multi-actor platforms that co-design projects, boosting local legitimacy. These findings provide policymakers and water-sector practitioners with a clear roadmap for accelerating Sustainable Development Goals 6, 9, and 12 through circular, inclusive, low-carbon water systems. Full article
Show Figures

Figure 1

22 pages, 1515 KB  
Article
Techno-Economic Analysis of Flare Gas to Hydrogen: A Lean and Green Sustainability Approach
by Felister Dibia, Oghenovo Okpako, Jovana Radulovic, Hom Nath Dhakal and Chinedu Dibia
Appl. Sci. 2025, 15(14), 7839; https://doi.org/10.3390/app15147839 - 13 Jul 2025
Viewed by 769
Abstract
The increasing demand for hydrogen has made it a promising alternative for decarbonizing industries and reducing CO2 emissions. Although mainly produced through the gray pathway, the integration of carbon capture and storage (CCS) reduces the CO2 emissions. This study presents a [...] Read more.
The increasing demand for hydrogen has made it a promising alternative for decarbonizing industries and reducing CO2 emissions. Although mainly produced through the gray pathway, the integration of carbon capture and storage (CCS) reduces the CO2 emissions. This study presents a sustainability method that uses flare gas for hydrogen production through steam methane reforming (SMR) with CCS, supported by a techno-economic analysis. Data Envelopment Analysis (DEA) was used to evaluate the oil company’s efficiency, and inverse DEA/sensitivity analysis identified maximum flare gas reduction, which was modeled in Aspen HYSYS V14. Subsequently, an economic evaluation was performed to determine the levelized cost of hydrogen (LCOH) and the cost–benefit ratio (CBR) for Nigeria. The CBR results were 2.15 (payback of 4.11 years with carbon credit) and 1.96 (payback of 4.55 years without carbon credit), indicating strong economic feasibility. These findings promote a practical approach for waste reduction, aiding Nigeria’s transition to a circular, low-carbon economy, and demonstrate a positive relationship between lean and green strategies in the petroleum sector. Full article
(This article belongs to the Section Green Sustainable Science and Technology)
Show Figures

Figure 1

34 pages, 2697 KB  
Article
Pricing and Emission Reduction Strategies of Heterogeneous Automakers Under the “Dual-Credit + Carbon Cap-and-Trade” Policy Scenario
by Chenxu Wu, Yuxiang Zhang, Junwei Zhao, Chao Wang and Weide Chun
Mathematics 2025, 13(14), 2262; https://doi.org/10.3390/math13142262 - 13 Jul 2025
Viewed by 401
Abstract
Against the backdrop of increasingly severe global climate change, the automotive industry, as a carbon-intensive sector, has found its low-carbon transformation crucial for achieving the “double carbon” goals. This paper constructs manufacturer decision-making models under an oligopolistic market scenario for the single dual-credit [...] Read more.
Against the backdrop of increasingly severe global climate change, the automotive industry, as a carbon-intensive sector, has found its low-carbon transformation crucial for achieving the “double carbon” goals. This paper constructs manufacturer decision-making models under an oligopolistic market scenario for the single dual-credit policy and the “dual-credit + carbon cap-and-trade” policy, revealing the nonlinear impacts of new energy vehicle (NEV) credit trading prices, carbon trading prices, and credit ratio requirements on manufacturers’ pricing, emission reduction effort levels, and profits. The results indicate the following: (1) Under the “carbon cap-and-trade + dual-credit” policy, manufacturers can balance emission reduction costs and NEV production via the carbon trading market to maximize profits, with lower emission reduction effort levels than under the single dual-credit policy. (2) A rise in credit trading prices prompts hybrid manufacturers (producing both fuel vehicles and NEVs) to increase NEV production and reduce fuel vehicle output; higher NEV credit ratio requirements raise fuel vehicle production costs and prices, suppressing consumer demand. (3) An increase in carbon trading prices raises production costs for both fuel vehicles and NEVs, leading to decreased market demand; hybrid manufacturers reduce emission reduction efforts, while others transfer costs through price hikes to boost profits. (4) Hybrid manufacturers face high carbon emission costs due to excessive actual fuel consumption, driving them to enhance emission reduction efforts and promote low-carbon technological innovation. Full article
Show Figures

Figure 1

37 pages, 613 KB  
Article
The Impact of Climate Change Risk on Corporate Debt Financing Capacity: A Moderating Perspective Based on Carbon Emissions
by Ruizhi Liu, Jiajia Li and Mark Wu
Sustainability 2025, 17(14), 6276; https://doi.org/10.3390/su17146276 - 9 Jul 2025
Viewed by 1264
Abstract
Climate change risk has significant impacts on corporate financial activities. Using firm-level data from A-share listed companies in China from 2010 to 2022, we examine how climate risk affects corporate debt financing capacity. We find that climate change risk significantly weakens firms’ ability [...] Read more.
Climate change risk has significant impacts on corporate financial activities. Using firm-level data from A-share listed companies in China from 2010 to 2022, we examine how climate risk affects corporate debt financing capacity. We find that climate change risk significantly weakens firms’ ability to raise debt, leading to lower leverage and higher financing costs. These results remain robust across various checks for endogeneity and alternative specifications. We also show that reducing corporate carbon emission intensity can mitigate the negative impact of climate risk on debt financing, suggesting that supply-side credit policies are more effective than demand-side capital structure choices. Furthermore, we identify three channels through which climate risk impairs debt capacity: reduced competitiveness, increased default risk, and diminished resilience. Our heterogeneity analysis reveals that these adverse effects are more pronounced for non-state-owned firms, firms with weaker internal controls, and companies in highly financialized regions, and during periods of heightened environmental uncertainty. We also apply textual analysis and machine learning to the measurement of climate change risks, partially mitigating the geographic biases and single-dimensional shortcomings inherent in macro-level indicators, thus enriching the quantitative research on climate change risks. These findings provide valuable insights for policymakers and financial institutions in promoting corporate green transition, guiding capital allocation, and supporting sustainable development. Full article
Show Figures

Figure 1

Back to TopTop