Sign in to use this feature.

Years

Between: -

Subjects

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Journals

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Article Types

Countries / Regions

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Search Results (1,993)

Search Parameters:
Keywords = casing stress analysis

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
12 pages, 1876 KB  
Article
Hemodynamic Implications of Aortic Stenosis on Ascending Aortic Aneurysm Progression: A Patient-Specific CFD Study
by A B M Nazmus Salehin Nahid, Mashrur Muntasir Nuhash and Ruihang Zhang
J. Vasc. Dis. 2025, 4(4), 38; https://doi.org/10.3390/jvd4040038 - 3 Oct 2025
Abstract
An ascending aortic aneurysm is a localized dilation of the ascending aorta, which poses a high risk of aortic dissection or rupture, with surgery recommended at diameters > 5.5 cm. However, events also occur at smaller sizes, suggesting additional factors—such as stenosis—may significantly [...] Read more.
An ascending aortic aneurysm is a localized dilation of the ascending aorta, which poses a high risk of aortic dissection or rupture, with surgery recommended at diameters > 5.5 cm. However, events also occur at smaller sizes, suggesting additional factors—such as stenosis—may significantly influence aneurysm severity. To investigate this, a computational fluid dynamics (CFD) analysis was conducted using a patient-specific ascending aortic model (aneurysm diameter: 5.28 cm) under three aortic stenosis severities: mild, moderate, and severe. Results showed that the severe stenosis condition led to the formation of prominent recirculation zones and increased peak velocities, 2.36 m·s−1 compared to 1.53 m·s−1 for moderate stenosis and 1.37 m·s−1 for mild stenosis. A significantly increased pressure loss coefficient was observed for the severe case. Additionally, the wall shear stress (WSS) distribution exhibited higher values along the anterior region and lower values along the posterior region. Peak WSS values were recorded at 43.46 Pa in the severe stenosis model, compared to 21.98 Pa and 13.87 Pa for the moderate and mild cases, respectively. Velocity distribution and helicity analyses demonstrate that increasing stenosis severity amplifies jet-induced flow disturbances, contributing to larger recirculation zones and greater helicity heterogeneity in the ascending aorta. Meanwhile, WSS results indicate that greater stenosis severity is also associated with elevated WSS magnitude and heterogeneity in the ascending aorta, with severe cases exhibiting the highest value. These findings highlight the need to incorporate hemodynamic metrics, alongside traditional diameter-based criteria, into rupture risk assessment frameworks. Full article
(This article belongs to the Section Peripheral Vascular Diseases)
Show Figures

Figure 1

24 pages, 4725 KB  
Article
Multi-Omics Alterations in Rat Kidneys upon Chronic Glyphosate Exposure
by Favour Chukwubueze, Cristian D. Guiterrez Reyes, Jesús Chávez-Reyes, Joy Solomon, Vishal Sandilya, Sarah Sahioun, Bruno A. Marichal-Cancino and Yehia Mechref
Biomolecules 2025, 15(10), 1399; https://doi.org/10.3390/biom15101399 - 1 Oct 2025
Abstract
Clinical studies have linked glyphosate exposure to substantial morbidity, with acute kidney injury occurring in some cases. Although the toxic effects of glyphosate-based herbicides (GBHs) have been reported in several studies, their molecular impact on renal function remains poorly understood. Given the kidney’s [...] Read more.
Clinical studies have linked glyphosate exposure to substantial morbidity, with acute kidney injury occurring in some cases. Although the toxic effects of glyphosate-based herbicides (GBHs) have been reported in several studies, their molecular impact on renal function remains poorly understood. Given the kidney’s critical role in excretion, it is particularly susceptible to damage from xenobiotic exposure. In this study, we aim to identify N-glycomics and proteomics change in the kidney following chronic GBH exposure, to better understand the mechanisms behind glyphosate-induced kidney damage. Kidney tissues from female and male rats were analyzed using liquid chromatography–tandem mass spectrometry. The results revealed notable changes in the N-glycan composition, particularly in the fucosylated and sialofucosylated N-glycan types. The proteomic analysis revealed the activation of immune signaling and inflammatory pathways, including neutrophil degranulation, integrin signaling, and MHC class I antigen presentation. Transcription regulators, such as IL-6, STAT3, and NFE2L2, were upregulated, indicating a coordinated inflammatory and oxidative stress response. Sex-specific differences were apparent, with female rats exhibiting more pronounced alterations in both the N-glycan and protein expression profiles, suggesting a higher susceptibility to GBH-induced nephrotoxicity. These findings provide new evidence that chronic GBH exposure may trigger immune activation, inflammation, and potentially carcinogenic processes in the kidney. Full article
(This article belongs to the Section Molecular Biology)
Show Figures

Figure 1

37 pages, 10606 KB  
Article
Numerical Analysis of the Three-Roll Bending Process of 6061-T6 Aluminum Profiles with Multiple Bending Radii Using the Finite Element Method
by Mauricio da Silva Moreira, Carlos Eduardo Marcos Guilherme, João Henrique Corrêa de Souza, Elizaldo Domingues dos Santos and Liércio André Isoldi
Metals 2025, 15(10), 1097; https://doi.org/10.3390/met15101097 - 1 Oct 2025
Abstract
The present work numerically investigates the mechanical behavior of six 6061-T6 aluminum profiles during roll bending, considering, in two specific cases, the application of the process in different bending directions (vertical and horizontal), totaling eight cases analyzed, with emphasis on the influence of [...] Read more.
The present work numerically investigates the mechanical behavior of six 6061-T6 aluminum profiles during roll bending, considering, in two specific cases, the application of the process in different bending directions (vertical and horizontal), totaling eight cases analyzed, with emphasis on the influence of multiple bending radii. Notably, two of the profiles are characterized by high geometric complexity, making their analysis particularly relevant within the scope of this study. Using the finite element method in ANSYS® (version 2022 R2) (SOLID187 element), the study expands the previously validated model to a broader range of geometries and includes an additional validation and verification stage. The results reveal: (i) an inverse relationship between bending radius and von Mises stress, with critical values close to the material’s strength limit at smaller radii; (ii) characteristic displacement patterns for each profile, quantified through specific curve fittings; and (iii) a systematic comparison among the six profiles, highlighting stress concentrations and deformations differentiated by geometry. The simulations provide criteria for predicting forming defects and optimizing process parameters, expanding the database for industrial designs with multiple extruded profiles. Full article
(This article belongs to the Special Issue Advances in Lightweight Material Forming Technology)
Show Figures

Figure 1

13 pages, 7569 KB  
Article
New Light on an Old Story: Lymphocystis Disease in Copperband Butterflyfish (Chelmon rostratus) and Orbicular Batfish (Platax orbicularis)
by Márton Hoitsy, Endre Sós, János Gál, Árisz Ziszisz, Ferenc Baska, Lars August Folkman, Giuseppe Mark Marcello, Krisztina Bali, Gergő Mitró and Andor Doszpoly
Pathogens 2025, 14(10), 988; https://doi.org/10.3390/pathogens14100988 - 1 Oct 2025
Abstract
Although the clinical course and pathogenesis of lymphocystis disease virus (LCDV) infection have been extensively described in freshwater and seawater environments, lymphocystis disease has not been studied in the copperband butterflyfish (Chelmon rostratus) or described at the molecular level in orbicular [...] Read more.
Although the clinical course and pathogenesis of lymphocystis disease virus (LCDV) infection have been extensively described in freshwater and seawater environments, lymphocystis disease has not been studied in the copperband butterflyfish (Chelmon rostratus) or described at the molecular level in orbicular batfish (Platax orbicularis). The present study aimed to identify LCDV in a copperband butterflyfish and an orbicular batfish using light and electron microscopy (morphological) and molecular methods, namely PCR followed by phylogenetic analysis. We present a case series of two representatives of two distinct fish species with stress-induced chronic LCDV infection, which presented with typical, recurring, macroscopically visible lymphocystis nodules on their pectoral, caudal, and dorsal fins. After collecting lymphocystis nodules from live animals using skin scraping, we processed the hypertrophic giant cells for qualitative analysis using light and electron microscopy. Through our qualitative morphological analysis, we also share intimate observations of putative viral replication and assembly in the intracytoplasmic inclusion bodies of lymphocystis nodules. We present LCDV infection in a novel species, the copperband butterflyfish, and our molecular analysis identified the virus from the orbicular batfish as a novel LCDV species. Full article
(This article belongs to the Section Viral Pathogens)
Show Figures

Figure 1

27 pages, 6300 KB  
Article
From Trends to Drivers: Vegetation Degradation and Land-Use Change in Babil and Al-Qadisiyah, Iraq (2000–2023)
by Nawar Al-Tameemi, Zhang Xuexia, Fahad Shahzad, Kaleem Mehmood, Xiao Linying and Jinxing Zhou
Remote Sens. 2025, 17(19), 3343; https://doi.org/10.3390/rs17193343 - 1 Oct 2025
Abstract
Land degradation in Iraq’s Mesopotamian plain threatens food security and rural livelihoods, yet the relative roles of climatic water deficits versus anthropogenic pressures remain poorly attributed in space. We test the hypothesis that multi-timescale climatic water deficits (SPEI-03/-06/-12) exert a stronger effect on [...] Read more.
Land degradation in Iraq’s Mesopotamian plain threatens food security and rural livelihoods, yet the relative roles of climatic water deficits versus anthropogenic pressures remain poorly attributed in space. We test the hypothesis that multi-timescale climatic water deficits (SPEI-03/-06/-12) exert a stronger effect on vegetation degradation risk than anthropogenic pressures, conditional on hydrological connectivity and irrigation. Using Babil and Al-Qadisiyah (2000–2023) as a case, we implement a four-part pipeline: (i) Fractional Vegetation Cover with Mann–Kendall/Sen’s slope to quantify greening/browning trends; (ii) LandTrendr to extract disturbance timing and magnitude; (iii) annual LULC maps from a Random Forest classifier to resolve transitions; and (iv) an XGBoost classifier to map degradation risk and attribute climate vs. anthropogenic influence via drop-group permutation (ΔAUC), grouped SHAP shares, and leave-group-out ablation, all under spatial block cross-validation. Driver attribution shows mid-term and short-term drought (SPEI-06, SPEI-03) as the strongest predictors, and conditional permutation yields a larger average AUC loss for the climate block than for the anthropogenic block, while grouped SHAP shares are comparable between the two, and ablation suggests a neutral to weak anthropogenic edge. The XGBoost model attains AUC = 0.884 (test) and maps 9.7% of the area as high risk (>0.70), concentrated away from perennial water bodies. Over 2000–2023, LULC change indicates CA +515 km2, HO +129 km2, UL +70 km2, BL −697 km2, WB −16.7 km2. Trend analysis shows recovery across 51.5% of the landscape (+29.6% dec−1 median) and severe decline over 2.5% (−22.0% dec−1). The integrated design couples trend mapping with driver attribution, clarifying how compounded climatic stress and intensive land use shape contemporary desertification risk and providing spatial priorities for restoration and adaptive water management. Full article
Show Figures

Figure 1

14 pages, 2310 KB  
Article
Effects of Short-Term Treatment of Hanwoo Satellite Cells with Various Concentrations of Cortisol
by Leecheon Kim, Dongjin Yu, Hyunwoo Choi, Jongryun Kim, Junseok Ban, Kwanseob Shim and Darae Kang
Animals 2025, 15(19), 2847; https://doi.org/10.3390/ani15192847 - 29 Sep 2025
Abstract
Transportation, environmental changes, and overcrowding can induce short-term stress in livestock, leading to physiological imbalances even within a short period. Cortisol is a stress-response hormone and its concentration in the blood can rapidly fluctuate depending on the individual and situation. This study evaluated [...] Read more.
Transportation, environmental changes, and overcrowding can induce short-term stress in livestock, leading to physiological imbalances even within a short period. Cortisol is a stress-response hormone and its concentration in the blood can rapidly fluctuate depending on the individual and situation. This study evaluated the short-term effects of cortisol by applying blood cortisol concentrations that mimicked the normal and stress-induced levels observed in Korean native cattle (Hanwoo) to the culture medium of Hanwoo muscle stem cells (HWSC). Treatments were designed with five cortisol concentrations (0, 5, 10, 30, and 70 ng/mL) and four treatment times (0.5, 1, 2, and 3 h), based on the CCK-8 and viable cell count results. The expression levels of cortisol receptor-related genes (NR3C1, HSP70, and HSP90AA1) increased and reached a peak at 30 min post-treatment. After 30 min, the expression of these genes gradually decreased. However, in the case of HSP70, expression tended to increase again after 3 h of treatment. This could be seen as the regulation of cortisol inflow into the HWSC. Upon examining the oxidative effects of cortisol on superoxide dismutase 1 (SOD1), glutathione peroxidase (GPX), catalase (CAT), and oxygen consumption rate (OCR), the expression of antioxidant factors increased and peaked at 30 min of treatment. Following this peak, their levels generally began to decrease. However, in the 70 ng/mL group, the expression of these factors remained at a high level compared to the control group even after 30 min. In addition, the cellular respiration index and ATP production increased as the treatment prolonged, regardless of the concentration, as shown by the OCR analysis. These results can be considered a phenomenon corresponding to the accumulation of oxidative by products, such as Reactive Oxygen Species (ROS), caused by cortisol. The gene expression of apoptosis factors (p53, BAX, Caspase-3) temporarily increased at 30 min but then decreased. Caspase-3 protein activity was elevated at 30 min in the 70 ng/mL group, which later reduced. These results suggested that short-term cortisol administration had no effect on apoptosis in muscle cell culture. Therefore, the study findings elucidating the effects of short-term cortisol treatment on HWSC suggest that short-term stress may not have a significant negative effect on Hanwoo muscle. However, as this study was limited to muscle stem cells derived from Hanwoo, further investigation is required to determine whether the observed responses are consistent across different species and in vivo environments. Full article
(This article belongs to the Section Cattle)
Show Figures

Figure 1

31 pages, 8649 KB  
Article
Putting Urban Resilience in Geographical Context: The Case of City Regions in Hainan, China, in the Wake of COVID-19 and Beyond
by Guo Chen and Qianlin Chen
Sustainability 2025, 17(19), 8697; https://doi.org/10.3390/su17198697 - 26 Sep 2025
Abstract
Urban resilience has gained significant further attention since the COVID-19 pandemic, resulting in various assessments comparing cities’ ability to respond to, and recover from, diverse shocks. This paper responds to the call for grounding urban resilience in context by examining a case study [...] Read more.
Urban resilience has gained significant further attention since the COVID-19 pandemic, resulting in various assessments comparing cities’ ability to respond to, and recover from, diverse shocks. This paper responds to the call for grounding urban resilience in context by examining a case study of the city regions on the island of Hainan Province, China, following the onset of the COVID-19 outbreak. After content analysis to trace the lineage of urban resilience in the Chinese context, an exploratory study, including analysis and mapping of statistical data, was conducted to examine the city’s economic and social performance from 2018 to 2021 and beyond. Our study suggests a largely positive trend in the bouncing back and forward of city regions shortly after the pandemic began, as well as a rural–urban gap and growing regional disparities that need to be addressed to enhance resilience for all. This study provides a contextualized understanding of Hainan as it navigates pandemic stresses and builds capacities during state-supported structural transformations in its development as a free trade port. Furthermore, this study suggests a valuable city region analytical lens and a geographical perspective for implementing the urban resilience concept and building urban resilience efforts in China and elsewhere. Full article
(This article belongs to the Special Issue Global Social and Environmental Justice: Intersections and Dialogues)
Show Figures

Figure 1

17 pages, 427 KB  
Article
The Role of Diastolic Stress Echo and Myocardial Work in Early Detection of Cardiac Dysfunction in Women with Breast Cancer Undergoing Chemotherapy
by Stefanos Sokratous, Michaelia Kyriakou, Elina Khattab, Alexia Alexandraki, Elisavet L. Fotiou, Nektaria Chrysanthou, Paraskevi Papakyriakopoulou, Ioannis Korakianitis, Anastasia Constantinidou and Nikolaos P. E. Kadoglou
Biomedicines 2025, 13(10), 2341; https://doi.org/10.3390/biomedicines13102341 - 25 Sep 2025
Abstract
Background: Anthracycline-based chemotherapy, while highly effective for breast cancer, poses a significant risk for chemotherapy-related cardiac dysfunction (CTRCD), mainly determined by left ventricular ejection fraction (LVEF) reduction. Objectives: We aimed to evaluate the diagnostic utility of speckle tracking analysis (STA) and Diastolic [...] Read more.
Background: Anthracycline-based chemotherapy, while highly effective for breast cancer, poses a significant risk for chemotherapy-related cardiac dysfunction (CTRCD), mainly determined by left ventricular ejection fraction (LVEF) reduction. Objectives: We aimed to evaluate the diagnostic utility of speckle tracking analysis (STA) and Diastolic Stress Test Echocardiography (DSTE) for the early detection of cardiac dysfunction either CTRCD or heart failure with preserved ejection fraction (HFpEF) in women undergoing chemotherapy for breast cancer and developed exertional dyspnea and/or fatigue during follow-up. Methods: In this prospective case–control study, 133 women receiving anthracycline-based chemotherapy (with or without anti-HER2 therapy) (chemotherapy group-CTG) and 65 age-matched healthy women as the control group (CG) underwent resting echocardiographic assessment, including LVEF, global longitudinal strain (GLS), myocardial work indices, biomarkers assay (NT-proBNP, troponin, galectin-3) and DSTE at baseline. That assessment was repeated after 12 months in CTG. Results: In this prospective case—control study, 133 women receiving anthracycline-based chemotherapy (with or without anti-HER2 therapy) were included. Based on the presence of CTRCD, they were further subdivided into a CTRCD subgroup (n = 37) and a CTRCD-free subgroup (n = 88). At the end of this study, CTG showed worse values of LVEF, GLS, myocardial work indices than baseline and CG (p < 0.05). Subgroup comparison (CTRCD vs. CTRCD-free) showed significant impairment in LVEF (53.60% vs. 62.60%, p < 0.001), GLS (–16.68% vs. −20.31%, p < 0.001), DSTE-derived tricuspid regurgitation maximum velocity (TRVmax) (3.05 vs. 2.31 m/s, p < 0.001) and elevated biomarkers (NT-proBNP: 200.06 vs. 61.49 pg/mL; troponin: 12.42 vs. 3.95 ng/L, p < 0.001) in the former subgroup. Regression analysis identified GLS, NT-proBNP, troponin, and TRVmax as independent predictors of CTRCD. Notably, a subgroup of CTRCD-free patients (n = 16) showed a high probability for HFpEF based on the HFA-PEFF score, with elevated GLS, NT-proBNP and DSTE-derived TRVmax compared to the rest of CTRCD-free patients and the CG (p < 0.001). Conclusions: STA and DSTE significantly outperform conventional LVEF in detecting subclinical cardiac dysfunction among women with breast cancer receiving chemotherapy. The combination of novel echocardiographic techniques and biomarkers may enable the detection of early CTRCD, including the under-estimated presence of HFpEF among breast cancer women with HF symptoms. Full article
(This article belongs to the Special Issue Breast Cancer Research: Charting Future Directions)
Show Figures

Figure 1

38 pages, 2674 KB  
Review
Incorporation of Nitinol (NiTi) Shape Memory Alloy (SMA) in Concrete: A Review
by Muhammed Turkmen, Anas Issa, Omar Awayssa and Hilal El-Hassan
Materials 2025, 18(19), 4458; https://doi.org/10.3390/ma18194458 - 24 Sep 2025
Viewed by 46
Abstract
Incorporating Nitinol (NiTi) shape memory alloy (SMA) into concrete structures has gained significant attention in recent years due to its ability to enhance the properties of concrete. This review paper illustrates the history of NiTi SMA and its use in various civil engineering [...] Read more.
Incorporating Nitinol (NiTi) shape memory alloy (SMA) into concrete structures has gained significant attention in recent years due to its ability to enhance the properties of concrete. This review paper illustrates the history of NiTi SMA and its use in various civil engineering structural applications. A detailed analysis of the existing literature and case studies offers perspectives on the possible applications, benefits, and prospects of utilizing NiTi SMA to reinforce and strengthen elements in concrete structures. The study examined publications on the internal usage of NiTi SMA in concrete and cement-based matrices as an embedded element, including fibers, bars, cables, wires, powder, and strands. In addition, superelastic and shape memory forms of NiTi were considered. It was concluded that the superelasticity of NiTi aided in energy dissipation from impact or seismic events. It also improved the re-centering performance and deformation capacity and reduced residual stresses, strains, and cracks. Conversely, the SMA effect of NiTi helped bridge cracks, recover the original shape, and induced prestressing forces under thermal activation. Full article
(This article belongs to the Special Issue Advanced Concrete Formulations: Nanotechnology and Hybrid Materials)
Show Figures

Figure 1

27 pages, 3412 KB  
Article
Exploring Preference Heterogeneity and Acceptability for Forest Restoration Policies: Latent Class Choice Modeling and Principal Component Analysis
by Chulhyun Jeon and Danny Campbell
Forests 2025, 16(10), 1507; https://doi.org/10.3390/f16101507 - 24 Sep 2025
Viewed by 136
Abstract
The restoration of forest ecosystems damaged by wildfires and pest outbreaks has become increasingly urgent. However, the public-good nature of forests, the involvement of diverse stakeholders, and the spatial variability of degradation present significant challenges to effective policy design. In particular, previous studies [...] Read more.
The restoration of forest ecosystems damaged by wildfires and pest outbreaks has become increasingly urgent. However, the public-good nature of forests, the involvement of diverse stakeholders, and the spatial variability of degradation present significant challenges to effective policy design. In particular, previous studies have largely examined these threats in isolation, and few have provided integrated economic analyses of their combined impacts. This gap underscores the need to better understand heterogeneous public preferences and their implications for restoration policy. To address this, we conducted a discrete choice experiment (DCE) with 1021 Korean citizens and applied a two-stage analytical framework combining principal component analysis (PCA) and latent class choice modeling (LCM). Five distinct preference segments were identified, each exhibiting substantial variation in willingness to pay (WTP) for restoration attributes. Policy simulations further revealed that public acceptance declines sharply at higher cost levels, highlighting the importance of setting realistic financial thresholds for broad support. While visual materials, consequentiality checks, and cheap talk scripts were employed to mitigate hypothetical bias, the limitations of external validity and potential sampling biases should be acknowledged. Our findings provide empirical evidence for tailoring restoration policies to different stakeholder groups, while also stressing the financial and institutional constraints of implementation. In particular, the results suggest that cost thresholds, citizen engagement, and awareness-raising strategies must be carefully balanced to ensure both effectiveness and public acceptance. Taken together, these insights contribute to evidence-based forest policymaking that is both economically efficient and socially acceptable, while recognizing the context-specific limitations of the Korean case and the need for comparative studies across countries. Full article
(This article belongs to the Section Forest Economics, Policy, and Social Science)
Show Figures

Figure 1

11 pages, 975 KB  
Article
Cost Effectiveness of Adjunctive Neurofeedback vs. Psychotherapy or Pharmacotherapy for Post-Traumatic Stress Disorder
by Jeffrey D. Voigt, Aron Tendler, Carl Marci and Linda L. Carpenter
Healthcare 2025, 13(19), 2388; https://doi.org/10.3390/healthcare13192388 - 23 Sep 2025
Viewed by 137
Abstract
Background: Neurofeedback shows promise as an adjunctive therapy for post-traumatic stress disorder (PTSD), but its cost effectiveness has not been studied. Objectives: To assess the cost and effectiveness of neurofeedback plus other therapies (NF + OT) vs. guideline therapies alone. Methods: TreeAge software [...] Read more.
Background: Neurofeedback shows promise as an adjunctive therapy for post-traumatic stress disorder (PTSD), but its cost effectiveness has not been studied. Objectives: To assess the cost and effectiveness of neurofeedback plus other therapies (NF + OT) vs. guideline therapies alone. Methods: TreeAge software was used to develop Markov models comparing NF + OT therapy to psychotherapy and pharmacotherapy over 1–3 years. Costs were derived from Medicare rates and literature. Effectiveness was measured using CAPS-5 score reductions converted to quality-adjusted life years (QALYs) using regression analysis. Dropout and relapse rates were derived from systematic reviews and meta-analysis. Results: NF + OT resulted in greater improvements in CAPS-5 scores and was less costly than OT. In the base case, NF + OT was less expensive (on average) for years 1–3 by USD 2568−USD 4140 (vs. psychotherapy) and USD 2282−USD 7217 (vs. pharmacotherapy). QALYs improved by 0.04 compared to psychotherapy and 0.24 compared to pharmacotherapy. NF + OT dominated (lower cost, better outcomes) psychotherapy 12% of the time and pharmacotherapy 26.5% of the time in Monte Carlo simulation. Further, Monte Carlo simulation did not demonstrate dominance at any point in time for either pharmacotherapy or psychotherapy over NF + OT. Conclusions: Based on lower costs and improved effectiveness, NF + OT should be considered for treating PTSD. Full article
(This article belongs to the Special Issue Healthcare Economics, Management, and Innovation for Health Systems)
Show Figures

Figure 1

13 pages, 1061 KB  
Article
Selenoprotein S and the Causal Risk of Hypertension in Pregnancy: A Mendelian Randomization Study
by Mengqi Cai, Wenrui Lv, Yan He, Weili Liu and Yuzhen Gao
Healthcare 2025, 13(18), 2383; https://doi.org/10.3390/healthcare13182383 - 22 Sep 2025
Viewed by 202
Abstract
Background: Pregnancy-induced hypertension (PIH) affects approximately 10% of pregnancies worldwide, representing a leading cause of maternal and perinatal morbidity and mortality. The relationship between plasma selenium levels and PIH remains controversial, with observational studies limited by confounding factors. Selenoprotein S (SELENOS) has emerged [...] Read more.
Background: Pregnancy-induced hypertension (PIH) affects approximately 10% of pregnancies worldwide, representing a leading cause of maternal and perinatal morbidity and mortality. The relationship between plasma selenium levels and PIH remains controversial, with observational studies limited by confounding factors. Selenoprotein S (SELENOS) has emerged as a potential biomarker for PIH risk. As one of the carrier proteins for dietary selenium, SELENOS plays a crucial role in oxidative stress and inflammatory pathways. However, the causal relationship between the plasma levels of the SELENOS and PIH development remains unclear. This study employed Mendelian randomization (MR) to investigate the causal link between the plasma levels of the SELENOS and PIH risk, providing evidence for preventive strategies. Methods: We conducted a two-sample MR analysis using genome-wide association study (GWAS) summary statistics from the INTERVAL study and FinnGen consortium. The analysis included individuals of European ancestry, utilizing the inverse-variance weighted (IVW) method as the primary approach. Comprehensive sensitivity analyses were performed to address potential pleiotropy and strengthen causal inference. Results: The analysis encompassed 3301 samples for the plasma levels of the SELENOS and 7686 PIH cases, 1109 pre-existing hypertension (PEH) cases, 4255 gestational hypertension (GH) cases, and 83 preeclampsia (PE) cases superimposed on chronic hypertension, alongside approximately 115,000 controls. Genetic variabilities that have been found to be accompanied by elevated levels of plasma selenioprotein levels showed significant associations with increased risk of PIH [odds ratio (OR) 1.078, 95% confidence interval (CI) 1.031–1.126, p = 0.001], PEH (OR 1.232, 95% CI 1.105–1.373, p < 0.001), and GH (OR 1.111, 95% CI 1.047–1.180, p = 0.001), with suggestive associations for preeclampsia superimposed on chronic hypertension (OR 1.590, 95% CI 1.078–2.344, p = 0.019). Conclusions: This study provides robust genetic evidence for a causal relationship between the plasma levels of the SELENOS and PIH risk, establishing SELENOS as a potential modifiable risk factor with significant clinical implications. These findings support the development of personalized selenium management strategies during pregnancy and highlight the potential for early screening and targeted interventions to improve maternal and fetal outcomes. Full article
(This article belongs to the Special Issue Improving Adolescent Girls’ and Women’s Health and Nutrition)
Show Figures

Figure 1

13 pages, 584 KB  
Article
The Link Between Oxidative Stress and Male Infertility in Lithuania: A Retrospective Study
by Eglė Jašinskienė and Marija Čaplinskienė
Medicina 2025, 61(9), 1715; https://doi.org/10.3390/medicina61091715 - 20 Sep 2025
Viewed by 237
Abstract
Background and Objectives: Male infertility is a growing public health concern, with up to 50% of cases lacking a clearly identifiable cause. This study aimed to assess the epidemiological characteristics of male infertility in Lithuania and evaluate the clinical utility of oxidative [...] Read more.
Background and Objectives: Male infertility is a growing public health concern, with up to 50% of cases lacking a clearly identifiable cause. This study aimed to assess the epidemiological characteristics of male infertility in Lithuania and evaluate the clinical utility of oxidative stress assessment using the MiOXSYS system. Materials and Methods: A two-stage retrospective study was conducted between 2019 and 2023 at one of the largest fertility centers in Lithuania. The first stage involved an epidemiological analysis of 718 men who met the inclusion criteria. In the second stage, 261 men underwent oxidation-reduction potential (ORP) testing using the MiOXSYS system. Semen parameters were evaluated according to World Health Organization (WHO) 2010 guidelines. ROC curve analysis was used to assess the diagnostic value of ORP. Results: Male infertility was identified as the sole factor in 20.1% of couples, while unexplained infertility accounted for 24.4% of all cases. Among normozoospermic men, 48.5% exhibited elevated ORP levels (>1.34 mV/106 sperm/mL). ROC analysis demonstrated moderate diagnostic accuracy of ORP (AUC = 0.634; sensitivity: 75.3%; specificity: 51.5%). The inclusion of ORP testing reduced the proportion of unexplained cases and supported their reclassification under the Male Oxidative Stress Infertility (MOSI) framework. Conclusions: This study provides novel epidemiological data on male infertility in Lithuania and highlights the potential of ORP testing as a supplementary diagnostic tool. Systematic evaluation of oxidative stress may help better identify cases previously labeled as unexplained and enable more personalized treatment strategies. Full article
Show Figures

Figure 1

17 pages, 3475 KB  
Article
Roughness Modeling Using a Porous Medium Layer in a Tesla Turbine Operating with ORC Fluids
by Mohammadsadegh Pahlavanzadeh, Krzysztof Rusin and Włodzimierz Wróblewski
Energies 2025, 18(18), 4990; https://doi.org/10.3390/en18184990 - 19 Sep 2025
Viewed by 169
Abstract
The transfer of momentum and kinetic energy is a key factor in turbomachinery performance, particularly influencing the efficiency of the bladeless Tesla turbine, which holds significant potential for applications such as Organic Rankine Cycle (ORC) systems and energy recovery processes. In this study, [...] Read more.
The transfer of momentum and kinetic energy is a key factor in turbomachinery performance, particularly influencing the efficiency of the bladeless Tesla turbine, which holds significant potential for applications such as Organic Rankine Cycle (ORC) systems and energy recovery processes. In this study, a comprehensive numerical analysis was carried out to simulate the effects of surface roughness on the flow between the co-rotating disks of a Tesla turbine, using R1234yf and n-hexane as working fluids. To capture roughness effects, a porous medium layer (PML) approach was employed, with porous material parameters adjusted to replicate real roughness behavior. The model was first validated against experimental data for water flow in a minichannel by tuning the PML parameters to match measured pressure drops. In contrast to previous studies, this work applies the PML model to a Tesla turbine operating with organic Rankine cycle (ORC) fluids, where the working medium is changed from air to low-boiling gases. Compared to the air-based cases, the gap between the co-rotating disks is rescaled to smaller dimensions, which introduces additional challenges. Under these conditions, the effective roughness thickness must also be rescaled, and this study investigates how these rescaled roughness effects influence turbine performance using the k-ω shear stress transport (SST) turbulence model combined with the proposed roughness model. Results showed that incorporating the PML roughness model enhances momentum transfer and significantly influences flow characteristics, thereby providing an effective means of simulating Tesla turbine performance under varying roughness conditions. Full article
Show Figures

Figure 1

21 pages, 3628 KB  
Article
Uncertainty Propagation for Power-Law, Bingham, and Casson Fluids: A Comparative Stochastic Analysis of a Class of Non-Newtonian Fluids in Rectangular Ducts
by Eman Alruwaili and Osama Hussein Galal
Mathematics 2025, 13(18), 3030; https://doi.org/10.3390/math13183030 - 19 Sep 2025
Viewed by 149
Abstract
This study presents a novel framework for uncertainty propagation in power-law, Bingham, and Casson fluids through rectangular ducts under stochastic viscosity (Case I) and pressure gradient conditions (Case II). Using the computationally efficient Stochastic Finite Difference Method with Homogeneous Chaos (SFDHC), validated via [...] Read more.
This study presents a novel framework for uncertainty propagation in power-law, Bingham, and Casson fluids through rectangular ducts under stochastic viscosity (Case I) and pressure gradient conditions (Case II). Using the computationally efficient Stochastic Finite Difference Method with Homogeneous Chaos (SFDHC), validated via comparison with quasi-Monte Carlo simulations, we demonstrate significantly lower computational costs across varying Coefficients of Variation (COVs). For viscosity uncertainty (Case I), results show a 0.54–2.8% increase in mean maximum velocity with standard deviations reaching 75.3–82.5% of the COV, where the power-law model exhibits the greatest sensitivity (velocity variations spanning 71.2–177.3% of the mean at COV = 20%). Pressure gradient uncertainty (Case II) preserves mean velocities but produces narrower and symmetric distributions. We systematically evaluate the effects of aspect ratio, yield stress, and flow behavior index on the stochastic velocity response of each fluid. Moreover, our analysis pioneers a performance hierarchy: Herschel–Bulkley fluids show the highest mean and standard deviation of maximum velocity, followed by power-law, Robertson–Stiff, Bingham, and Casson models. A key finding is the extreme fluctuation of the Robertson–Stiff model, which exhibits the most drastic deviations, reaching up to 177% of the average velocity. The significance of fluid-specific stochastic analysis in duct system design is underscored by these results. This is especially critical for non-Newtonian flows, where system performance and reliability are greatly impacted by uncertainties in viscosity and pressure gradient, which reflect actual operational variations. Full article
(This article belongs to the Section E: Applied Mathematics)
Show Figures

Figure 1

Back to TopTop