Sign in to use this feature.

Years

Between: -

Subjects

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Journals

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Article Types

Countries / Regions

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Search Results (2,200)

Search Parameters:
Keywords = cathode material

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
19 pages, 3147 KB  
Article
Study of the Design and Characteristics of a Modified Pulsed Plasma Thruster with Graphite and Tungsten Trigger Electrodes
by Merlan Dosbolayev, Zhanbolat Igibayev, Yerbolat Ussenov, Assel Suleimenova and Tamara Aldabergenova
Appl. Sci. 2025, 15(19), 10767; https://doi.org/10.3390/app151910767 - 7 Oct 2025
Abstract
The paper presents experimental results for a modified pulsed plasma thruster (PPT) with solid propellant, using a coaxial anode–cathode design. Graphite from pencil leads served as propellant, and a tungsten trigger electrode was tested to reduce carbonization effects. Experiments were performed in a [...] Read more.
The paper presents experimental results for a modified pulsed plasma thruster (PPT) with solid propellant, using a coaxial anode–cathode design. Graphite from pencil leads served as propellant, and a tungsten trigger electrode was tested to reduce carbonization effects. Experiments were performed in a vacuum chamber at 0.001 Pa, employing diagnostics such as discharge current/voltage recording, power measurement, ballistic pendulum, time-of-flight (TOF) method, and a Faraday cup. Current and voltage waveforms matched an oscillatory RLC circuit with variable plasma channel resistance. Key discharge parameters were measured, including current pulse duration/amplitude and plasma channel formation/decay dynamics. Impulse bit values, obtained with a ballistic pendulum, reached up to 8.5 μN·s. Increasing trigger capacitor capacitance reduced thrust due to unstable “pre-plasma” formation and partial pre-discharge energy loss. Using TOF and Faraday cup diagnostics, plasma front velocity, ion current amplitude, current density, and ion concentration were determined. Tungsten electrodes produced lower charged particle concentrations than graphite but offered better adhesion resistance, minimal carbonization, and stable long-term performance. The findings support optimizing trigger electrode materials and PPT operating modes to extend lifetime and stabilize thrust output. Full article
(This article belongs to the Section Aerospace Science and Engineering)
Show Figures

Figure 1

12 pages, 1955 KB  
Article
A MOF-Mediated Strategy for In Situ Niobium Doping and Synthesis of High-Performance Single-Crystal Ni-Rich Cathodes
by Yinkun Gao, Huazhang Zhou, Shumin Liu, Shuyun Guan, Mingyang Liu, Peng Gao, Yongming Zhu and Xudong Li
Batteries 2025, 11(10), 368; https://doi.org/10.3390/batteries11100368 - 5 Oct 2025
Abstract
The development of single-crystal Ni-rich layered cathode materials (SC-NCMs) is regarded as an effective strategy to address the mechanical failure issues commonly associated with polycrystalline counterparts. However, the industrial production of SC-NCM faces challenges such as lengthy processing steps, high manufacturing costs, and [...] Read more.
The development of single-crystal Ni-rich layered cathode materials (SC-NCMs) is regarded as an effective strategy to address the mechanical failure issues commonly associated with polycrystalline counterparts. However, the industrial production of SC-NCM faces challenges such as lengthy processing steps, high manufacturing costs, and inconsistent product quality. In this study, we innovatively propose a metal/organic framework (MOF)-mediated one-step synthesis strategy to achieve controllable structural preparation and in situ Nb5+ doping in SC-NCM. Using a Ni–Co–Mn-based MOF as both precursor and self-template, we precisely regulated the thermal treatment pathway to guide the nucleation and oriented growth of high-density SC-NCM particles. Simultaneously, Nb5+ was pre-anchored within the MOF framework, enabling atomic-level homogeneous doping into the transition metal layers during crystal growth. Exceptional electrochemical performance is revealed in the in situ Nb-doped SC-NCM, with an initial discharge capacity reaching 176 mAh/g at a 1C rate and a remarkable capacity retention of 86.36% maintained after 200 cycles. This study paves a versatile and innovative pathway for the design of high-stability, high-energy-density cathode materials via a MOF-mediated synthesis strategy, enabling precise manipulation of both morphology and chemical composition. Full article
19 pages, 2645 KB  
Article
Sol–Gel Synthesis of Carbon-Containing Na3V2(PO4)3: Influence of the NASICON Crystal Structure on Cathode Material Properties
by Oleg O. Shichalin, Zlata E. Priimak, Alina Seroshtan, Polina A. Marmaza, Nikita P. Ivanov, Anton V. Shurygin, Danil K. Tsygankov, Roman I. Korneikov, Vadim V. Efremov, Alexey V. Ognev and Eugeniy K. Papynov
J. Compos. Sci. 2025, 9(10), 543; https://doi.org/10.3390/jcs9100543 - 3 Oct 2025
Abstract
With the rapid advancement of energy storage technologies, there is a growing demand for affordable, efficient, and environmentally benign battery systems. Sodium-ion batteries (SIBs) present a promising alternative to lithium-ion systems due to sodium’s high abundance and similar electrochemical properties. Particular attention is [...] Read more.
With the rapid advancement of energy storage technologies, there is a growing demand for affordable, efficient, and environmentally benign battery systems. Sodium-ion batteries (SIBs) present a promising alternative to lithium-ion systems due to sodium’s high abundance and similar electrochemical properties. Particular attention is given to developing NASICON -sodium (Na) super ionic conductor, type cathode materials, especially Na3V2(PO4)3, which exhibits high thermal and structural stability. This study focuses on the sol–gel synthesis of Na3V2(PO4)3 using citric acid and ethylene glycol, as well as investigating the effect of annealing temperature (400–1000 °C) on its structural and electrochemical properties. Phase composition, morphology, textural characteristics, and electrochemical performance were systematically analyzed. Above 700 °C, a highly crystalline NASICON phase free of secondary impurities was formed, as confirmed by X-ray diffraction (XRD). Microstructural evolution revealed a transition from a loose amorphous structure to a dense granular morphology, accompanied by changes in specific surface area and porosity. The highest surface area (67.40 m2/g) was achieved at 700 °C, while increasing the temperature to 1000 °C caused pore collapse due to sintering. X-ray photoelectron spectroscopy (XPS) confirmed the predominant presence of V3+ ions and the formation of V4+ at the highest temperature. The optimal balance of high crystallinity, uniform elemental distribution, and stable texture was achieved at 900 °C. Electrochemical testing in a Na/NVP half-cell configuration delivered an initial capacity of 70 mAh/g, which decayed to 55 mAh/g by the 100th cycle, attributed to solid-electrolyte interphase (SEI) formation and irreversible Na+ trapping. These results demonstrate that the proposed approach yields high-quality Na3V2(PO4)3 cathode materials with promising potential for sodium-ion battery applications. Full article
(This article belongs to the Special Issue Composite Materials for Energy Management, Storage or Transportation)
16 pages, 1250 KB  
Article
Evolution Mechanisms of an Artificial Calco-Magnesian Agglomerate in Seawater: Analysis of Powder by Experiments and Numerical Modeling
by Louis Zadi, Anthony Soive, Philippe Turcry, Alaric Zanibellato, Pierre-Yves Mahieux, René Sabot and Marc Jeannin
Coasts 2025, 5(4), 37; https://doi.org/10.3390/coasts5040037 - 2 Oct 2025
Abstract
The aim of this work was to investigate the evolutionary mechanisms of an artificial sedimentary agglomerate formed by cathodic polarization in natural seawater during its abandonment to a natural environment. Previous studies indicate that the mineralogical evolution of the material is controlled by [...] Read more.
The aim of this work was to investigate the evolutionary mechanisms of an artificial sedimentary agglomerate formed by cathodic polarization in natural seawater during its abandonment to a natural environment. Previous studies indicate that the mineralogical evolution of the material is controlled by kinetic factors and/or the local precipitation of aragonite on the brucite surface. However, the observation of the precipitation of metastable phase precipitation during the initial immersion of this material (in powder form) has suggested the possibility of a more complex mechanism. The present study builds upon previous experimental work and includes thermogravimetric analysis and infrared spectrometry. The results are analyzed using numerical experimentation to evaluate the proposed hypotheses. Findings show that the transformation mechanism is characterized by the precipitation of metastable calcium carbonate phases. Under supersaturation conditions, these hydrated phases form on the brucite surface, limiting the mineral’s contact with the solution. The subsequent transformation of these amorphous phases into aragonite further reduces brucite–solution interaction, which explains the persistence of brucite both in the residual powder after 120 h of immersion and in the consolidated material after more than 20 years of exposure to natural seawater. Full article
Show Figures

Figure 1

23 pages, 2194 KB  
Article
Long-Term Evaluation of CNT-Clad Stainless-Steel Cathodes in Multi-Channel Microbial Electrolysis Cells Under Variable Conditions
by Kevin Linowski, Md Zahidul Islam, Luguang Wang, Fei Long, Choongho Yu and Hong Liu
Energies 2025, 18(19), 5241; https://doi.org/10.3390/en18195241 - 2 Oct 2025
Abstract
Microbial electrolysis cells (MECs) present a viable platform for sustainable hydrogen generation from organic waste, but their scalability is limited by cathode performance, cost, and durability. This study evaluates three hybrid carbon nanotube (CNT) cathodes—acid-washed CNT (AW-CNT), thin layer non-acid-washed CNT (TN-NAW-CNT), and [...] Read more.
Microbial electrolysis cells (MECs) present a viable platform for sustainable hydrogen generation from organic waste, but their scalability is limited by cathode performance, cost, and durability. This study evaluates three hybrid carbon nanotube (CNT) cathodes—acid-washed CNT (AW-CNT), thin layer non-acid-washed CNT (TN-NAW-CNT), and thick layer non-acid-washed CNT (TK-NAW-CNT)—each composed of stainless-steel-supported CNTs coated with molybdenum phosphide (MoP). These were benchmarked against woven carbon cloth (WCC) under varied operational conditions. A custom multi-channel reactor operated for 341 days, testing cathode performance across applied voltages (0.7–1.2 V), buffer types (phosphate vs. bicarbonate), pH (7.0 and 8.5), buffer concentrations (10–200 mM), and substrates including acetate, lactate, and treated acid whey. CNT-based cathodes consistently showed higher current densities than WCC across most conditions with significant difference found at higher applied voltages. TK-NAW-CNT achieved peak current densities of 259 A m−2 at 1.2 V and maintained >41 A m−2 in real-waste conditions with no added buffer. Long-term performance losses were minimal: 4.5% (TN-NAW-CNT), 0.1% (TK-NAW-CNT), 10.8% (AW-CNT), and 6.8% (WCC). CNT cathodes showed improved performance from reduced resistance and greater electrochemical stability, while proton transfer improvements benefited all materials due to buffer type and pH conditions. These results highlight CNT-based cathodes as promising, scalable alternatives to WCC for energy-positive wastewater treatment. Full article
Show Figures

Figure 1

12 pages, 2321 KB  
Communication
Intergranular Crack of Cathode Materials in Lithium-Ion Batteries Subjected to Rapid Cooling During Transient Thermal Runaway
by Siqi Li, Changchun Ye, Ming Jin, Guobin Zhong, Shi Liu, Yajie Liu and Zhixin Tai
Batteries 2025, 11(10), 363; https://doi.org/10.3390/batteries11100363 - 30 Sep 2025
Abstract
In metallurgy, the quenching process often induces changes in certain material properties, such as hardness and ductility, through the rapid cooling of a workpiece in water, gas, oil, polymer, air, or other fluids. Given that lithium-ion batteries operate under relatively benign conditions, conventional [...] Read more.
In metallurgy, the quenching process often induces changes in certain material properties, such as hardness and ductility, through the rapid cooling of a workpiece in water, gas, oil, polymer, air, or other fluids. Given that lithium-ion batteries operate under relatively benign conditions, conventional rapid cooling does not significantly affect the property variations in their internal electrode materials during normal use. However, thermal runaway presents an exception due to its dramatic temperature fluctuations from room temperature to several hundred degrees Celsius. In this study, we investigated NCM811 cathodes in 18,650 batteries subjected to transient thermal runaway followed by rapid cooling using several advanced analytical techniques. The results reveal a phenomenon characterized by intergranular cracking within NCM811 cathode materials when exposed to rapid cooling during transient thermal runaway. Furthermore, lithium-ion cells utilizing reused NCM-182.4 electrodes in fresh electrolyte demonstrate a reversible capacity of 231.4 mAh/g after 30 cycles at 0.1 C, highlighting the potential for reusing NCM811 cathodes in the lithium-ion battery recycling process. These findings not only illustrate that NCM811 particles may experience intergranular cracking when subjected to rapid cooling during transient thermal runaway, but also the rapidly cooled NCM811 electrodes exhibit potential for reuse. Full article
(This article belongs to the Special Issue Battery Interface: Analysis & Design)
35 pages, 5230 KB  
Article
Electrochemical Performances of Li-Ion Batteries Based on LiFePO4 Cathodes Supported by Bio-Sourced Activated Carbon from Millet Cob (MC) and Water Hyacinth (WH)
by Wend-Waoga Anthelme Zemane and Oumarou Savadogo
Batteries 2025, 11(10), 361; https://doi.org/10.3390/batteries11100361 - 30 Sep 2025
Abstract
The electrochemical performance of Li-ion batteries employing LiFePO4 (LFP) cathodes supported by bio-sourced activated carbon derived from millet cob (MC) and water hyacinth (WH) were systematically investigated. Carbon activation was carried out using potassium hydroxide (KOH) at varying mass ratios of KOH [...] Read more.
The electrochemical performance of Li-ion batteries employing LiFePO4 (LFP) cathodes supported by bio-sourced activated carbon derived from millet cob (MC) and water hyacinth (WH) were systematically investigated. Carbon activation was carried out using potassium hydroxide (KOH) at varying mass ratios of KOH to precursor material: 1:1, 2:1, and 5:1 for both WH and MC-derived carbon. The physical properties (X-ray diffraction patterns, BET surface area, micropore and mesopore volume, conductivity, etc.) and electrochemical performance (specific capacity, discharge at various current rates, electrochemical impedance measurement, etc.) were determined. Material characterization revealed that the activated carbon derived from MC exhibits an amorphous structure, whereas that obtained from WH is predominantly crystalline. High specific surface areas were achieved with activated carbons synthesized using a low KOH-to-carbon mass ratio (1:1), reaching 413.03 m2·g−1 for WH and 216.34 m2·g−1 for MC. However, larger average pore diameters were observed at higher activation ratios (5:1), measuring 8.38 nm for KOH/WH and 5.28 nm for KOH/MC. For both biomass-derived carbons, optimal electrical conductivity was obtained at a 2:1 activation ratio, with values of 14.7 × 10−3 S·cm−1 for KOH/WH and 8.42 × 10−3 S·cm−1 for KOH/MC. The electrochemical performance of coin cells based on cathodes composed of 85% LiFePO4, 8% of these activated carbons, and 7% polyvinylidene fluoride (PVDF) as a binder, with lithium metal as the anode were studied. The LiFePO4/C (LFP/C) cathodes exhibited specific capacities of up to 160 mAh·g−1 at a current rate of C/12 and 110 mAh·g−1 at 5C. Both LFP/MC and LFP/WH cathodes exhibit optimal energy density at specific values of pore size, pore volume, charge transfer resistance (Rct), and diffusion coefficient (DLi), reflecting a favorable balance between ionic transport, accessible surface area, and charge conduction. Maximum energy densities relative to active mass were recorded at 544 mWh·g−1 for LFP/MC 2:1, 554 mWh·g−1 for LFP/WH 2:1, and 568 mWh·g−1 for the reference LFP/graphite system. These performance results demonstrate that the development of high-performing bio-sourced activated carbon depends on the optimization of various parameters, including chemical composition, specific surface area, pore volume and size distribution, as well as electrical conductivity. Full article
Show Figures

Figure 1

23 pages, 1147 KB  
Article
Understanding Heat Generation of LNMO Cathodes in Lithium-Ion Batteries via Entropy and Resistance
by Kevin Böhm, Aleksandr Kondrakov, Torsten Markus and David Henriques
Batteries 2025, 11(10), 357; https://doi.org/10.3390/batteries11100357 - 28 Sep 2025
Abstract
The heat generation of lithium-ion batteries is a critical parameter, as it significantly affects cell temperature. Poor thermal management can lead to elevated cell temperatures, accelerating side reactions, reducing cell lifetime, and, in extreme cases, causing thermal runaway. Therefore, understanding heat generation is [...] Read more.
The heat generation of lithium-ion batteries is a critical parameter, as it significantly affects cell temperature. Poor thermal management can lead to elevated cell temperatures, accelerating side reactions, reducing cell lifetime, and, in extreme cases, causing thermal runaway. Therefore, understanding heat generation is crucial for the commercialization of emerging battery materials. Due to its high energy density, lithium–nickel–manganese–oxide (LNMO) is an attractive candidate for next-generation cathode materials; however, the composition of its heat generation is not yet fully understood. To address this, the state-of-charge (SoC)-dependent entropy coefficient and resistance of disordered LNMO cathodes are determined using the potentiometric method. The results show that both values are strongly influenced by the redox reactions of Ni and Mn. The entropy coefficient varies between 5.2 and −32.4 J mol1 K1, depending on the SoC. Furthermore, the resistance exhibits a switching dependence on kinetics and mass transfer. The resulting heat flux calculations indicate that, at SoC < 20%, heat generation is dominated by the kinetic behavior of LNMO, leading to two exothermal peaks during discharge and one exothermal peak during charge. This behavior is validated through a comparison with a low-current calorimetric measurement. Full article
Show Figures

Graphical abstract

25 pages, 6367 KB  
Article
Multiphysics Optimization of Graphite-Buffered Bilayer Anodes with Diverse Inner Materials for High-Energy Lithium-Ion Batteries
by Juan C. Rubio and Martin Bolduc
Batteries 2025, 11(10), 350; https://doi.org/10.3390/batteries11100350 - 25 Sep 2025
Abstract
This study presents a multiphysics simulation approach to optimize graphite-buffered bilayer anodes for enhanced energy density in lithium-ion batteries, assessing the electrochemical impact of diverse inner-layer materials, including silicon, hard carbon, lithium titanate (LTO), and metallic lithium, in pure and graphite-composite forms. A [...] Read more.
This study presents a multiphysics simulation approach to optimize graphite-buffered bilayer anodes for enhanced energy density in lithium-ion batteries, assessing the electrochemical impact of diverse inner-layer materials, including silicon, hard carbon, lithium titanate (LTO), and metallic lithium, in pure and graphite-composite forms. A coupled finite-element model implemented in COMSOL Multiphysics 6.2 was used to integrate spherical lithium diffusion, charge conservation, and the solid electrolyte interphase (SEI) formation kinetics. The evaluated anode structure consisted of a 60 µm-thick bilayer: a 30 µm graphite surface layer coupled with a 30 µm inner layer of alternative active materials. Simulations were performed using an NMC622 cathode, LiPF6 in EC:EMC electrolyte, at room temperature, under a charge rate of 1 C, considering realistic particle sizes (graphite: 2.5 µm; Si: 0.1 µm; hard carbon: 2.5 µm; LTO: 0.2 µm; Li metal: 0.5 µm), and evaluated over 2000 cycles. The hard carbon/graphite configuration exhibited a capacity fade of 5.8% compared with 7.1% in pure graphite. Additionally, the SEI thickness decreased to 0.20 µm (from 0.25 µm), the overpotential dropped to −17 mV (from −59 mV), and the electrolyte consumption was reduced to 20.8% (from 42.9%). The analysis highlights hard carbon and LTO inner layers as optimal trade-offs between capacity and cycle stability, whereas silicon and lithium metal significantly increased the initial capacity but accelerated SEI formation and impedance growth. These findings demonstrate the graphite-buffered bilayer’s potential to decouple interfacial degradation from high-capacity materials, providing valuable guidelines for the design of advanced lithium-ion battery anodes. Full article
Show Figures

Figure 1

20 pages, 6754 KB  
Article
Study on the Wear Behavior Mechanism of SUS304 Stainless Steel During the Homogenization Process of LFP/NCM Slurry
by Xiangli Wen, Mingkun Bi, Lvzhou Li and Jianning Ding
Materials 2025, 18(19), 4457; https://doi.org/10.3390/ma18194457 - 24 Sep 2025
Viewed by 31
Abstract
During the homogenization process of lithium battery slurry, the slurry shearing process causes the surface of the homogenization equipment to wear and generate metal containing debris, which poses a risk of inducing battery self-discharge and even explosion. Therefore, inhibiting wear of homogenizing equipment [...] Read more.
During the homogenization process of lithium battery slurry, the slurry shearing process causes the surface of the homogenization equipment to wear and generate metal containing debris, which poses a risk of inducing battery self-discharge and even explosion. Therefore, inhibiting wear of homogenizing equipment is imperative, and systematic investigation into the wear behavior and underlying mechanisms of SUS304 stainless steel during homogenization is urgently required. In this study, lithium iron phosphate (LFP) and lithium nickel cobalt manganese oxide (NCM) cathode slurries were used as research objects. Changes in surface parameters, microstructure, and elemental composition of the wear region on SUS304 stainless steel under different working conditions were characterized. The results indicate that in the SUS304-lithium-ion battery slurry system, the potential wear mechanism of SUS304 gradually evolves with changes in load and rotational speed, following the order: adhesive wear (low speed, low load) → abrasive wear (medium speed, high load) → fatigue wear (high speed). Under high-load and high-rotational-speed conditions, oxidative corrosion wear on the ball–disc contact surface is particularly pronounced. Additionally, wear of SUS304 is more severe in the LFP slurry system compared to the NCM system. Macroscopic experiments also revealed that the speed effect is a core factor influencing the wear of SUS304, and the increase in its wear rate is more than twice that caused by the load effect. This study helps to clarify the wear behavior and wear mechanism evolution of homogenization equipment during the lithium battery homogenization process, providing data support and optimization direction for subsequent material screening and surface strengthening treatment of homogenization equipment components. Full article
Show Figures

Figure 1

21 pages, 5589 KB  
Article
Thermal and Fluid Flow Performance Optimization of a Multi-Fin Multi-Channel Cooling System for PEMFC Using CFD and Experimental Validation
by Fitri Adi Iskandarianto, Djatmiko Ichsani and Fadlilatul Taufany
Energies 2025, 18(19), 5048; https://doi.org/10.3390/en18195048 - 23 Sep 2025
Viewed by 114
Abstract
Efficient thermal management is critical for sustaining the performance and durability of Proton Exchange Membrane Fuel Cells (PEMFCs), where excessive operating temperatures accelerate material degradation and reduce power output. Previous studies have explored various cooling channel designs; however, limited research integrates zigzag multi-fin [...] Read more.
Efficient thermal management is critical for sustaining the performance and durability of Proton Exchange Membrane Fuel Cells (PEMFCs), where excessive operating temperatures accelerate material degradation and reduce power output. Previous studies have explored various cooling channel designs; however, limited research integrates zigzag multi-fin geometries with both computational and experimental validation for fin width optimization under high-velocity cooling. This study presents a combined Computational Fluid Dynamics (CFD) simulation using ANSYS Fluent and experimental investigation of a multi-fin multi-channel cooling system for PEMFCs. The effects of fin widths (0.3–1.0 mm), inlet flow velocities (0.6–3.0 m/s), and cooling media (air, 20% ethylene glycol (EG) solution) were analyzed with respect to cathode surface temperature, power density, and cooling efficiency. Results show that a 0.3 mm fin width with 3.0 m/s inlet velocity reduced the cathode temperature by ~13 K and increased power density by ~40%. The optimized zigzag configuration improved heat transfer uniformity, achieving cooling efficiencies up to 67.0%. Experimental validation confirmed the CFD results with less than 3% deviation. The findings highlight the potential of optimized multi-fin designs to enhance PEMFC thermal stability and electrical output, offering a practical approach for advanced fuel cell thermal management systems. Full article
(This article belongs to the Special Issue Proton-Exchange Membrane (PEM) Fuel Cells and Water Electrolysis)
Show Figures

Figure 1

16 pages, 2009 KB  
Article
Effects of Ni Content on Energy Density, Capacity Fade and Heat Generation in Li[NixMnyCoz]O2/Graphite Lithium-Ion Batteries
by Gaoyong Zhang, Shuhuang Tan, Chengqi Sun, Kun Zhang, Banglin Deng and Cheng Liao
Micromachines 2025, 16(10), 1075; https://doi.org/10.3390/mi16101075 - 23 Sep 2025
Viewed by 145
Abstract
The demand for high energy density in mobile devices (including vehicles and small ships) is increasing. Nickel–Manganese–Cobalt (NMC) ternary, as a battery cathode material, is increasingly being applied because of its higher energy density relative to LiFePO4 or other traditional materials. But [...] Read more.
The demand for high energy density in mobile devices (including vehicles and small ships) is increasing. Nickel–Manganese–Cobalt (NMC) ternary, as a battery cathode material, is increasingly being applied because of its higher energy density relative to LiFePO4 or other traditional materials. But NMC also faces challenges, such as a high degeneration rate and heat generation. So these aspects of Ni content must be clarified. In the current study, two Ni-content battery cells were tested, and the results of other composition cathode cells from the literature were compared. And three typical Ni-content batteries were simulated for searching Ni effects on performance, capacity fade and heat generation. Some findings were achieved: (1) from 0.8 Ni content, it can be seen that the specific capacity growth rate (slope) was much greater than before; (2) cathode materials that have an odd number (that does not surpass 0.7) of Ni content showed a linear capacity degradation trend, but others did not; (3) the Li concentration within material particles did not correspond to absolute stress value but stress temporal gradient; and (4) during discharge, lower Ni content made the heat peak occur earlier but lowered the absolute value; the irreversible heat increased with Ni content non-linearly, so that the higher the Ni content went up, the higher the increase rate of the irreversible heat ratio. Thus, the results of this study can guide the design and application of high energy batteries for mobile devices. Full article
(This article belongs to the Section E:Engineering and Technology)
Show Figures

Figure 1

17 pages, 2175 KB  
Article
From Thermal Conversion to Cathode Performance: Acid-Activated Walnut Shell Biochar in Li–S Batteries and Its Impact on Air Quality
by Fabricio Aguirre, Guillermina Luque, Gabriel Imwinkelried, Fernando Cometto, Clara Saux, Mariano Teruel and María Belén Blanco
Thermo 2025, 5(3), 34; https://doi.org/10.3390/thermo5030034 - 19 Sep 2025
Viewed by 302
Abstract
The thermal processing of walnut shells was investigated through pyrolysis within the range of 100–650 °C, highlighting the influence of thermal engineering parameters on biomass conversion. The resulting biochar was subjected to chemical activation with phosphoric acid, and its physicochemical properties were evaluated [...] Read more.
The thermal processing of walnut shells was investigated through pyrolysis within the range of 100–650 °C, highlighting the influence of thermal engineering parameters on biomass conversion. The resulting biochar was subjected to chemical activation with phosphoric acid, and its physicochemical properties were evaluated to determine how thermal processing enhances its performance as a cathode material for lithium–sulfur (Li–S) batteries. This approach underscores the role of thermal engineering in bridging biomass valorization with energy storage technologies. In parallel, the gaseous fraction generated during walnut shell fast pyrolysis was collected, and for the first time, volatile organic compounds (VOCs) under atmospheric conditions were identified using solid-phase microextraction (SPME) coupled with gas chromatography–mass spectrometry (GC–MS). The composition of the VOCs was characterized, quantifying aromatic compounds, hydrocarbons, furans, and oxygenated species. This study further linked the thermal decomposition pathways of these compounds to their atmospheric implications by estimating tropospheric lifetimes and evaluating their potential contributions to air quality degradation at the local, regional, and global scales. Full article
Show Figures

Figure 1

28 pages, 4839 KB  
Review
Advancing Zinc–Manganese Oxide Batteries: Mechanistic Insights, Anode Engineering, and Cathode Regulation
by Chuang Zhao, Yiheng Zhou, Yudong Liu, Bo Li, Zhaoqiang Li, Yu Zhang, Deqiang Wang, Ruilin Qiu, Qilin Shuai, Yuan Xue, Haoqi Wang, Xiaojuan Shen, Wu Wen, Di Wu and Qingsong Hua
Nanomaterials 2025, 15(18), 1439; https://doi.org/10.3390/nano15181439 - 18 Sep 2025
Viewed by 385
Abstract
Rechargeable aqueous Zn-MnO2 batteries are positioned as a highly promising candidate for next-generation energy storage, owing to their compelling combination of economic viability, inherent safety, exceptional capacity (with a theoretical value of ≈308 mAh·g−1), and eco-sustainability. However, this system still [...] Read more.
Rechargeable aqueous Zn-MnO2 batteries are positioned as a highly promising candidate for next-generation energy storage, owing to their compelling combination of economic viability, inherent safety, exceptional capacity (with a theoretical value of ≈308 mAh·g−1), and eco-sustainability. However, this system still faces multiple critical challenges that hinder its practical application, primarily including the ambiguous energy storage reaction mechanism (e.g., unresolved debates on core issues such as ion transport pathways and phase transition kinetics), dendrite growth and side reactions (e.g., the hydrogen evolution reaction and corrosion reaction) on the metallic Zn anode, inadequate intrinsic electrical conductivity of MnO2 cathodes (≈10−5 S·cm−1), active material dissolution, and structural collapse. This review begins by systematically summarizing the prevailing theoretical models that describe the energy storage reactions in Zn-Mn batteries, categorizing them into the Zn2+ insertion/extraction model, the conversion reaction involving MnOx dissolution–deposition, and the hybrid mechanism of H+/Zn2+ co-intercalation. Subsequently, we present a comprehensive discussion on Zn anode protection strategies, such as surface protective layer construction, 3D structure design, and electrolyte additive regulation. Furthermore, we focus on analyzing the performance optimization strategies for MnO2 cathodes, covering key pathways including metal ion doping (e.g., introduction of heteroions such as Al3+ and Ni2+), defect engineering (oxygen vacancy/cation vacancy regulation), structural topology optimization (layered/tunnel-type structure design), and composite modification with high-conductivity substrates (e.g., carbon nanotubes and graphene). Therefore, this review aims to establish a theoretical foundation and offer practical guidance for advancing both fundamental research and practical engineering of Zn-manganese oxide secondary batteries. Full article
(This article belongs to the Section Nanoelectronics, Nanosensors and Devices)
Show Figures

Graphical abstract

20 pages, 2932 KB  
Article
Manganese-Based Electrocatalysts for Acidic Oxygen Evolution: Development and Performance Evaluation
by Giulia Cuatto, Elenia De Meis, Hilmar Guzmán and Simelys Hernández
Nanomaterials 2025, 15(18), 1434; https://doi.org/10.3390/nano15181434 - 18 Sep 2025
Viewed by 209
Abstract
Currently, the growing demand for sustainable hydrogen makes the oxygen evolution reaction (OER) increasingly important. To boost the performance of electrochemical cells for water electrolysis, both cathodic and anodic sides need to be optimized. Noble metal catalysts for the OER suffer from high [...] Read more.
Currently, the growing demand for sustainable hydrogen makes the oxygen evolution reaction (OER) increasingly important. To boost the performance of electrochemical cells for water electrolysis, both cathodic and anodic sides need to be optimized. Noble metal catalysts for the OER suffer from high costs and limited availability; therefore, developing efficient, low-cost alternatives is crucial. This work investigates manganese-based materials as potential noble-metal-free catalysts. Mn antimonates, Mn chlorates, and Mn bromates were synthesized using ultrasound-assisted techniques to enhance phase composition and homogeneity. Physicochemical characterizations were performed using X-ray diffraction (XRD) and Scanning Electron Microscopy (SEM), together with energy-dispersive X-ray spectroscopy (EDX) and surface area analyses. All samples exhibited a low surface area and inter-particle porosity within mixed crystalline phases. Among the catalysts, Mn7.5O10Br3, synthesized via ultrasound homogenization (30 min at 59 kHz) and calcined at 250 °C, showed the highest OER activity. Drop-casted on Fluorine-Doped Tin Oxide (FTO)-coated Ti mesh, it achieved an overpotential of 153 mV at 10 mA cm−2, with Tafel slopes of 103 mV dec−1 and 160 mV dec−1 at 1, 2, and 4 mA cm−2 and 6, 8, 10, and 11 mA cm−2, respectively. It also demonstrated good short-term stability (1 h) in acidic media, with a strong signal-to-noise ratio. Its short-term stability is comparable to that of the benchmark IrO2, with a potential drift of 15 mV h−1 and a standard deviation of 3 mV for the best-performing electrode. The presence of multiple phases suggests room for further optimization. Overall, this study provides a practical route for designing noble metal-free Mn-based OER catalysts. Full article
(This article belongs to the Section Energy and Catalysis)
Show Figures

Figure 1

Back to TopTop