Sign in to use this feature.

Years

Between: -

Subjects

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Journals

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Article Types

Countries / Regions

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Search Results (733)

Search Parameters:
Keywords = cascade reaction

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
12 pages, 1615 KB  
Article
Synthesis of Thermal-Stable Aviation Fuel Additives with 4-Hydroxy-2-butanone and Cycloketones
by Anran Zhu, Zhufan Zou, Yu Cong, Yinghua Yin and Ning Li
Catalysts 2025, 15(9), 826; https://doi.org/10.3390/catal15090826 (registering DOI) - 1 Sep 2025
Abstract
A novel two-step strategy was developed for the efficient synthesis of decalin and octahydroindene from lignocellulose-derived platform compounds. In the first step, bicyclic intermediates were directly generated via a cascade dehydration/Robinson annulation of 4-hydroxy-2-butanone with cyclohexanone (or cyclopentanone). Among the evaluated catalysts, CaO [...] Read more.
A novel two-step strategy was developed for the efficient synthesis of decalin and octahydroindene from lignocellulose-derived platform compounds. In the first step, bicyclic intermediates were directly generated via a cascade dehydration/Robinson annulation of 4-hydroxy-2-butanone with cyclohexanone (or cyclopentanone). Among the evaluated catalysts, CaO demonstrated the highest activity and selectivity. Based on CO2-TPD results, the excellent performance of CaO can be rationalized by its proper basicity. In the second step, these intermediates were selectively hydrodeoxygenated to decalin (or octahydroindene) over Ni/H-ZSM-5 catalyst. Under the investigated reaction conditions, ~90% overall yields of decalin and octahydroindene were achieved. This work provides a viable strategy for the selective conversion of lignocellulose-derived platform compounds to the additives for improving the thermal stability of aviation fuel. Full article
Show Figures

Graphical abstract

12 pages, 2157 KB  
Article
Novel Biosynthetic Pathway for Nicotinamide Mononucleotide Production from Cytidine in Escherichia coli
by Jiaxiang Yuan, Rongchen Feng, Mingming Liu, Xin Wang, Kequan Chen and Sheng Xu
Catalysts 2025, 15(9), 816; https://doi.org/10.3390/catal15090816 - 27 Aug 2025
Viewed by 192
Abstract
Nicotinamide mononucleotide, known as NMN, is an important nicotinamide adenine dinucleotide (NAD+) precursor. It is integral in cellular metabolism, energy generation, and processes associated with aging. Since NMN provides healthy value, it becomes a major focus for the biotechnological industry. This [...] Read more.
Nicotinamide mononucleotide, known as NMN, is an important nicotinamide adenine dinucleotide (NAD+) precursor. It is integral in cellular metabolism, energy generation, and processes associated with aging. Since NMN provides healthy value, it becomes a major focus for the biotechnological industry. This study presents a new biosynthetic pathway for producing NMN without limits on intracellular PRPP (5′-phosphoribosyl pyrophosphate) metabolic flux. The route started by converting cytidine into 1-phosphoribose via pyrimidine-nucleoside phosphorylase (PyNP), after transforming into nicotinamide riboside (NR) through either purine-nucleoside phosphorylase (XapA) or nicotinate riboside kinase (NRK). NR was phosphorylated by NRK in the presence of nicotinamide (NAM) to produce NMN. We established an in vitro enzyme activity verification system for the feasibility check. The optimization of multienzyme cascade reactions was figured out for the NMN biosynthesis. Finally, the enzymes of PyNP and NRK were expressed in the cytidine-producing strain; we established a de novo biosynthesis pathway from glucose to NMN, achieving a production titer of 33.71 mg/L at a shake-flask scale. Full article
(This article belongs to the Section Biocatalysis)
Show Figures

Graphical abstract

18 pages, 5657 KB  
Article
The Effects of the Light Spectral Composition on the Development of Olive Tree Varieties Mediated by Photoreceptors
by Ivano Forgione, Ida Quattromano, Teresa Maria Rosaria Regina, Amelia Salimonti and Fabrizio Carbone
Int. J. Mol. Sci. 2025, 26(17), 8319; https://doi.org/10.3390/ijms26178319 - 27 Aug 2025
Viewed by 231
Abstract
Plants have the ability to perceive a wide range of light spectra, from which they derive not only the energy required for photosynthesis but also a variety of environmental cues and signals mediated by specific photoreceptors that trigger a cascade of biochemical reactions [...] Read more.
Plants have the ability to perceive a wide range of light spectra, from which they derive not only the energy required for photosynthesis but also a variety of environmental cues and signals mediated by specific photoreceptors that trigger a cascade of biochemical reactions essential for their development. The olive tree (Olea europaea L.) is a woody species for which, despite its agronomic and economic relevance, the influence of light on its development remains poorly understood. The present study, a combined approach was employed, involving the phenotyping of 10 different cultivars exposed exclusively to red light (RL) and blue light (BL) for a period of two months, in addition to the monitoring of expression profiles of 10 photoreceptor-encoding genes in two of the cultivars that exhibited the most contrasting responses to the different light conditions. Our results revealed a correlation between the expression of specific genes and the differential response to exclusive exposure to the two light spectra, highlighting a generally enhanced photosynthetic activity of nearly all cultivars to blue light (BL) and, conversely, a negative response to red light (RL). Taken together, our data, by elucidating the response of the olive to specific light spectra and the underlying molecular mechanisms, pave the way for further studies on these traits, which could be useful for the improvement of this species. Full article
(This article belongs to the Special Issue Molecular Advances in Olive and Its Derivatives)
Show Figures

Figure 1

16 pages, 30013 KB  
Article
Real-Time Cascaded State Estimation Framework on Lie Groups for Legged Robots Using Proprioception
by Botao Liu, Fei Meng, Zhihao Zhang, Maosen Wang, Tianqi Wang, Xuechao Chen and Zhangguo Yu
Biomimetics 2025, 10(8), 527; https://doi.org/10.3390/biomimetics10080527 - 12 Aug 2025
Viewed by 425
Abstract
This paper proposes a cascaded state estimation framework based on proprioception for robots. A generalized-momentum-based Kalman filter (GMKF) estimates the ground reaction forces at the feet through joint torques, which are then input into an error-state Kalman filter (ESKF) to obtain the robot’s [...] Read more.
This paper proposes a cascaded state estimation framework based on proprioception for robots. A generalized-momentum-based Kalman filter (GMKF) estimates the ground reaction forces at the feet through joint torques, which are then input into an error-state Kalman filter (ESKF) to obtain the robot’s prior state estimate. The system’s dynamic equations on the Lie group are parameterized using canonical coordinates of the first kind, and variations in the tangent space are mapped to the Lie algebra via the inverse of the right trivialization. The resulting parameterized system state equations, combined with the prior estimates and a sliding window, are formulated as a moving horizon estimation (MHE) problem, which is ultimately solved using a parallel real-time iteration (Para-RTI) technique. The proposed framework operates on manifolds, providing a tightly coupled estimation with higher accuracy and real-time performance, and is better suited to handle the impact noise during foot–ground contact in legged robots. Experiments were conducted on the BQR3 robot, and comparisons with measurements from a Vicon motion capture system validate the superiority and effectiveness of the proposed method. Full article
(This article belongs to the Section Locomotion and Bioinspired Robotics)
Show Figures

Figure 1

17 pages, 5360 KB  
Article
Experimental and Numerical Study of the Impact of Pressure During the Pyrolysis of Diethyl Carbonate and Ethyl Methyl Carbonate
by Claire M. Grégoire, Eric L. Petersen and Olivier Mathieu
Batteries 2025, 11(8), 303; https://doi.org/10.3390/batteries11080303 - 8 Aug 2025
Viewed by 373
Abstract
During a thermal runaway, Lithium-ion battery cells are subjected to a large increase in temperature, which will vaporize and potentially thermally degrade their liquid electrolyte. The formation of gas in the battery cell will increase the pressure until the flammable gases vent and [...] Read more.
During a thermal runaway, Lithium-ion battery cells are subjected to a large increase in temperature, which will vaporize and potentially thermally degrade their liquid electrolyte. The formation of gas in the battery cell will increase the pressure until the flammable gases vent and potentially lead to a fire incident. While the pyrolysis chemistry of the electrolyte components has been studied near atmospheric pressure, the effect of pressure has not been investigated. This study was undertaken to better understand the effect of pressure on the thermal dissociation of two common linear electrolyte components, diethyl carbonate (DEC) and ethyl methyl carbonate (EMC). The pyrolysis of DEC and EMC was studied in the gas phase, in 99.75% He/Ar, and was carried out at high temperatures and for pressures near 5.5 atm. The time-resolved CO formation was measured using a quantum cascade laser, providing a unique experimental dataset. A detailed chemical kinetics analysis was performed to understand the effect of pressure on DEC and EMC, with CO time-history results obtained in similar conditions at near-atmospheric pressure for DEC and EMC serving as baselines for comparison. Numerical predictions using detailed chemical kinetics mechanisms from the literature were carried out, and reaction pathways at different pressures were highlighted to emphasize the effect of pressure on the pyrolysis chemistry. Full article
(This article belongs to the Special Issue Battery Thermal Performance and Management: Advances and Challenges)
Show Figures

Figure 1

39 pages, 5561 KB  
Article
Multi-Component Synthesis of New Fluorinated-Pyrrolo[3,4-b]pyridin-5-ones Containing the 4-Amino-7-chloroquinoline Moiety and In Vitro–In Silico Studies Against Human SARS-CoV-2
by Roberto E. Blanco-Carapia, Ricardo Hernández-López, Sofía L. Alcaraz-Estrada, Rosa Elena Sarmiento-Silva, Montserrat Elemi García-Hernández, Nancy Viridiana Estrada-Toledo, Gerardo Padilla-Bernal, Leonardo D. Herrera-Zúñiga, Jorge Garza, Rubicelia Vargas, Eduardo González-Zamora and Alejandro Islas-Jácome
Int. J. Mol. Sci. 2025, 26(15), 7651; https://doi.org/10.3390/ijms26157651 - 7 Aug 2025
Viewed by 486
Abstract
A one-pot synthetic methodology that combines an Ugi-Zhu three-component reaction (UZ-3CR) with a cascade sequence (intermolecular aza Diels–Alder cycloaddition/intramolecular N-acylation/decarboxylation/dehydration) using microwave-heating conditions, ytterbium (III) triflate (Yb(OTf)3) as the catalyst, and chlorobenzene (for the first time in a multi-component reaction [...] Read more.
A one-pot synthetic methodology that combines an Ugi-Zhu three-component reaction (UZ-3CR) with a cascade sequence (intermolecular aza Diels–Alder cycloaddition/intramolecular N-acylation/decarboxylation/dehydration) using microwave-heating conditions, ytterbium (III) triflate (Yb(OTf)3) as the catalyst, and chlorobenzene (for the first time in a multi-component reaction (MCR)) as the solvent, was developed to synthesize twelve new fluorinated-pyrrolo[3,4-b]pyridin-5-ones containing a 4-amino-7-chloroquinoline moiety, yielding 50–77% in 95 min per product, with associated atom economies around 88%, also per product. Additionally, by in vitro tests, compounds 19d and 19i were found to effectively stop early SARS-CoV-2 replication, IC50 = 6.74 µM and 5.29 µM, at 0 h and 1 h respectively, while cell viability remained above 90% relative to the control vehicle at 10 µM. Additional computer-based studies revealed that the most active compounds formed strong favorable interactions with important viral proteins (Mpro, NTDα and NTDo) of coronavirus, supporting a two-pronged approach that affects both how the virus infects the cells and how it replicates its genetic material. Finally, quantum chemistry analyses of non-covalent interactions were performed from Density-Functional Theory (DFT) to better understand how the active compounds hit the virus. Full article
(This article belongs to the Special Issue New Advances in Molecular Research of Coronavirus)
Show Figures

Graphical abstract

14 pages, 1415 KB  
Article
Effects of Different Packaging on the Purine Content and Key Enzymes of Refrigerated Yellow Croaker (Larimichthys crocea)
by Tiansheng Xu, Wenxuan Lu, Bohan Chen, Dapeng Li and Jing Xie
Foods 2025, 14(15), 2732; https://doi.org/10.3390/foods14152732 - 5 Aug 2025
Viewed by 430
Abstract
In this study, we investigated the effects of air packaging, vacuum packaging and modified atmosphere packaging (CO2/N2: 80/20) on the purine metabolism and enzyme activities of refrigerated large yellow croakers. The results showed that modified atmosphere packaging significantly inhibited [...] Read more.
In this study, we investigated the effects of air packaging, vacuum packaging and modified atmosphere packaging (CO2/N2: 80/20) on the purine metabolism and enzyme activities of refrigerated large yellow croakers. The results showed that modified atmosphere packaging significantly inhibited microbial growth, delayed adenosine triphosphate degradation and maintained higher IMP content (1.93 μmol/g on day 21) compared to the air packaging group (2.82 μmol/g on day 12). The total purine content increased with storage time, with hypoxanthine content increasing significantly and occupying most of the total content, which was the key factor for the elevation of purine, followed by adenine content showing a significant decreasing trend. Hypoxanthine accumulation was significantly suppressed in the modified atmosphere packaging group (2.31 μmol/g on day 18), which was much lower than that in the air packaging group (5.64 μmol/g), whereas xanthine and guanine did not show significant differences among the groups. The key enzymes xanthine oxidase and purine nucleoside phosphorylase were much less active in modified atmosphere packaging, effectively delaying the cascade reaction of inosine monophosphate → hypoxanthine → xanthine. The study confirmed that modified atmosphere packaging intervenes in purine metabolism through enzyme activity regulation, providing a theoretical basis for the preservation of low purine aquatic products. Full article
Show Figures

Figure 1

27 pages, 3653 KB  
Review
Design and Application of Atomically Dispersed Transition Metal–Carbon Cathodes for Triggering Cascade Oxygen Reduction in Wastewater Treatment
by Shengnan Huang, Guangshuo Lyu, Chuhui Zhang, Chunye Lin and Hefa Cheng
Molecules 2025, 30(15), 3258; https://doi.org/10.3390/molecules30153258 - 4 Aug 2025
Viewed by 423
Abstract
The precise synthesis of non-precious metal single-atom electrocatalysts is crucial for enhancing the yield of highly active reactive oxygen species (ROSs). Conventional oxidation methods, such as Fenton or NaClO processes, suffer from poor efficiency, high energy demand, and secondary pollution. In contrast, heterogeneous [...] Read more.
The precise synthesis of non-precious metal single-atom electrocatalysts is crucial for enhancing the yield of highly active reactive oxygen species (ROSs). Conventional oxidation methods, such as Fenton or NaClO processes, suffer from poor efficiency, high energy demand, and secondary pollution. In contrast, heterogeneous electro-Fenton systems based on cascade oxygen reduction reactions (ORRs), which require low operational voltage and cause pollutant degradation through both direct electron transfer and ROS generation, have emerged as a promising alternative. Recent studies showed that carbon cathodes decorated with atomically dispersed transition metals can effectively integrate the excellent conductivity of carbon supports with the tunable surface chemistry of metal centers. However, the electronic structure of active sites intrinsically hinders the simultaneous achievement of high activity and selectivity in cascade ORRs. This review summarizes the advances, specifically from 2020 to 2025, in understanding the mechanism of cascade ORRs and the synthesis of transition metal-based single-atom catalysts in cathode electrocatalysis for efficient wastewater treatment, and discusses the key factors affecting treatment performance. While employing atomically engineered cathodes is a promising approach for energy-efficient wastewater treatment, future efforts should overcome the barriers in active site control and long-term stability of the catalysts to fully exploit their potential in addressing water pollution challenges. Full article
Show Figures

Graphical abstract

12 pages, 745 KB  
Article
Effect of Recombinant NGF Encapsulated in Chitosan on Rabbit Sperm Traits and Main Metabolic Pathways
by Luigia Bosa, Simona Mattioli, Anna Maria Stabile, Desirée Bartolini, Alessia Tognoloni, Alessandra Pistilli, Mariangela Ruggirello, Mario Rende, Silvia Gimeno-Martos, Daniela Jordán-Rodríguez, Maria Arias-Álvarez, Pilar García Rebollar, Rosa M. García-García and Cesare Castellini
Biology 2025, 14(8), 974; https://doi.org/10.3390/biology14080974 - 1 Aug 2025
Viewed by 281
Abstract
The aim of this study was to analyze how recombinant rabbit NGF (Nerve Growth Factor) encapsulated in chitosan (rrβNGFch) affects sperm viability, motility, capacitation, acrosome reaction (AR), kinetic traits, and apoptosis after 30 min and 2 h of storage. Specific intracellular signaling pathways [...] Read more.
The aim of this study was to analyze how recombinant rabbit NGF (Nerve Growth Factor) encapsulated in chitosan (rrβNGFch) affects sperm viability, motility, capacitation, acrosome reaction (AR), kinetic traits, and apoptosis after 30 min and 2 h of storage. Specific intracellular signaling pathways associated with either cell survival, such as protein kinase B (AKT) and extracellular signal-regulated kinases 1/2 (ERK1/2), or programmed cell death, such as c-Jun N-terminal kinase (JNK), were also analyzed. The results confirmed the effect of rrβNGFch on capacitation and AR, whereas a longer storage time (2 h) decreased all qualitative sperm traits. AKT and JNK did not show treatment-dependent activation and lacked a correlation with functional traits, as shown by ERK1/2. These findings suggest that rrβNGFch may promote the functional activation of sperm cells, particularly during early incubation. The increase in capacitation and AR was not linked to significant changes in pathways related to cell survival or death, indicating a specific action of the treatment. In contrast, prolonged storage negatively affected all sperm parameters. ERK1/2 activation correlated with capacitation, AR, and apoptosis, supporting its role as an NGF downstream mediator. Further studies should analyze other molecular mechanisms of sperm and the potential applications of NGF in assisted reproduction. Full article
(This article belongs to the Section Developmental and Reproductive Biology)
Show Figures

Graphical abstract

14 pages, 2022 KB  
Article
Photo-Biocatalytic One-Pot Cascade Reaction for the Asymmetric Synthesis of Hydroxysulfone Compounds
by Xuebin Qiao, Qianqian Pei, Yihang Dai, Lei Wang and Zhi Wang
Catalysts 2025, 15(8), 733; https://doi.org/10.3390/catal15080733 - 1 Aug 2025
Viewed by 528
Abstract
Asymmetric synthesis of chiral hydroxysulfones, key pharmaceutical intermediates, is challenging. We report an efficient synthesis from readily available materials via a one-pot photo-biocatalytic cascade reaction in aqueous conditions, utilizing visible light as an energy source. This sustainable process achieves up to 84% yields [...] Read more.
Asymmetric synthesis of chiral hydroxysulfones, key pharmaceutical intermediates, is challenging. We report an efficient synthesis from readily available materials via a one-pot photo-biocatalytic cascade reaction in aqueous conditions, utilizing visible light as an energy source. This sustainable process achieves up to 84% yields and 99% ee. Engineered ketoreductase produces R-configured products with high conversion and enantioselectivity across diverse substrates. Molecular dynamics (MD) simulations explored enzyme–substrate interactions and their influence on reaction activity and stereoselectivity. Full article
(This article belongs to the Section Biocatalysis)
Show Figures

Graphical abstract

13 pages, 1417 KB  
Review
A Comprehensive Evaluation of Microbial Synergistic Metabolic Mechanisms and Health Benefits in Kombucha Fermentation: A Review
by Xinyao Li, Norzin Tso, Shuaishuai Huang, Junwei Wang, Yonghong Zhou and Ruojin Liu
Biology 2025, 14(8), 952; https://doi.org/10.3390/biology14080952 - 28 Jul 2025
Viewed by 659
Abstract
Kombucha, a traditional fermented beverage, has become an important topic in global health beverage research due to its potential health benefits. The aim of this review is to integrate the existing literature and analyze the interactions among microbial communities during the fermentation process [...] Read more.
Kombucha, a traditional fermented beverage, has become an important topic in global health beverage research due to its potential health benefits. The aim of this review is to integrate the existing literature and analyze the interactions among microbial communities during the fermentation process of kombucha, especially how Saccharomyces, Acetobacter, and Lactobacillus generate bioactive components with health benefits through the cascade reaction in sugar metabolism–ethanol oxidation–organic acid accumulation. We also focus on the effects of fermentation conditions (e.g., time, temperature, and strain) on the microbial community structure and metabolic pathways, as well as their effects on the bioactive components and quality of kombucha microbiota (the microbial community in kombucha). By combing and analyzing the existing studies, this review provides an important theoretical basis for the optimization of the fermentation process, enhancement of health benefits, and development of functional beverages of kombucha microbiota, as well as new ideas for future research directions. Full article
Show Figures

Graphical abstract

29 pages, 3084 KB  
Article
The Cascade Transformation of Furfural to Cyclopentanone: A Critical Evaluation Concerning Feasible Process Development
by Christian A. M. R. van Slagmaat
ChemEngineering 2025, 9(4), 74; https://doi.org/10.3390/chemengineering9040074 - 19 Jul 2025
Viewed by 599
Abstract
Furfural is a fascinating bio-based platform molecule that can be converted into useful cyclic compounds, among others. In this work, the hydrogenative rearrangement-dehydration of furfural towards cyclopentanone using a commercially available Pt/C catalyst was investigated in terms of its reaction performance to assess [...] Read more.
Furfural is a fascinating bio-based platform molecule that can be converted into useful cyclic compounds, among others. In this work, the hydrogenative rearrangement-dehydration of furfural towards cyclopentanone using a commercially available Pt/C catalyst was investigated in terms of its reaction performance to assess its feasibility as an industrial process. However, acquiring an acceptable cyclopentanone yield proved very difficult, and the reaction was constrained by unforeseen parameters, such as the relative liquid volume in the reactor and the substrate concentration. Most strikingly, the sacrificial formation of furanoic oligomers that precipitated onto the catalyst’s surface was a troublesome key factor that mediated the product’s selectivity versus the carbon mass balance. By applying a biphasic water–toluene solvent system, the yield of cyclopentanone was somewhat improved to a middling 59%, while tentatively positive distributions of reaction components over these solvent phases were observed, which could be advantageous for anticipated down-stream processing. Overall, the sheer difficulty of controlling this one-pot cascade transformation towards a satisfactory product output under rather unfavorable reaction parameters renders it unsuitable for industrial process development, and a multi-step procedure for this chemical transformation might be considered instead. Full article
Show Figures

Figure 1

17 pages, 1827 KB  
Article
Synthesis of Substituted 1,4-Benzodiazepines by Palladium-Catalyzed Cyclization of N-Tosyl-Disubstituted 2-Aminobenzylamines with Propargylic Carbonates
by Masahiro Yoshida, Saya Okubo, Akira Kurosaka, Shunya Mori, Touya Kariya and Kenji Matsumoto
Molecules 2025, 30(14), 3004; https://doi.org/10.3390/molecules30143004 - 17 Jul 2025
Viewed by 854
Abstract
A synthesis of substituted 1,4-benzodiazepines has been developed via palladium-catalyzed cyclization of N-tosyl-disubstituted 2-aminobenzylamines with propargylic carbonates. The reaction proceeds through the formation of π-allylpalladium intermediates, which undergo intramolecular nucleophilic attack by the amide nitrogen to afford seven-membered benzodiazepine cores. In reactions [...] Read more.
A synthesis of substituted 1,4-benzodiazepines has been developed via palladium-catalyzed cyclization of N-tosyl-disubstituted 2-aminobenzylamines with propargylic carbonates. The reaction proceeds through the formation of π-allylpalladium intermediates, which undergo intramolecular nucleophilic attack by the amide nitrogen to afford seven-membered benzodiazepine cores. In reactions involving unsymmetrical diaryl-substituted carbonates, regioselectivity was observed to favor nucleophilic attack at the alkyne terminus substituted with the more electron-rich aryl group, suggesting that electronic effects play a key role in determining product distribution. The versatility of this reaction was further demonstrated by constructing a benzodiazepine framework found in bioactive molecules, indicating its potential utility in medicinal chemistry. Mechanistic insights supported by stereochemical outcomes and X-ray crystallographic analysis of key intermediates reinforce the proposed reaction pathway. This palladium-catalyzed protocol thus offers an efficient and practical approach to access structurally diverse benzodiazepine derivatives. Full article
(This article belongs to the Special Issue Advances in Heterocyclic Synthesis, 2nd Edition)
Show Figures

Graphical abstract

20 pages, 6223 KB  
Article
Virulence, Antibiotic Resistance and Cytotoxic Effects of Lactococcus lactis Isolated from Chinese Cows with Clinical Mastitis on MAC-T Cells
by Tiancheng Wang, Fan Wu, Tao Du, Xiaodan Jiang, Shuhong Liu, Yiru Cheng and Jianmin Hu
Microorganisms 2025, 13(7), 1674; https://doi.org/10.3390/microorganisms13071674 - 16 Jul 2025
Viewed by 396
Abstract
Lactococcus lactis (L. lactis) is a pathogenic Gram-positive, catalase-negative coccobacillus (GPCN) associated with bovine mastitis. In this study, nine strains of L. lactis were successfully isolated and characterized from 457 milk samples from cows with clinical mastitis in China. All isolates [...] Read more.
Lactococcus lactis (L. lactis) is a pathogenic Gram-positive, catalase-negative coccobacillus (GPCN) associated with bovine mastitis. In this study, nine strains of L. lactis were successfully isolated and characterized from 457 milk samples from cows with clinical mastitis in China. All isolates exhibited a high degree of susceptibility to marbofloxacin and vancomycin. A series of molecular and cell biological techniques were used to explore the biological characteristics and pathogenicity of these isolates. The virulence gene profiles of the isolates were analyzed using whole genome resequencing combined with polymerase chain reaction (PCR) to elucidate the differences in virulence gene expression between isolates. To provide a more visual demonstration of the pathogenic effect of L. lactis on bovine mammary epithelial cells, an in vitro infection model was established using MAC-T cells. The results showed that L. lactis rapidly adhered to the surface of bovine mammary epithelial cells and significantly induced the release of lactate dehydrogenase, suggesting that the cell membranes might be damaged. Ultrastructural observations showed that L. lactis not only adhered to MAC-T cells, but also invaded the cells through a perforation mechanism, leading to a cascade of organelle damage, including mitochondrial swelling and ribosome detachment from the endoplasmic reticulum. The objective of this study was to provide strong evidence for the cytotoxic effects of L. lactis on bovine mammary epithelial cells. Based on this research, a prevention and treatment strategy for L. lactis as well as major pathogenic mastitis bacteria should be established, and there is a need for continuous monitoring. Full article
(This article belongs to the Section Antimicrobial Agents and Resistance)
Show Figures

Figure 1

11 pages, 1964 KB  
Article
pH-Responsive Nanophotosensitizer Boosting Antibacterial Photodynamic Therapy by Hydroxyl Radical Generation
by Peilin Tian, Xianyue Bai, Jing Feng, Luyao Xu, Shihao Xu, Xiaoya Yu, Caiju Fan, Qian Su, Jiaxing Song and Cuixia Lu
Nanomaterials 2025, 15(14), 1075; https://doi.org/10.3390/nano15141075 - 10 Jul 2025
Viewed by 442
Abstract
In this study, a pH-responsive nanophotosensitizer (MT@Ce6) was rationally developed by strategic integration of MIL-101 (Fe)-NH2 metal–organic framework with tannic acid (TA) and chlorin e6. This nanocomposite exhibits pH-responsive degradation in acidic microenvironments, facilitating Fe3+ release and subsequent reduction to Fe [...] Read more.
In this study, a pH-responsive nanophotosensitizer (MT@Ce6) was rationally developed by strategic integration of MIL-101 (Fe)-NH2 metal–organic framework with tannic acid (TA) and chlorin e6. This nanocomposite exhibits pH-responsive degradation in acidic microenvironments, facilitating Fe3+ release and subsequent reduction to Fe2+ that catalyzes Fenton reaction-mediated hydroxyl radical (•OH) generation. This cascade reaction shifts reactive oxygen species (ROS) predominance from transient singlet oxygen (1O2) to the long-range penetrative •OH, achieving robust biofilm disruption and over 90% eradication of methicillin-resistant Staphylococcus aureus (MRSA) under 660 nm irradiation. In vivo evaluations revealed accelerated wound healing with 95% wound closure within 7 days, while species-selective antibacterial studies demonstrated a 2.3-fold enhanced potency against Gram-positive bacteria due to their unique peptidoglycan-rich cell wall architecture. These findings collectively establish a microenvironment-adaptive nanoplatform for precision antimicrobial interventions, providing a translational strategy to address drug-resistant infections. Full article
Show Figures

Figure 1

Back to TopTop