Sign in to use this feature.

Years

Between: -

Subjects

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Journals

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Article Types

Countries / Regions

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Search Results (900)

Search Parameters:
Keywords = cavity stability

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
19 pages, 7419 KB  
Article
Study on Surrounding Rock Stability During Solution Mining and Operation of Salt Cavern Gas Storage with Different Height-to-Diameter Ratios and Burial Depths
by Xiaochuan Yang, Yan Qin, Shaopo Li, Yuxi Guo, Shuangxi Feng, Zhuangzhuang He, Jiayu Qin and Nengxiong Xu
Appl. Sci. 2025, 15(19), 10723; https://doi.org/10.3390/app151910723 - 5 Oct 2025
Abstract
Salt cavern gas storage (SCGS) is a key development direction for future energy storage. However, the stability of the surrounding rock in underground SCGS remains a challenging issue to be resolved. This study uses numerical simulation methods to analyze the stability of the [...] Read more.
Salt cavern gas storage (SCGS) is a key development direction for future energy storage. However, the stability of the surrounding rock in underground SCGS remains a challenging issue to be resolved. This study uses numerical simulation methods to analyze the stability of the surrounding rock in SCGS at different height-to-diameter ratios and burial depths during both solution mining and long-term operation. The research results show that: SCGS at the same burial depth, as the height-to-diameter ratio increases from 1.2 to 2.2, the maximum displacement of the surrounding rock decreases by 32.3% and the plastic zone area decreases by 54.1%. However, the density of the plastic zone and the volume shrinkage of SCGS rate increase. The optimal cavern shape lies between a height-to-diameter ratio of 1.2 and 1.5. At the same height-to-diameter ratio, the stability of the salt cavern decreases as burial depth increases: the maximum displacement of the surrounding rock, cavern shrinkage rate, and plastic zone area increase by 94.6%, 99.05%, and 78.61%, respectively. Therefore, within a reasonable burial depth range, a shallower burial depth is more favorable for the stability of the surrounding rock. The presence of interlayers reduces cavern displacement, plastic zone, and cavity volume shrinkage, thereby influencing the stability of the surrounding rock. Among them, the interlayer located at the cavern waist reduced the cavern shrinkage rate by 10% and the maximum displacement by 21.9%, exerting the greatest influence on the stability of the surrounding rock. Full article
(This article belongs to the Special Issue Sustainability and Challenges of Underground Gas Storage Engineering)
Show Figures

Figure 1

32 pages, 6546 KB  
Review
Sputter-Deposited Superconducting Thin Films for Use in SRF Cavities
by Bharath Reddy Lakki Reddy Venkata, Aleksandr Zubtsovskii and Xin Jiang
Nanomaterials 2025, 15(19), 1522; https://doi.org/10.3390/nano15191522 - 5 Oct 2025
Abstract
Particle accelerators are powerful tools in fundamental research, medicine, and industry that provide high-energy beams that can be used to study matter and to enable advanced applications. The state-of-the-art particle accelerators are fundamentally constructed from superconducting radio-frequency (SRF) cavities, which act as resonant [...] Read more.
Particle accelerators are powerful tools in fundamental research, medicine, and industry that provide high-energy beams that can be used to study matter and to enable advanced applications. The state-of-the-art particle accelerators are fundamentally constructed from superconducting radio-frequency (SRF) cavities, which act as resonant structures for the acceleration of charged particles. The performance of such cavities is governed by inherent superconducting material properties such as the transition temperature, critical fields, penetration depth, and other related parameters and material quality. For the last few decades, bulk niobium has been the preferred material for SRF cavities, enabling accelerating gradients on the order of ~50 MV/m; however, its intrinsic limitations, high cost, and complicated manufacturing have motivated the search for alternative strategies. Among these, sputter-deposited superconducting thin films offer a promising route to address these challenges by reducing costs, improving thermal stability, and providing access to numerous high-Tc superconductors. This review focuses on progress in sputtered superconducting materials for SRF applications, in particular Nb, NbN, NbTiN, Nb3Sn, Nb3Al, V3Si, Mo–Re, and MgB2. We review how deposition process parameters such as deposition pressure, substrate temperature, substrate bias, duty cycle, and reactive gas flow influence film microstructure, stoichiometry, and superconducting properties, and link these to RF performance. High-energy deposition techniques, such as HiPIMS, have enabled the deposition of dense Nb and nitride films with high transition temperatures and low surface resistance. In contrast, sputtering of Nb3Sn offers tunable stoichiometry when compared to vapour diffusion. Relatively new material systems, such as Nb3Al, V3Si, Mo-Re, and MgB2, are just a few of the possibilities offered, but challenges with impurity control, interface engineering, and cavity-scale uniformity will remain. We believe that future progress will depend upon energetic sputtering, multilayer architectures, and systematic demonstrations at the cavity scale. Full article
(This article belongs to the Section 2D and Carbon Nanomaterials)
Show Figures

Graphical abstract

46 pages, 1826 KB  
Review
CO2 Capture and Sequestration by Gas Hydrates: An Overview of the Influence and Chemical Characterization of Natural Compounds and Sediments in Marine Environments
by Lorenzo Remia, Andrea Tombolini, Rita Giovannetti and Marco Zannotti
J. Mar. Sci. Eng. 2025, 13(10), 1908; https://doi.org/10.3390/jmse13101908 - 3 Oct 2025
Abstract
Due to the rising atmospheric carbon dioxide levels driven by human activity, extensive scientific efforts have been dedicated to developing methods aimed at reducing its concentration in the atmosphere. A novel approach involves using hydrates as a long-lasting reservoir of CO2 sequestration. [...] Read more.
Due to the rising atmospheric carbon dioxide levels driven by human activity, extensive scientific efforts have been dedicated to developing methods aimed at reducing its concentration in the atmosphere. A novel approach involves using hydrates as a long-lasting reservoir of CO2 sequestration. This review provides an initial overview of hydrate characteristics, their formation mechanisms, and the experimental techniques commonly employed for their characterization, including X-ray, Raman spectroscopy, cryoSEM, DSC, and molecular dynamic simulation. One of the main challenges in CO2 sequestration via hydrates is the requirement of high pressures and low temperatures to stabilize CO2 molecules within the hydrate crystalline cavities. However, deviations from classical temperature-pressure phase diagrams observed in natural and engineered environments can be explained by considering that hydrate stability and formation are primarily governed by chemical potentials, not just temperature and pressure. Activity, which reflects concentration and non-ideal interactions, greatly influences chemical potentials, emphasizing the importance of solution composition, salinity, and additives. In this context the role of promoters and inhibitors in facilitating or hindering hydrate formation is discussed. Furthermore, the review presents an overview of the impact of marine sediments and naturally occurring compounds on CO2 hydrate formation, along with the sampling methodologies used in sediments to determine the composition of these natural compounds. Special attention is given to the effect and chemical characterization of dissolved organic matter (DOM) in marine aquatic environments. The focus is placed on the key roles of various natural occurring molecules, such as amino acids, protein derivatives, and humic substances, along with the analytical techniques employed for their chemical characterization, highlighting their central importance in the CO2 gas hydrates formation. Full article
(This article belongs to the Special Issue Advances in Marine Gas Hydrates)
16 pages, 6614 KB  
Article
Prediction of the Bearing Capacity Envelope for Spudcan Foundations of Jack-Up Rigs in Hard Clay with Varying Strengths
by Mingyuan Wang, Xing Yang, Yangbin Chen, Dong Wang and Huimin Sun
J. Mar. Sci. Eng. 2025, 13(10), 1899; https://doi.org/10.3390/jmse13101899 - 3 Oct 2025
Abstract
In offshore drilling and geological exploration, the stability of jack-up rigs is predominantly determined by the bearing capacities of spudcan foundations during seabed penetration. The penetration depth of spudcans is relatively shallow in hard clay. The formation of a cavity on the top [...] Read more.
In offshore drilling and geological exploration, the stability of jack-up rigs is predominantly determined by the bearing capacities of spudcan foundations during seabed penetration. The penetration depth of spudcans is relatively shallow in hard clay. The formation of a cavity on the top surface of a spudcan often complicates accurate estimation of its capacity. This study employs the finite element method, in conjunction with the Swipe and Probe loading techniques, to examine the failure surfaces of soils of varying strengths. Numerical simulations that consider different gradients of undrained shear strength and cavity depths demonstrate that cavity depth significantly influences the failure envelope. The findings indicate that higher soil strength increases the bearing capacity and reduces the area of soil displacement at failure. Moreover, an enhanced theoretical equation for predicting the vertical-horizontal-moment (V-H-M) failure envelope in hard clay strata is proposed. The equation’s accuracy has been verified against numerical simulation results, revealing an error margin of 3–10% under high vertical loads. This model serves as a practical and valuable tool for assessing the stability of jack-up rigs in hard clay, providing critical insights for engineering design safety and risk assessment. Full article
(This article belongs to the Section Geological Oceanography)
Show Figures

Figure 1

23 pages, 4453 KB  
Article
Inhibitory Effects of Bisphenol Z on 11β-Hydroxysteroid Dehydrogenase 1 and In Silico Molecular Docking Analysis
by Tomasz Tuzimski and Mateusz Sugajski
Molecules 2025, 30(19), 3941; https://doi.org/10.3390/molecules30193941 - 1 Oct 2025
Abstract
Bisphenol A (BPA) is classified as an endocrine disruptor that mainly mimics the effects of estrogen and disrupts the synthesis of male androgens. Due to the toxicity of BPA, some new analogs, such as bisphenol BPB, BPC, BPF, PBH, and BPZ, were introduced [...] Read more.
Bisphenol A (BPA) is classified as an endocrine disruptor that mainly mimics the effects of estrogen and disrupts the synthesis of male androgens. Due to the toxicity of BPA, some new analogs, such as bisphenol BPB, BPC, BPF, PBH, and BPZ, were introduced into the market. The goal of this research was to demonstrate the applicability of kinetic analysis, in particular, Lineweaver-Burk plots, in assessing the impact of bisphenol Z on enzymatic activity. This study aimed to characterize the inhibitory effects of BPZ on 11β-hydroxysteroid dehydrogenase 1 (11β-HSD1) activity in the transformation of 11-dehydrocorticosterone (DHC) to corticosterone (CORT). During the determination of the enzymatic reaction product, chromatographic analysis conditions were optimized using gradient elution and an Acquity UPLC BEH C18 chromatographic column. The retention time of the assayed corticosterone was approximately 2 min. Also described and compared were graphical methods of analysis and data interpretation, such as Lineweaver-Burk, Eadie-Hofstee, and Hanes-Woolf plots. The experiments demonstrated that bisphenol Z is a mixed 11β-hydroxysteroid dehydrogenase 1 (11β-HSD1) inhibitor, responsible for catalyzing the conversion of 11-dehydrocorticosterone (DHC) to corticosterone (CORT). This relationship was confirmed by analyzing Lineweaver-Burk plots, which showed an increase in apparent KM with a decrease in the constant Vmax, suggesting a mixed inhibition mechanism. Molecular docking and detailed analysis of the interaction profiles revealed that BPZ consistently occupies the active site cavities of all examined enzymes (rat and human 11β-HSD1 and Arabidopsis 11β-HSD2), forming a stabilizing network of non-covalent interactions. Our research has significant biological significance considering the role of the 11β-HSD1 enzyme in the conversion of DHC to CORT and the importance of this process and its functions in adipose tissue, the liver, and the brain. Full article
(This article belongs to the Special Issue Modern Trends and Solutions in Analytical Chemistry in Poland)
Show Figures

Figure 1

38 pages, 3536 KB  
Article
Application of Cooling Layer and Thin Thickness Between Coolant and Cavity for Mold Temperature Control and Improving Filling Ability of Thin-Wall Injection Molding Product
by Tran Minh The Uyen, Pham Son Minh and Bui Chan Thanh
Polymers 2025, 17(19), 2658; https://doi.org/10.3390/polym17192658 - 30 Sep 2025
Abstract
Effective thermal management of molds is a governing factor of the quality and stability of the injection molding process. This study introduces and validates an integrated cooling layer within a thin-walled insert mold designed to enhance thermal control and cavity filling performance. A [...] Read more.
Effective thermal management of molds is a governing factor of the quality and stability of the injection molding process. This study introduces and validates an integrated cooling layer within a thin-walled insert mold designed to enhance thermal control and cavity filling performance. A coupled heat transfer simulation model was developed and subsequently calibrated against experimental temperature measurements. To isolate the mold’s intrinsic thermal response, temperatures were measured during distinct heating and cooling cycles, free from the perturbations of polymer melt flow. The validated mold was then installed on a Haitian MA1200 III injection molding machine to conduct molding trials under various injection pressures. A strong correlation was found between the simulation and experimental results, particularly as pressure increased, which significantly improved cavity filling and reduced the deviation between the two methods. The integrated cooling layer was shown to enhance heat dissipation, minimize thermal gradients, and promote a more uniform thermal field. This, in turn, improved filling stability, especially at moderate injection pressures. These findings provide robust quantitative data for simulation model calibration and mold design optimization, highlighting the potential of advanced cooling strategies to significantly enhance injection molding performance. Full article
(This article belongs to the Special Issue Advances in Polymer Processing Technologies: Injection Molding)
16 pages, 1228 KB  
Article
Simulation of an Asymmetric Photonic Structure Integrating Tamm Plasmon Polariton Modes and a Cavity Mode for Potential Urinary Glucose Sensing via Refractive Index Shifts
by Hung-Che Chou, Rashid G. Bikbaev, Ivan V. Timofeev, Mon-Juan Lee and Wei Lee
Biosensors 2025, 15(10), 644; https://doi.org/10.3390/bios15100644 - 29 Sep 2025
Abstract
Diabetes has become a global health challenge, driving the demand for innovative, non-invasive diagnostic technologies to improve glucose monitoring. Urinary glucose concentration, a reliable indicator of metabolic changes, provides a practical alternative for frequent monitoring without the discomfort of invasive methods. In this [...] Read more.
Diabetes has become a global health challenge, driving the demand for innovative, non-invasive diagnostic technologies to improve glucose monitoring. Urinary glucose concentration, a reliable indicator of metabolic changes, provides a practical alternative for frequent monitoring without the discomfort of invasive methods. In this simulation-based study, we propose a novel asymmetric photonic structure that integrates Tamm plasmon polariton (TPP) modes and a cavity mode for high-precision refractive index sensing, with a conceptual focus on the potential detection of urinary glucose. The structure supports three distinct resonance modes, each with unique field localization. Both the TPP modes, confined at the metallic–dielectric interfaces, serve as stable references whose wavelengths are unaffected by refractive-index variations in human urine, whereas the cavity mode exhibits a redshift with increasing refractive index, enabling high responsiveness to analyte changes. The evaluation of sensing performance employs a sensitivity formulation that leverages either TPP mode as a reference and the cavity mode as a probe, thereby achieving dependable measurement and spectral stability. The optimized design achieves a sensitivity of 693 nm·RIU−1 and a maximum figure of merit of 935 RIU−1, indicating high detection resolution and spectral sharpness. The device allows both reflectance and transmittance measurements to ensure enhanced versatility. Moreover, the coupling between TPP and cavity modes demonstrates hybrid resonance, empowering applications such as polarization-sensitive or angle-dependent filtering. The figure of merit is analyzed further, considering resonance wavelength shifts and spectral sharpness, thus manifesting the structure’s robustness. Although this study does not provide experimental data such as calibration curves, recovery rates, or specificity validation, the proposed structure offers a promising conceptual framework for refractive index-based biosensing in human urine. The findings position the structure as a versatile platform for advanced photonic systems, offering precision, tunability, and multifunctionality beyond the demonstrated optical sensing capabilities. Full article
Show Figures

Figure 1

11 pages, 3040 KB  
Article
Lip Reconstruction Using Buccal Fat Pad Free Graft: A Clinical Series
by Jameel Ghantous, Eran Regev, Kareem Abu-Libdeh, Ayalon Hadar, Chanan Shaul and Rizan Nashef
J. Otorhinolaryngol. Hear. Balance Med. 2025, 6(2), 17; https://doi.org/10.3390/ohbm6020017 - 29 Sep 2025
Abstract
Background/Objectives: Maxillofacial volumetric deficits are often treated using structural fat grafting with autologous free fat grafts. The buccal fat pad (BFP) is commonly used as a pedicled flap for limited oral cavity applications. This study explores its use as a free graft [...] Read more.
Background/Objectives: Maxillofacial volumetric deficits are often treated using structural fat grafting with autologous free fat grafts. The buccal fat pad (BFP) is commonly used as a pedicled flap for limited oral cavity applications. This study explores its use as a free graft for reconstructing deformities in the upper and lower lips caused by trauma or tumor resections. Methods: Five patients underwent soft tissue defect reconstruction using a free fat graft from the BFP, following standard surgical procedures. Techniques for harvesting, transferring, and evaluating aesthetic and functional outcomes up to three months post-surgery are detailed, with long-term follow-up extending to an average of 20 months (range 12–24 months). Results: Initial post-operative assessments showed lip asymmetry due to edema and excessive graft volume. Partial necrosis was observed within 1–2 weeks, typical of tissue healing. By 4–5 weeks, mucosal revascularization occurred, with desired lip volume and functionality achieved between 8–12 weeks. Long-term follow-up averaging 20 months demonstrated excellent graft stability with no volume regression beyond the vermilion border in all patients. Conclusions: The BFP as a free graft offers advantages such as high survival rates and easy harvesting. It effectively restores lip function, volume, and aesthetics. Challenges include graft manipulation, retention, potential fibrosis, and volume unpredictability. Future refinements in technique and follow-up are necessary to overcome these issues, enhancing the reliability of BFP for lip reconstruction. Full article
(This article belongs to the Section Head and Neck Surgery)
Show Figures

Figure 1

25 pages, 5823 KB  
Article
Study on Flow Field Characteristics of High-Speed Double-Row Ball Bearings with Under-Race Lubrication
by Xiaozhou Hu and Jian Lin
Aerospace 2025, 12(10), 861; https://doi.org/10.3390/aerospace12100861 - 24 Sep 2025
Viewed by 37
Abstract
As a core component of aero-engines, double-row ball bearings’ lubrication performance directly impacts the operational stability of the aircraft engine. However, existing under-race lubrication designs primarily rely on empirical knowledge, with insufficient understanding of the complex oil–air two-phase flow mechanisms, leading to bottlenecks [...] Read more.
As a core component of aero-engines, double-row ball bearings’ lubrication performance directly impacts the operational stability of the aircraft engine. However, existing under-race lubrication designs primarily rely on empirical knowledge, with insufficient understanding of the complex oil–air two-phase flow mechanisms, leading to bottlenecks in optimizing lubrication efficiency. Therefore, based on the computational fluid dynamics (CFD) method, a two-phase flow model for double-row ball bearings was established to systematically analyze the influence patterns of key parameters—including rotational speed, oil supply rate, number of under-race holes, diameter of under-race holes, and oil properties (viscosity, density)—on the distribution of the oil–air two-phase flow. The findings reveal that (1) the oil in the circumferential direction of the bearing cavity exhibits periodic distribution characteristics correlated with the number of under-race holes; (2) the self-rotation effect of balls hinders the migration of oil toward the outer raceway region, resulting in a significant reduction in the oil volume fraction within the bearing cavity; (3) compared with the single-sided oil supply configuration, the double-sided oil supply structure demonstrates superior lubrication performance. These research results provide theoretical support and reference data for the optimal design of under-race lubrication systems for double-row ball bearings. Full article
(This article belongs to the Section Aeronautics)
Show Figures

Figure 1

11 pages, 1743 KB  
Article
Probing Cold Supersonic Jets with Optical Frequency Combs
by Romain Dubroeucq, Quentin Le Mignon, Julien Lecomte, Nicolas Suas-David, Robert Georges and Lucile Rutkowski
Molecules 2025, 30(19), 3863; https://doi.org/10.3390/molecules30193863 - 24 Sep 2025
Viewed by 106
Abstract
We report high-resolution, cavity-enhanced direct frequency comb Fourier transform spectroscopy of cold acetylene (C2H2) molecules in a planar supersonic jet expansion. The experiment is based on a near-infrared frequency comb with a 300 MHz effective repetition rate, matched to [...] Read more.
We report high-resolution, cavity-enhanced direct frequency comb Fourier transform spectroscopy of cold acetylene (C2H2) molecules in a planar supersonic jet expansion. The experiment is based on a near-infrared frequency comb with a 300 MHz effective repetition rate, matched to a high-finesse enhancement cavity traversing the jet. The rotational and translational cooling of acetylene was achieved via expansion in argon carrier gas through a slit nozzle. By interleaving successive mode-resolved spectra measured at different comb repetition rates, we retrieved full absorption line profiles. Spectroscopic analysis reveals sharp, Doppler-limited transitions corresponding to a jet core rotational temperature below 7 K. Frequency comb and cavity stabilization were achieved through active Pound–Drever–Hall locking and mechanical vibration damping, enabling a spectral precision better than 2 MHz, limited by the vibrations induced by the pumping system. The demonstrated sensitivity reaches a minimum detectable absorption of 7.8 × 10−7 cm−1 over an 18 m effective path length in the jet core. This work illustrates the potential of cavity-enhanced direct frequency comb spectroscopy for precise spectroscopic characterization of cold supersonic expansions, with implications for studies in molecular dynamics, reaction kinetics, and laboratory astrophysics. Full article
(This article belongs to the Special Issue Molecular Spectroscopy and Molecular Structure in Europe)
Show Figures

Graphical abstract

17 pages, 2112 KB  
Article
Highly Sensitive Optical Fiber Pb2+ Concentration Sensor Based on HEMA/AM/SA Interpenetrating Polymer Network (IPN) Hydrogel
by Ning Wang, Ming He, Longjiao Wang, Chuanjie Lei, Linyufan Xiao, Yingjie Li and Shuan Liu
Gels 2025, 11(10), 766; https://doi.org/10.3390/gels11100766 - 23 Sep 2025
Viewed by 84
Abstract
An optical fiber sensor based on a HEMA/AM/SA interpenetrating polymer network (IPN) hydrogel is proposed for monitoring the concentration of Pb2+. The Fabry–Perot interference cavity is constructed from a single-mode fiber, a ceramic ferrule, and an IPN hydrogel layer. P (HEMA [...] Read more.
An optical fiber sensor based on a HEMA/AM/SA interpenetrating polymer network (IPN) hydrogel is proposed for monitoring the concentration of Pb2+. The Fabry–Perot interference cavity is constructed from a single-mode fiber, a ceramic ferrule, and an IPN hydrogel layer. P (HEMA co AM)/SA IPN hydrogel films were prepared by a step-by-step crosslinking method, which had good mechanical properties, swelling properties, and Pb2+ adsorption capacity. The Pb2+ concentration changes cause the interference spectrum shift of the sensor. By monitoring the wavelength shift under different Pb2+ concentrations, the sensor sensitivity in the range of 0~1 ppm Pb2+ concentration in solution is 5.0743 nm/ppm with 0.994 linearity. The influence of different proportions of IPN hydrogel on the performance of the sensor was studied. In the range of 10–90% HEMA, higher sensitivity is obtained by a small weight ratio of HEMA/AM. The sensor stability, repeatability, selectivity, dynamic response, and temperature response are also investigated in experiments. Experimental results demonstrate that the proposed sensor exhibits good stability, sensitivity, repeatability, and selectivity. Owing to its compact structure, straightforward fabrication, low cost, and good sensing performance, this sensor shows strong potential for application in monitoring Pb2+ concentrations. Full article
Show Figures

Figure 1

15 pages, 2111 KB  
Article
Predictive Modeling of Drug Product Stability in Pharmaceutical Blister Packs
by Jan Pech, Christoph Kaminski, Matthias Markus, Werner Hoheisel, Roman Heumann, Judith Winck and Markus Thommes
Pharmaceutics 2025, 17(9), 1233; https://doi.org/10.3390/pharmaceutics17091233 - 22 Sep 2025
Viewed by 268
Abstract
Background/Objectives: The principal function of pharmaceutical blister packaging is to provide protection for the drug product. Moisture is regarded as a critical factor in the physical and chemical aging of drug products. The present work proposes a modeling framework to predict the performance [...] Read more.
Background/Objectives: The principal function of pharmaceutical blister packaging is to provide protection for the drug product. Moisture is regarded as a critical factor in the physical and chemical aging of drug products. The present work proposes a modeling framework to predict the performance of tablet blister materials based on the moisture uptake profile of the drug product as well as degradation characteristics of the drug substance, while the consumption of water due to degradation is included. Methods: The model incorporates three kinetic superimposed processes that define moisture uptake and drug stability. The processes of permeation, sorption and degradation are each described with a rate constant. Based on a mass balance, these rate processes are interconnected and the relative humidity in the blister cavity is predicted. Results: In a case study, the model was applied to demonstrate the feasibility of predicting the stability of blistered tablets. By establishing a correlation between the moisture uptake of the tablet and the drug stability demonstrated in the model, it was feasible to predict the drug content over shelf life. Conclusions: Modeling of the drug stability of blister-packed products enables a rational packaging which offers novel possibilities for reducing material in order to avoid overpackaging of pharmaceutical products. As some of the commonly used barrier materials are considered to not be sustainable, this model can be used to consider a rationally justified reduction or even abandonment of the barrier materials. Full article
Show Figures

Figure 1

17 pages, 2065 KB  
Article
Enhancing Injection Molding Process by Implementing Cavity Pressure Sensors and an Iterative Learning Control (ILC) Methodology
by Diana Angélica García-Sánchez, Jan Mayén Chaires, Hugo Arcos-Gutiérrez, Isaías E. Garduño, Maria Guadalupe Navarro-Rojero, Adriana Gallegos-Melgar, José Antonio Betancourt-Cantera, Maricruz Hernández-Hernández and Victor Hugo Mercado-Lemus
Processes 2025, 13(9), 3010; https://doi.org/10.3390/pr13093010 - 21 Sep 2025
Viewed by 231
Abstract
Plastic injection molding is a widely used manufacturing process for producing plastic components. However, achieving optimal process stability and part quality remains a persistent challenge due to limited real-time feedback during production. The main objective of this study is to present a method [...] Read more.
Plastic injection molding is a widely used manufacturing process for producing plastic components. However, achieving optimal process stability and part quality remains a persistent challenge due to limited real-time feedback during production. The main objective of this study is to present a method to overcome this limitation by integrating in-mold cavity pressure sensors with an Iterative Learning Control (ILC) strategy to optimize key processing parameters autonomously. The ILC methodology established a closed-loop system; over successive production cycles, cavity pressure profiles were analyzed to automatically adjust the holding pressure, holding time, and switchover point. Each iteration refined the parameters based on sensor data, creating a learning-based optimization loop that accelerated the convergence to optimal settings. The methodology was validated by producing an automotive plastic component. The results demonstrate a 100% success rate in correcting ten critical dimensional errors, fulfilling all part tolerances. Additionally, the overall cycle time decreased by 8%, from 55.0 to 50.6 s. Other findings included updates to key process molding parameters, such as reducing holding pressure from 250 to 230 bar and holding time from 18 to 12 s, as well as increasing the switchover point from 41 to 72 mm. This research confirms that combining real-time cavity pressure monitoring with ILC offers a strong, data-driven framework for significantly improving quality, efficiency, and process stability in injection molding. Full article
(This article belongs to the Section Process Control and Monitoring)
Show Figures

Figure 1

19 pages, 1189 KB  
Case Report
Anatomy-Guided Microsurgical Resection of a Dominant Frontal Lobe Tumor Without Intraoperative Adjuncts: A Case Report from a Resource-Limited Context
by Matei Șerban, Corneliu Toader and Răzvan-Adrian Covache-Busuioc
Diagnostics 2025, 15(18), 2393; https://doi.org/10.3390/diagnostics15182393 - 19 Sep 2025
Viewed by 230
Abstract
Background: Glioblastoma (GBM), IDH-wildtype, is one of the most aggressive primary brain malignancies, and maximal safe resection is consistently recognized as a significant prognostic factor. Intraoperative adjuncts including functional mapping, neuronavigation, and fluorescence-guidance are not always present in many centers around the world. [...] Read more.
Background: Glioblastoma (GBM), IDH-wildtype, is one of the most aggressive primary brain malignancies, and maximal safe resection is consistently recognized as a significant prognostic factor. Intraoperative adjuncts including functional mapping, neuronavigation, and fluorescence-guidance are not always present in many centers around the world. The aim is not to suggest equivalence to adjunct-assisted resections, but rather to illustrate the feasibility of anatomy-guided surgery in carefully selected cases and to contribute to the broader discussion on safe operative strategies in resource-limited environments. Methods: We present the case of a 54-year-old right-handed male who presented with progressive non-fluent aphasia, seizures, and signs of intracranial hypertension. Pre-operative MRI showed a heterogeneously hyperintense, frontobasal intra-axial mass involving the dominant inferior frontal gyrus, extending toward the corpus callosum and orbitofrontal cortex, and early subfalcine shift. Surgery was performed via a left frontobasal craniotomy, using subpial dissection and cortical–sulcal anatomical landmarks while aiming to preserve eloquent subcortical tracts (frontal aslant tract, superior longitudinal fasciculus). Nueronavigation, functional mapping or fluorescence was not used. We defined our outcomes by the extent of resection, functional preservation, and early radiological stability. Results: The procedure achieved a subtotal-near-total resection (>95% estimated volume) while maintaining functional motor function from prior to surgery and the patient’s baseline expressive aphasia, with no new neurological deficits. Early post-operative CT showed decompression of the resection cavity without hemorrhage or shift. At three months post-operative, CT showed stability of the cavity and resolution of the most perilesional edema with no evidence of recurrence. Clinically, the patient showed gradual improvement in verbal fluency, he remained seizure free, and maintained independence, which allowed for timeliness of the initiation of adjuvant chemoradiotherapy. Conclusions: We intend for the case to illustrate that, in selected dominant frontal GBM, following microsurgical anatomical principles closely may provide a high extent of resection with the preservation of function, even without advanced intraoperative adjuncts. We hope that our experience may support our colleagues who practice in resource-limited settings and contribute to our shared goal of both oncological outcomes and the quality of life of our patients. Full article
(This article belongs to the Special Issue Clinical Anatomy and Diagnosis in 2025)
Show Figures

Figure 1

19 pages, 2215 KB  
Systematic Review
Assessment of the Effect of Rapid Maxillary Expansion on Nasal Respiratory Function and Obstructive Sleep Apnea Syndrome in Children: A Systematic Review
by Alessio Danilo Inchingolo, Grazia Marinelli, Mirka Cavino, Lucia Pia Zaminga, Sara Savastano, Francesco Inchingolo, Gianluca Martino Tartaglia, Massimo Del Fabbro, Andrea Palermo, Angelo Michele Inchingolo and Gianna Dipalma
J. Clin. Med. 2025, 14(18), 6565; https://doi.org/10.3390/jcm14186565 - 18 Sep 2025
Viewed by 397
Abstract
Background: Obstructive sleep apnea syndrome (OSAS) and impaired nasal breathing are common in children and are frequently linked to maxillary constriction. Rapid maxillary expansion (RME) is an orthopedic treatment used to increase upper airway dimensions and improve respiratory function. It has been [...] Read more.
Background: Obstructive sleep apnea syndrome (OSAS) and impaired nasal breathing are common in children and are frequently linked to maxillary constriction. Rapid maxillary expansion (RME) is an orthopedic treatment used to increase upper airway dimensions and improve respiratory function. It has been hypothesized that RME could contribute to improvements in behavior and cognition, possibly through enhanced sleep and respiratory function. It also promotes the shift from oral to nasal breathing, supporting craniofacial development and neuromuscular stability, and it is increasingly recognized as a multidisciplinary intervention that can improve pediatric health outcomes. With increasing evidence supporting its efficacy, RME should be considered not only for its orthodontic benefits but also as a multidisciplinary treatment option within pediatric care protocols. This underscores the importance of integrated care among orthodontists, ENT specialists, and pediatricians. Aim: To systematically assess the impact of RME on nasal respiratory parameters and sleep-disordered breathing, particularly OSAS, in pediatric patients. Methods: Following PRISMA guidelines, a systematic review was conducted using 12 clinical studies evaluating anatomical and functional respiratory changes after RME in children with mouth breathing or OSAS. Parameters included airway volume (CBCT, cephalometry), nasal resistance (rhinomanometry), and polysomnography (PSG) data. Results: RME consistently resulted in significant increases in nasal cavity volume and upper airway dimensions. Multiple studies reported reductions in the apnea–hypopnea index (AHI), improved oxygen saturation, and better subjective sleep quality. Longitudinal studies confirmed the stability of these benefits. However, variability in study protocols limited meta-analytical comparison. Conclusions: RME is effective in enhancing nasal breathing and mitigating OSAS symptoms in children. While results are promising, further high-quality randomized controlled trials are needed to validate these findings and guide standardized treatment protocols. Full article
(This article belongs to the Section Otolaryngology)
Show Figures

Figure 1

Back to TopTop