Sign in to use this feature.

Years

Between: -

Subjects

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Journals

Article Types

Countries / Regions

Search Results (9)

Search Parameters:
Keywords = ceramsite filter

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
24 pages, 6849 KB  
Article
Efficiency, Microbial Communities, and Nitrogen Metabolism in Denitrification Biological Filter: Insights into Varied Pore Ceramsite Media
by Jiajun Song, Na Yu, Cui Zhao, Yufeng Lv and Jifu Yang
Microorganisms 2025, 13(6), 1187; https://doi.org/10.3390/microorganisms13061187 - 23 May 2025
Viewed by 641
Abstract
This study presented an investigation into the role of ceramsite pore structures in optimizing DNBFs for nitrate-contaminated water treatment. Through systematic comparison of three ceramsite media (CE1, CE2, CE3) with distinct pore structures, we elucidated the microbial mechanisms underlying nitrate removal efficiency by [...] Read more.
This study presented an investigation into the role of ceramsite pore structures in optimizing DNBFs for nitrate-contaminated water treatment. Through systematic comparison of three ceramsite media (CE1, CE2, CE3) with distinct pore structures, we elucidated the microbial mechanisms underlying nitrate removal efficiency by analyzing denitrification performance, biomass accumulation, EPS, microbial community structure, and nitrogen metabolic function. Results demonstrated that the CE2 medium, characterized by an effective porosity (pore size > 0.5 μm) of 55.8% and an optimal porosity (pore size 0.5–25 μm) percentage of 83.1%, achieved superior nitrate removal efficiency (87.8%) with an Rvd of 0.82 kg TN/(m3·d) at HRT = 1.5 h, outperforming CE1 (0.74 kg TN/(m3·d)) and CE3 (0.68 kg TN/(m3·d)). Enhanced performance was mechanistically linked to CE2’s higher biomass accumulation (8.5 vs. 7.8 mg/m2 in CE1 and 6.9 mg/m2 in CE3) and greater EPS production (48.5 vs. 44.7 in CE1 and 35.4 mg/g in CE3), which facilitated biofilm resilience under hydraulic stress. Microbial analysis revealed CE2’s unique enrichment of a higher relative abundance of Proteobacteria (90.1% vs. 67.2% in CE1 and 47.4% in CE3) and denitrifying taxa (unclassified_f_Comamonadaceae: 42.7%, unclassified_f_Enterobacteriaceae: 35.3%). PICRUST2 showed 1.2- and 1.4-fold higher abundance of denitrification genes (narGHI, nosZ) compared to CE1 and CE3, respectively. These findings establish that optimizing ceramsite pore structure, particularly increasing the optimal porosity ratio (pore size 0.5–25 μm) can enhance denitrification efficiency, offering a scalable strategy for cost-effective groundwater remediation. This work provides actionable criteria for designing high-performance DNBFs, with immediate relevance to industrial and municipal wastewater treatment systems facing stringent nitrate discharge limits. Full article
(This article belongs to the Section Microbial Biotechnology)
Show Figures

Figure 1

14 pages, 2914 KB  
Article
Preparation and Performance Investigation of Epoxy Resin-Based Permeable Concrete Containing Ceramsite
by Shengjia Li, Honghai Cui, Haihua Wang, Wensheng Wang, Yi Sui, Liangyu Dong and Jiaxing Wang
Polymers 2023, 15(24), 4704; https://doi.org/10.3390/polym15244704 - 14 Dec 2023
Cited by 2 | Viewed by 2728
Abstract
Permeable concrete is an innovative type of concrete that provides a sustainable solution for stormwater management by allowing water to seep through and be filtered naturally. This study focuses on the preparation and performance investigation of an epoxy resin-based permeable concrete containing ceramsite. [...] Read more.
Permeable concrete is an innovative type of concrete that provides a sustainable solution for stormwater management by allowing water to seep through and be filtered naturally. This study focuses on the preparation and performance investigation of an epoxy resin-based permeable concrete containing ceramsite. In this study, ceramsite, a lightweight aggregate, is used as a substitute for conventional aggregates in the concrete mixture. The epoxy resin is then added to improve the strength and durability of the concrete. A series of tests, including compressive strength, water permeability, and freeze-thaw resistance tests, are conducted to evaluate the performance of the epoxy resin-based permeable concrete. The results show that with an increasing epoxy resin binder–aggregate ratio, the compressive strength of the epoxy resin-based permeable concrete significantly increases while the permeability coefficient decreases. Different types of aggregates have varying effects on the compressive strength and permeability coefficient of epoxy resin-based permeable concrete, with high-strength clay ceramsite providing the highest compressive strength and lightweight ceramsite having the highest permeability coefficient. In addition, the discrete element simulation method effectively and feasibly determines the ultimate load and accurately simulates the compressive strength of the permeable cement-based mixture, consistent with the measured compressive strength. A quadratic polynomial regression analysis yielded an R2 value of around 0.93, showing a strong relationship between durability and freeze-thaw cycles. The findings contribute to the development of sustainable construction materials for stormwater management and offer potential applications in various infrastructure projects. Full article
(This article belongs to the Section Polymer Processing and Engineering)
Show Figures

Figure 1

19 pages, 3711 KB  
Article
Co-Utilization of Sewage Sludge and Rice Husk in Ceramsite Preparation with Selective Adsorption Capacity to Pb
by Rui Wang, Meng Lu and Junxing Wang
Materials 2022, 15(12), 4310; https://doi.org/10.3390/ma15124310 - 17 Jun 2022
Cited by 8 | Viewed by 2596
Abstract
Realizing the green recycling of sludge is an important link to effectively solve the problem of sludge disposal. In this paper, sewage sludge (SS) and rice husk (RH) were utilized as raw materials in preparing novel ceramsite (SRC) for the treatment of lead-containing [...] Read more.
Realizing the green recycling of sludge is an important link to effectively solve the problem of sludge disposal. In this paper, sewage sludge (SS) and rice husk (RH) were utilized as raw materials in preparing novel ceramsite (SRC) for the treatment of lead-containing wastewater, and its adsorption mechanism was explored. The results showed that the optimal preparation conditions were 40% RH + 60% SS mixture, a sintering temperature of 1190 °C, and a sintering time of 20 min. The basic properties of SRC met Chinese artificial ceramsite filter material standards for water treatment (CJ/T 299-2008). Under optimum adsorption conditions (pH = 6, 1 g/L SRC dosage, 20 mg/L Pb(NO)3 concentration, 18 h), the removal rate of Pb2+ reached 94.7%, and the equilibrium adsorption capacity was 18.94 mg/g. The adsorption process was more consistent with the pseudo-second-order kinetic model and the Langmuir isotherm model, indicating that the adsorption process was dominated by chemisorption. Thermodynamic parameters (ΔH0 > 0, ΔG0 < 0, ΔS0 > 0) indicated that the adsorption reaction was spontaneous and endothermic. The possible adsorption mechanisms are as follows: (1) SRC is rich in layered mesoporous structure, which provides sufficient reaction sites for Pb adsorption; (2) the sintered lawsonite and muscovite can strongly attract Pb and then form a new phase (Pb10[Si2O7]3(OH)2); (3) Pb2+ can bond with the Si–O- bond in aluminosilicates, and the introduction of Pb elevates the degree of polymerization of aluminosilicates in turn, indicating that the adsorption process is stable. Full article
(This article belongs to the Special Issue Long-Life and Circular Pavement Materials)
Show Figures

Figure 1

12 pages, 2586 KB  
Article
Nitrogen and Phosphorus Removal Efficiency and Denitrification Kinetics of Different Substrates in Constructed Wetland
by Yinjin Zeng, Weibin Xu, Han Wang, Dan Zhao and Hui Ding
Water 2022, 14(11), 1757; https://doi.org/10.3390/w14111757 - 30 May 2022
Cited by 11 | Viewed by 5937
Abstract
Constructed wetlands (CWs) are generally used for wastewater treatment and removing nitrogen and phosphorus. However, the treatment efficiency of CWs is limited due to the poor performance of various substrates. To find appropriate substrates of CWs for micro-polluted water treatment, zeolite, quartz sand, [...] Read more.
Constructed wetlands (CWs) are generally used for wastewater treatment and removing nitrogen and phosphorus. However, the treatment efficiency of CWs is limited due to the poor performance of various substrates. To find appropriate substrates of CWs for micro-polluted water treatment, zeolite, quartz sand, bio-ceramsite, porous filter, and palygorskite self-assembled composite material (PSM) were used as filtering media to treat slightly polluted water with the aid of autotrophic denitrifying bacteria. PSM exhibited the most remarkable nitrogen and phosphorus removal performance among these substrates. The average removal efficiencies of ammonia nitrogen, total nitrogen, and total phosphorus of PSM were 66.4%, 58.1%, and 85%, respectively. First-order continuous stirred-tank reactor (first-order-CSTR) and Monod continuous stirred-tank reactor (Monod-CSTR) models were established to investigate the kinetic behavior of denitrification nitrogen removal processes using different substrates. Monod-CSTR model was proven to be an accurate model that could simulate nitrate nitrogen removal performance in vertical flow constructed wetland (VFCWs). Moreover, PSM demonstrated significant pollutant removal capacity with the kinetics coefficient of 2.0021 g/m2 d. Hence, PSM can be considered as a promising new type of substrate for micro-polluted wastewater treatment, and Monod-CSTR model can be employed to simulate denitrification processes. Full article
(This article belongs to the Special Issue Pollutants Removal from Wastewater Using Constructed Wetlands)
Show Figures

Figure 1

17 pages, 45801 KB  
Article
Aeration Biofilter Filler Screening and Experimental Research on Nitrogen and Phosphorus Purification in Rural Black Water
by Peizhen Chen, Dongkai Chen, Wenjie Zhao and Xiangqun Zheng
Water 2022, 14(6), 957; https://doi.org/10.3390/w14060957 - 18 Mar 2022
Cited by 3 | Viewed by 3587
Abstract
In rural toilets, black water still remains polluted by nitrogen and phosphorus after being pre-treated by septic tanks. This study uses aerated biofilters to purify black water, screen the biofilter filler, and determine its effect on nitrogen and phosphorus purification in rural black [...] Read more.
In rural toilets, black water still remains polluted by nitrogen and phosphorus after being pre-treated by septic tanks. This study uses aerated biofilters to purify black water, screen the biofilter filler, and determine its effect on nitrogen and phosphorus purification in rural black water. This study introduced the concept of the “shape factor” into the Langmuir and Freundlich equations and optimized the isotherm adsorption model to better fit the actual dynamics of nitrogen and purification in black water. Combined with the first-order kinetic equation, the double constant equation, and the Elovich equation, the adsorption performance of seven kinds of biofilter fillers (i.e., zeolite, volcanic rock, sepiolite, ceramsite, anthracite, vermiculite, and peat) was studied. Then, the biofilter was constructed using a combination of fillers with better adsorption properties, and its ability to purify rural black water was studied. Results showed that vermiculite and zeolite had little effect on nitrogen and a high saturated adsorption of 654.50 and 300.89 mg·kg−1, respectively; peat and ceramsite had little effect on phosphorus and a high saturated adsorption of 282.41 mg·kg−1 and 233.89 mg·kg−1, respectively. The adsorption rate of nitrogen from fast to slow was vermiculite > peat > zeolite > volcanic rock > sepiolite > ceramsite > anthracite. The adsorption rate of phosphorus from fast to slow was peat > ceramsite > zeolite > sepiolite > vermiculite > volcanic rock > anthracite. Four combined biological filter fillers aided the removal of nitrogen and phosphorus from rural high-concentration black water. The combination of zeolite and ceramsite filler had a good nitrogen and phosphorus removal effect in high-concentration black water. After the system was stable, the nitrogen removal rate attained 71–73%, and the phosphorus removal rate attained 73–76% under the influent condition of total nitrogen and phosphorus concentrations of 150–162 and 10–14 mg·L−1, respectively. This study provides technical support and reference for the purification and treatment of rural black water. Full article
(This article belongs to the Section Water Quality and Contamination)
Show Figures

Figure 1

14 pages, 3323 KB  
Article
Comparison of Clay Ceramsite and Biodegradable Polymers as Carriers in Pack-bed Biofilm Reactor for Nitrate Removal
by Qian Zhang, Xue Chen, Heng Wu, Wandong Luo, Xiangyang Liu, Li Feng and Tiantao Zhao
Int. J. Environ. Res. Public Health 2019, 16(21), 4184; https://doi.org/10.3390/ijerph16214184 - 29 Oct 2019
Cited by 16 | Viewed by 3608
Abstract
In recent years, there is a trend of low C/N ratio in municipal domestic wastewater, which results in serious problems for nitrogen removal from wastewater. The addition of an external soluble carbon source has been the usual procedure to achieve denitrification. However, the [...] Read more.
In recent years, there is a trend of low C/N ratio in municipal domestic wastewater, which results in serious problems for nitrogen removal from wastewater. The addition of an external soluble carbon source has been the usual procedure to achieve denitrification. However, the disadvantage of this treatment process is the need of a closed, rather sophisticated and costly process control as well as the risk of overdosing. Solid-phase denitrification using biodegradable polymers as biofilm carrier and carbon source was considered as an attractive alternative for biological denitrification. The start-up time of the novel process using PCL (polycaprolactone) as biofilm carrier and carbon source was comparable with that of conventional process using ceramsite as biofilm carrier and acetate as carbon source. Further, the solid-phase denitrification process showed higher nitrogen removal efficiency under shorter hydraulic retention time (HRT) and low carbon to nitrogen (C/N) ratio since the biofilm was firmly attached to the clear pores on the surface of PCL carriers and in this process bacteria that could degrade PCL carriers to obtain electron donor for denitrification was found. In addition, solid-phase denitrification process had a stronger resistance of shock loading than that in conventional process. This study revealed, for the first time, that the physical properties of the biodegradable polymer played a vital role in denitrification, and the different microbial compositions of the two processes was the main reason for the different denitrification performances under low C/N ratio. Full article
(This article belongs to the Special Issue Water Quality Improvement and Ecological Restoration)
Show Figures

Figure 1

13 pages, 1455 KB  
Article
Enhanced Simultaneous Nitrogen and Phosphorus Removal in A Denitrifying Biological Filter Using Waterworks Sludge Ceramsite Coupled with Iron-Carbon
by Xiaoying Zheng, Mengqi Jin, Hang Xu, Wei Chen, Yuan Zhang, Mengmeng Yang, Xiaoyao Shao, Zhi Xu and Weihong Wang
Int. J. Environ. Res. Public Health 2019, 16(15), 2646; https://doi.org/10.3390/ijerph16152646 - 24 Jul 2019
Cited by 23 | Viewed by 4103
Abstract
In this study, waterworks sludge ceramsite (WSC) was combined with 3% iron-carbon matrix in a denitrifying biological filter (ICWSC-DNBF) to enhance the simultaneous removal of carbon, nitrogen and phosphorus in secondary effluent of wastewater treatment plant (SE-WTP). The chemical oxygen demand (COD) and [...] Read more.
In this study, waterworks sludge ceramsite (WSC) was combined with 3% iron-carbon matrix in a denitrifying biological filter (ICWSC-DNBF) to enhance the simultaneous removal of carbon, nitrogen and phosphorus in secondary effluent of wastewater treatment plant (SE-WTP). The chemical oxygen demand (COD) and nitrogen removal, as well as phosphorus removal and the adsorbed forms of phosphorus were measured and the removal mechanism of these pollutants by the ICWSC-DNBF system for treating SE-WTP were investigated. The results showed that the ICWSC-DNBF achieved good removals of COD, NH4+-N, NO3-N, total N and total P; effluent concentrations were 17.23 mg/L, 3.72 mg/L, 14.32 mg/L, 17.38 mg/L and 0.82 mg/L, respectively. WSC enhanced the P removal due to its high specific surface area and the high number of adsorption sites. Fe-P and Al-P were the main forms of P adsorbed by WSC, accounting for 78.53% of the total adsorbed P. WSC coupled with Fe and C improved the biodegradability of SE-WTP and promoted the removal of organic matter. The removal of N was attributed to the abundant denitrifying microorganisms in the system and the electrochemical effect produced by the internal electrolysis of Fe and C. Full article
(This article belongs to the Special Issue Water Quality Improvement and Ecological Restoration)
Show Figures

Figure 1

13 pages, 4178 KB  
Article
Synthesis and Performance of Iron Oxide-Coated Ceramsite in a Biotrickling Filter for Nitric Oxide Removal under Thermophilic Conditions
by Han Li, Ze Guo, Dafu Wu, Jing Fan, Shaobin Huang and Shaofeng Zhou
Materials 2018, 11(3), 359; https://doi.org/10.3390/ma11030359 - 28 Feb 2018
Cited by 7 | Viewed by 3900
Abstract
A novel medium consisting of iron oxide-coated porous ceramsite (modified ceramsite) was investigated for NO removal under thermophilic conditions in this study. We used a surface coating method with FeCl3·6H2O as the modifier. When ceramsite was calcined for 4 [...] Read more.
A novel medium consisting of iron oxide-coated porous ceramsite (modified ceramsite) was investigated for NO removal under thermophilic conditions in this study. We used a surface coating method with FeCl3·6H2O as the modifier. When ceramsite was calcined for 4 h at 500 °C, the surface pH value decreased to 3.46, which is much lower than the isoelectric point of ceramsite, ensuring its surface was electropositive. The surface of modified ceramsite changed from two- to three-dimensional and exhibited excellent adsorption behavior to assist microbial growth; the maximum dry weight of the biofilm was 1.28 mg/g. It only took 8 days for the biofilter constructed from the modified ceramsite to start up, whereas that packed with commercial ceramsite took 22 days. The NO removal efficiency of the biofilter did not decrease apparently at high NO inlet concentration of above 1600 mg/m3 and maintained an average value of above 90% during the whole operation period. Additionally, the morphological observation showed that the loss of the surface coating was not obvious, and the coating properties remained stable during long-term operation. The maximum NO inlet loading of the biotrickling filter was 80 g/(m3·h) with an average removal efficiency of 91.1% along with a quick start-up when using the modified ceramsite filler. Thus, modified ceramsite can be considered a very effective medium in biotrickling filters for NO removal. Full article
(This article belongs to the Section Porous Materials)
Show Figures

Figure 1

7 pages, 1250 KB  
Article
The Use of Expanded Clay Aggregate for the Pretreatment of Surface Waters on the Example of a Tributary of Lake Klasztorne Górne in Strzelce Krajeńskie
by Michał Łopata, Przemysław Czerniejewski, Grzegorz Wiśniewski, Robert Czerniawski and Jakub Drozdowski
Limnol. Rev. 2017, 17(1), 3-9; https://doi.org/10.1515/limre-2017-0001 (registering DOI) - 9 Sep 2017
Cited by 4 | Viewed by 590
Abstract
The paper presents a proposal for the treatment of river water based on expanded clay (ceramsite). It is a lightweight mineral aggregate containing components relative to phosphorus adsorption (calcium, iron, manganese, aluminum). A pilot plant on a fractional technical scale was built on [...] Read more.
The paper presents a proposal for the treatment of river water based on expanded clay (ceramsite). It is a lightweight mineral aggregate containing components relative to phosphorus adsorption (calcium, iron, manganese, aluminum). A pilot plant on a fractional technical scale was built on a nutrient rich (phosphorus up to 0.4 mg dm−3, nitrogen up to 10.0 mg dm−3), small (mean annual flow about 0.04 m3 s−1), natural watercourse (Młynówka River, a tributary of the Otok Channel, Noteć basin, the municipality of Strzelce Krajeńskie). The monitoring included quantitative and qualitative measurements of the water stream in 2014–2015. On the basis of the examinations, the calculated effectiveness of ceramsite filters in removing major contaminants from water was: for total nitrogen 5–6%, phosphorus 12–16%, and for suspensions 17–29%. The effectiveness of the treatment is highly influenced by hydraulic load, so this type application on a full-scale should occupy a sufficiently large volume. Taking into account simplicity of performance, ease of operation and low cost of construction and maintenance, such pretreatment plants based on expanded clay would seem to be a promising tool for the protection of surface waters in catchments of small rivers and streams. Full article
Back to TopTop