Sign in to use this feature.

Years

Between: -

Subjects

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Journals

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Article Types

Countries / Regions

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Search Results (844)

Search Parameters:
Keywords = charger

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
20 pages, 2582 KB  
Article
Emulating Real-World EV Charging Profiles with a Real-Time Simulation Environment
by Shrey Verma, Ankush Sharma, Binh Tran and Damminda Alahakoon
Machines 2025, 13(9), 791; https://doi.org/10.3390/machines13090791 (registering DOI) - 1 Sep 2025
Abstract
Electric vehicle (EV) charging has become a key factor in grid integration, impact analysis, and the development of intelligent charging strategies. However, the rapid rise in EV adoption poses challenges for charging infrastructure and grid stability due to the inherently variable and uncertain [...] Read more.
Electric vehicle (EV) charging has become a key factor in grid integration, impact analysis, and the development of intelligent charging strategies. However, the rapid rise in EV adoption poses challenges for charging infrastructure and grid stability due to the inherently variable and uncertain charging behavior. Limited access to high-resolution, location-specific data further hinders accurate modeling, emphasizing the need for reliable, privacy-preserving tools to forecast EV-related grid impacts. This study introduces a comprehensive methodology to emulate real-world EV charging behavior using a real-time simulation environment. A physics-based EV charger model was developed on the Typhoon HIL platform, incorporating detailed electrical dynamics and control logic representative of commercial chargers. Simulation outputs, including active power consumption and state-of-charge evolution, were validated against field data captured via phasor measurement units, showing strong alignment across all charging phases, including SOC-dependent current transitions. Quantitative validation yielded an MAE of 0.14 and an RMSE of 0.36, confirming the model’s high accuracy. The study also reflects practical BMS strategies, such as early charging termination near 97% SOC to preserve battery health. Overall, the proposed real-time framework provides a high-fidelity platform for analyzing grid-integrated EV behavior, testing smart charging controls, and enabling digital twin development for next-generation electric mobility. Full article
Show Figures

Figure 1

23 pages, 1104 KB  
Article
Bayesian-Spatial Optimization of Emergency EV Dispatch Under Multi-Hazard Disruptions: A Behaviorally Informed Framework for Resilient Energy Support in Critical Grid Nodes
by Xi Chen, Xiulan Liu, Xijuan Yu, Yongda Li, Shanna Luo and Xuebin Li
Energies 2025, 18(17), 4629; https://doi.org/10.3390/en18174629 (registering DOI) - 31 Aug 2025
Abstract
The growing deployment of electric vehicles (EVs) offers a unique opportunity to utilize them as mobile energy resources during large-scale emergencies. However, existing emergency dispatch strategies often neglect the compounded uncertainties of hazard disruptions, infrastructure fragility, and user behavior. To address this gap, [...] Read more.
The growing deployment of electric vehicles (EVs) offers a unique opportunity to utilize them as mobile energy resources during large-scale emergencies. However, existing emergency dispatch strategies often neglect the compounded uncertainties of hazard disruptions, infrastructure fragility, and user behavior. To address this gap, we propose the Emergency-Responsive Aggregation Framework (ERAF)—a behaviorally informed, spatially aware, and probabilistic optimization model for resilient EV energy dispatch. ERAF integrates a Bayesian inference engine to estimate plug-in availability based on hazard exposure, behavioral willingness, and charger operability. This is dynamically coupled with a GIS-based spatial filter that captures road inaccessibility and corridor degradation in real time. The resulting probabilistic availability is fed into a multi-objective dispatch optimizer that jointly considers power support, response time, and delivery reliability. We validate ERAF using a high-resolution case study in Southern California, simulating 122,487 EVs and 937 charging stations across three compound hazard scenarios: earthquake, wildfire, and cyberattack. The results show that conventional deterministic models overestimate dispatchable energy by up to 35%, while ERAF improves deployment reliability by over 28% and reduces average delays by 42%. Behavioral priors reveal significant willingness variation across regions, with up to 47% overestimation in isolated zones. These findings underscore the importance of integrating behavioral uncertainty and spatial fragility into emergency energy planning. ERAF demonstrates that EVs can serve not only as grid assets but also as intelligent mobile agents for adaptive, decentralized resilience. Full article
Show Figures

Figure 1

26 pages, 15026 KB  
Article
Interactive Optimization of Electric Bus Scheduling and Overnight Charging
by Zvonimir Dabčević and Joško Deur
Energies 2025, 18(16), 4440; https://doi.org/10.3390/en18164440 - 21 Aug 2025
Viewed by 506
Abstract
The transition to fully electric bus (EB) fleets introduces new challenges in coordinating daily operations and managing charging energy needs, while accounting for infrastructure constraints. The paper proposes a three-stage optimization framework that integrates EB scheduling with overnight charging under realistic depot layout [...] Read more.
The transition to fully electric bus (EB) fleets introduces new challenges in coordinating daily operations and managing charging energy needs, while accounting for infrastructure constraints. The paper proposes a three-stage optimization framework that integrates EB scheduling with overnight charging under realistic depot layout constraints. In the first stage, a mixed-integer linear program (MILP) determines the minimum number of EBs with ample batteries and related schedules to complete all timetabled trips. With the fleet size fixed, the second stage minimizes the EB battery capacity by optimizing trip assignments. In the third stage, charging schedules are iteratively optimized for different numbers of chargers to minimize charger power capacity and charging cost, while ensuring each EB is fully recharged before its first trip on the following day. The matrix-shape depot layout imposes spatial and operational constraints that restrict the charging and movement of EBs based on their parking positions, with EBs remaining stationary overnight. The entire process is repeated by incrementing the fleet size until a saturation point is reached, beyond which no further reduction in battery capacity is observed. This results in a Pareto frontier showing trade-offs between required battery capacity, number of chargers, charger power capacity, and charging cost. The proposed method is applied to a real-world airport parking shuttle service, demonstrating its potential to reduce the battery size and charging infrastructure demands while maintaining full operational feasibility. Full article
Show Figures

Figure 1

19 pages, 2130 KB  
Article
Evaluation of XGBoost and ANN as Surrogates for Power Flow Predictions with Dynamic Energy Storage Scenarios
by Perez Yeptho, Antonio E. Saldaña-González, Mònica Aragüés-Peñalba and Sara Barja-Martínez
Energies 2025, 18(16), 4416; https://doi.org/10.3390/en18164416 - 19 Aug 2025
Viewed by 523
Abstract
Power flow analysis is essential for managing power systems, helping grid operators ensure reliability and efficiency. This paper explores the use of machine learning (ML) techniques as surrogates for computationally intensive power flow calculations to evaluate the effects of distributed energy resources, such [...] Read more.
Power flow analysis is essential for managing power systems, helping grid operators ensure reliability and efficiency. This paper explores the use of machine learning (ML) techniques as surrogates for computationally intensive power flow calculations to evaluate the effects of distributed energy resources, such as battery energy storage systems (BESSs), on grid performance. In this paper, a case study is presented where XGBoost (eXtreme Gradient Boosting) and Artificial Neural Networks (ANNs) are trained to simulate power flows in a medium-voltage grid in Norway. The impact of BESS units on line loading, transformer loading, and bus voltages is estimated across thousands of configurations, with results compared in terms of simulation time, error metrics, and robustness. In this paper it is proven that while ML models require considerable data and training time, they offer speed-up factors of up to 45×, depending on the predicted parameter. The proposed methodology can also be used to assess the impact of other grid-connected assets, such as small-scale solar plants and electric vehicle chargers, whose presence in distribution networks continues to grow. Full article
Show Figures

Figure 1

25 pages, 1477 KB  
Article
A Cost Benefit Analysis of Vehicle-to-Grid (V2G) Considering Battery Degradation Under the ACOPF-Based DLMP Framework
by Joseph Stekli, Abhijith Ravi and Umit Cali
Smart Cities 2025, 8(4), 138; https://doi.org/10.3390/smartcities8040138 - 14 Aug 2025
Viewed by 433
Abstract
This paper seeks to provide a cost benefit analysis of the implementation of a vehicle-to-grid (V2G) charging strategy relative to a smart charging (V1G) strategy from the perspective of an individual electric vehicle (EV) owner with and without solar photovoltaics (PV) located on [...] Read more.
This paper seeks to provide a cost benefit analysis of the implementation of a vehicle-to-grid (V2G) charging strategy relative to a smart charging (V1G) strategy from the perspective of an individual electric vehicle (EV) owner with and without solar photovoltaics (PV) located on their roof. This work utilizes a novel AC optimized power flow model (ACOPF) to produce distributed location marginal prices (DLMP) on a modified IEEE-33 node network and uses a complete set of real-world costs and benefits to perform this analysis. Costs, in the form of the addition of a bi-directional charger and the increased vehicle depreciation incurred by a V2G strategy, are calculated using modern reference sources. This produces a more true-to-life comparison of the V1G and V2G strategies from the frame of reference of EV owners, rather than system operators, with parameterization of EV penetration levels performed to look at how the choice of strategy may change over time. Counter to much of the existing literature, when the analysis is performed in this manner it is found that the benefits of implementing a V2G strategy in the U.S.—given current compensation schemes—do not outweigh the incurred costs to the vehicle owner. This result helps explain the gap in findings between the existing literature—which typically finds that a V2G strategy should be favored—and the real world, where V2G is rarely employed by EV owners. Full article
Show Figures

Figure 1

45 pages, 2014 KB  
Article
Innovative Business Models Towards Sustainable Energy Development: Assessing Benefits, Risks, and Optimal Approaches of Blockchain Exploitation in the Energy Transition
by Aikaterini Papapostolou, Ioanna Andreoulaki, Filippos Anagnostopoulos, Sokratis Divolis, Harris Niavis, Sokratis Vavilis and Vangelis Marinakis
Energies 2025, 18(15), 4191; https://doi.org/10.3390/en18154191 - 7 Aug 2025
Viewed by 592
Abstract
The goals of the European Union towards the energy transition imply profound changes in the energy field, so as to promote sustainable energy development while fostering economic growth. To achieve these changes, the incorporation of sustainable technologies supporting decentralisation, energy efficiency, renewable energy [...] Read more.
The goals of the European Union towards the energy transition imply profound changes in the energy field, so as to promote sustainable energy development while fostering economic growth. To achieve these changes, the incorporation of sustainable technologies supporting decentralisation, energy efficiency, renewable energy production, and demand flexibility is of vital importance. Blockchain has the potential to change energy services towards this direction. To optimally exploit blockchain, innovative business models need to be designed, identifying the opportunities emerging from unmet needs, while also considering potential risks so as to take action to overcome them. In this context, the scope of this paper is to examine the opportunities and the risks that emerge from the adoption of blockchain in four innovative business models, while also identifying mitigation strategies to support and accelerate the energy transition, thus proposing optimal approaches of exploitation of blockchain in energy services. The business models concern Energy Performance Contracting with P4P guarantees, improved self-consumption in energy cooperatives, energy efficiency and flexibility services for natural gas boilers, and smart energy management for EV chargers and HVAC appliances. Firstly, the value proposition of the business models is analysed and results in a comprehensive SWOT analysis. Based on the findings of the analysis and consultations with relevant market actors, in combination with the examination of the relevant literature, risks are identified and evaluated through a qualitative assessment approach. Subsequently, specific mitigation strategies are proposed to address the detected risks. This research demonstrates that blockchain integration into these business models can significantly improve energy efficiency, reduce operational costs, enhance security, and support a more decentralised energy system, providing actionable insights for stakeholders to implement blockchain solutions effectively. Furthermore, according to the results, technological and legal risks are the most significant, followed by political, economic, and social risks, while environmental risks of blockchain integration are not as important. Strategies to address risks relevant to blockchain exploitation include ensuring policy alignment, emphasising economic feasibility, facilitating social inclusion, prioritising security and interoperability, consulting with legal experts, and using consensus algorithms with low energy consumption. The findings offer clear guidance for energy service providers, policymakers, and technology developers, assisting in the design, deployment, and risk mitigation of blockchain-enabled business models to accelerate sustainable energy development. Full article
Show Figures

Figure 1

33 pages, 3534 KB  
Review
Enhancing the Performance of Active Distribution Grids: A Review Using Metaheuristic Techniques
by Jesús Daniel Dávalos Soto, Daniel Guillen, Luis Ibarra, José Ezequiel Santibañez-Aguilar, Jesús Elias Valdez-Resendiz, Juan Avilés, Meng Yen Shih and Antonio Notholt
Energies 2025, 18(15), 4180; https://doi.org/10.3390/en18154180 - 6 Aug 2025
Viewed by 435
Abstract
The electrical power system is composed of three essential sectors, generation, transmission, and distribution, with the latter being crucial for the overall efficiency of the system. Enhancing the capabilities of active distribution networks involves integrating various advanced technologies such as distributed generation units, [...] Read more.
The electrical power system is composed of three essential sectors, generation, transmission, and distribution, with the latter being crucial for the overall efficiency of the system. Enhancing the capabilities of active distribution networks involves integrating various advanced technologies such as distributed generation units, energy storage systems, banks of capacitors, and electric vehicle chargers. This paper provides an in-depth review of the primary strategies for incorporating these technologies into the distribution network to improve its reliability, stability, and efficiency. It also explores the principal metaheuristic techniques employed for the optimal allocation of distributed generation units, banks of capacitors, energy storage systems, electric vehicle chargers, and network reconfiguration. These techniques are essential for effectively integrating these technologies and optimizing the active distribution network by enhancing power quality and voltage level, reducing losses, and ensuring operational indices are maintained at optimal levels. Full article
(This article belongs to the Section K: State-of-the-Art Energy Related Technologies)
Show Figures

Figure 1

26 pages, 4789 KB  
Article
Analytical Modelling of Arc Flash Consequences in High-Power Systems with Energy Storage for Electric Vehicle Charging
by Juan R. Cabello, David Bullejos and Alvaro Rodríguez-Prieto
World Electr. Veh. J. 2025, 16(8), 425; https://doi.org/10.3390/wevj16080425 - 29 Jul 2025
Viewed by 528
Abstract
The improvement of environmental conditions has become a priority for governments and legislators. New electrified mobility systems are increasingly present in our environment, as they enable the reduction of polluting emissions. Electric vehicles (EVs) are one of the fastest-growing alternatives to date, with [...] Read more.
The improvement of environmental conditions has become a priority for governments and legislators. New electrified mobility systems are increasingly present in our environment, as they enable the reduction of polluting emissions. Electric vehicles (EVs) are one of the fastest-growing alternatives to date, with exponential growth expected over the next few years. In this article, the various charging modes for EVs are explored, and the risks associated with charging technologies are analysed, particularly for charging systems in high-power DC with Lithium battery energy storage, given their long market deployment and characteristic behaviour. In particular, the Arc Flash (AF) risk present in high-power DC chargers will be studied, involving numerous simulations of the charging process. Subsequently, the Incident Energy (IE) analysis is carried out at different specific points of a commercial high-power ‘Mode 4’ charger. For this purpose, different analysis methods of recognised prestige, such as Doan, Paukert, or Stokes and Oppenlander, are applied, using the latest version of the ETAP® simulation tool version 22.5.0. This study focuses on quantifying the potential severity (consequences) of an AF event, assuming its occurrence, rather than performing a probabilistic risk assessment according to standard methodologies. The primary objective of this research is to comprehensively quantify the potential consequences for workers involved in the operation, maintenance, repair, and execution of tasks related to EV charging systems. This analysis makes it possible to provide safe working conditions and to choose the appropriate and necessary personal protective equipment (PPE) for each type of operation. It is essential to develop this novel process to quantify the consequences of AF and to protect the end users of EV charging systems. Full article
(This article belongs to the Special Issue Fast-Charging Station for Electric Vehicles: Challenges and Issues)
Show Figures

Figure 1

28 pages, 4399 KB  
Article
Enhancing Lithium Titanate Battery Charging: Investigating the Benefits of Open-Circuit Voltage Feedback
by Danijel Pavković, Mihael Cipek, Karlo Kvaternik, Nursultan Faiz and Alua Shambilova
Energies 2025, 18(15), 3946; https://doi.org/10.3390/en18153946 - 24 Jul 2025
Viewed by 417
Abstract
In applications where it is crucial that a battery is recharged from the partially discharged state in the minimum time, it is crucial to honor the technological constraints related to maximum safe battery terminal voltage and maximum continuous charging current prescribed by the [...] Read more.
In applications where it is crucial that a battery is recharged from the partially discharged state in the minimum time, it is crucial to honor the technological constraints related to maximum safe battery terminal voltage and maximum continuous charging current prescribed by the battery cell manufacturer. To this end, this contribution outlines the design and comprehensive simulation analysis of an adaptive battery charging system relying on battery open-circuit voltage estimation in real time. A pseudo-random binary sequence test signal and model reference adaptive system are used for the estimation of lithium titanate battery cell electrical circuit model parameters, with the design methodology based on the Lyapunov stability criterion. The proposed adaptive charger is assessed against the conventional constant-current/constant-voltage charging system. The effectiveness of the real-time parameter estimator, along with both the adaptive and traditional charging systems for the lithium titanate battery cell, is validated through simulations and experiments on a dedicated battery test bench. Full article
Show Figures

Graphical abstract

18 pages, 6362 KB  
Article
Active Neutral-Point Voltage Balancing Strategy for Single-Phase Three-Level Converters in On-Board V2G Chargers
by Qiubo Chen, Zefu Tan, Boyu Xiang, Le Qin, Zhengyang Zhou and Shukun Gao
World Electr. Veh. J. 2025, 16(7), 406; https://doi.org/10.3390/wevj16070406 - 21 Jul 2025
Viewed by 293
Abstract
Driven by the rapid advancement of Vehicle-to-Grid (V2G) and Grid-to-Vehicle (G2V) technologies, improving power quality and system stability during charging and discharging has become a research focus. To address this, this paper proposes a Model Predictive Control (MPC) strategy for Active Neutral-Point Voltage [...] Read more.
Driven by the rapid advancement of Vehicle-to-Grid (V2G) and Grid-to-Vehicle (G2V) technologies, improving power quality and system stability during charging and discharging has become a research focus. To address this, this paper proposes a Model Predictive Control (MPC) strategy for Active Neutral-Point Voltage Balancing (ANPVB) in a single-phase three-level converter used in on-board V2G chargers. Traditional converters rely on passive balancing using redundant vectors, which cannot ensure neutral-point (NP) voltage stability under sudden load changes or frequent power fluctuations. To solve this issue, an auxiliary leg is introduced into the converter topology to actively regulate the NP voltage. The proposed method avoids complex algorithm design and weighting factor tuning, simplifying control implementation while improving voltage balancing and dynamic response. The results show that the proposed Model Predictive Current Control-based ANPVB (MPCC-ANPVB) and Model Predictive Direct Power Control-based ANPVB (MPDPC-ANPVB) strategies maintain the NP voltage within ±0.7 V, achieve accurate power tracking within 50 ms, and reduce the total harmonic distortion of current (THDi) to below 1.89%. The proposed strategies are tested in both V2G and G2V modes, confirming improved power quality, better voltage balance, and enhanced dynamic response. Full article
Show Figures

Figure 1

15 pages, 3596 KB  
Article
Fuzzy-Aided P–PI Control for Start-Up Current Overshoot Mitigation in Solid-State Lithium Battery Chargers
by Chih-Tsung Chang and Kai-Jun Pai
Appl. Sci. 2025, 15(14), 7979; https://doi.org/10.3390/app15147979 - 17 Jul 2025
Viewed by 258
Abstract
A battery charger for solid-state lithium battery packs was developed and implemented. The power stage used a phase-shifted full-bridge converter integrated with a current-doubler rectifier and synchronous rectification. Dual voltage and current control loops were employed to enable constant-voltage and constant-current charging modes. [...] Read more.
A battery charger for solid-state lithium battery packs was developed and implemented. The power stage used a phase-shifted full-bridge converter integrated with a current-doubler rectifier and synchronous rectification. Dual voltage and current control loops were employed to enable constant-voltage and constant-current charging modes. To improve the lifespan of the output filter capacitor, the current-doubler rectifier was adopted to effectively reduce output current ripple. During the initial start-up phase, as the charger transitions from constant-voltage to constant-current output mode, the use of proportional–integral control in the voltage and current loop error amplifiers may cause current overshoot during the step-rising phase, primarily due to the integral action. Therefore, this study incorporated fuzzy control, proportional control, and proportional–integral control strategies into the current-loop error amplifier. This approach effectively reduced the current overshoot during the step-rising phase, preventing the charger from mistakenly triggering the overcurrent protection mode. The analysis and design considerations of the proposed circuit topology and control loop are presented. Experimental results agree with theoretical predictions, thereby confirming the validity of the proposed approach. Full article
(This article belongs to the Section Electrical, Electronics and Communications Engineering)
Show Figures

Figure 1

35 pages, 3959 KB  
Article
Battery Charging Simulation of a Passenger Electric Vehicle from a Traction Voltage Inverter with an Integrated Charger
by Evgeniy V. Khekert, Boris V. Malozyomov, Roman V. Klyuev, Nikita V. Martyushev, Vladimir Yu. Konyukhov, Vladislav V. Kukartsev, Oleslav A. Antamoshkin and Ilya S. Remezov
World Electr. Veh. J. 2025, 16(7), 391; https://doi.org/10.3390/wevj16070391 - 13 Jul 2025
Viewed by 447
Abstract
This paper presents the results of the mathematical modeling and experimental studies of charging a traction lithium-ion battery of a passenger electric car using an integrated charger based on a traction voltage inverter. An original three-stage charging algorithm (3PT/PN) has been developed and [...] Read more.
This paper presents the results of the mathematical modeling and experimental studies of charging a traction lithium-ion battery of a passenger electric car using an integrated charger based on a traction voltage inverter. An original three-stage charging algorithm (3PT/PN) has been developed and implemented, which provides a sequential decrease in the charging current when the specified voltage and temperature levels of the battery module are reached. As part of this study, a comprehensive mathematical model has been created that takes into account the features of the power circuit, control algorithms, thermal effects and characteristics of the storage battery. The model has been successfully verified based on the experimental data obtained when charging the battery module in real conditions. The maximum error of voltage modeling has been 0.71%; that of current has not exceeded 1%. The experiments show the achievement of a realized capacity of 8.9 Ah and an integral efficiency of 85.5%, while the temperature regime remains within safe limits. The proposed approach provides a high charge rate, stability of the thermal state of the battery and a long service life. The results can be used to optimize the charging infrastructure of electric vehicles and to develop intelligent battery module management systems. Full article
Show Figures

Figure 1

25 pages, 9888 KB  
Article
An Optimal Multi-Zone Fast-Charging System Architecture for MW-Scale EV Charging Sites
by Sai Bhargava Althurthi and Kaushik Rajashekara
World Electr. Veh. J. 2025, 16(7), 389; https://doi.org/10.3390/wevj16070389 - 10 Jul 2025
Viewed by 419
Abstract
In this paper, a detailed review of electric vehicle (EV) charging station architectures is first presented, and then an optimal architecture suitable for a large MW-scale EV fast-charging station (EVFS) with multiple fast chargers is proposed and evaluated. The study examines various EVFS [...] Read more.
In this paper, a detailed review of electric vehicle (EV) charging station architectures is first presented, and then an optimal architecture suitable for a large MW-scale EV fast-charging station (EVFS) with multiple fast chargers is proposed and evaluated. The study examines various EVFS architectures, including those currently deployed in commercial sites. Most EVFS implementations use either a common AC-bus or a common DC-bus configuration, with DC-bus architectures being slightly more predominant. The paper analyzes the EV charging and battery energy storage system (BESS) requirements for future large-scale EVFSs and identifies key implementation challenges associated with the full adoption of the common DC-bus approach. To overcome these limitations, a novel multi-zone EVFS architecture is proposed that employs an optimal combination of isolated and non-isolated DC-DC converter topologies while maintaining galvanic isolation for EVs. The system efficiency and total power converter capacity requirements of the proposed architecture are evaluated and compared with those of other EVFS models. A major feature of the proposed design is its multi-zone division and zonal isolation capabilities, which are not present in conventional EVFS architectures. These advantages are demonstrated through a scaled-up model consisting of 156 EV fast chargers. The analysis highlights the superior performance of the proposed multi-zone EVFS architecture in terms of efficiency, total power converter requirements, fault tolerance, and reduced grid impacts, making it the best solution for reliable and scalable MW-scale commercial EVFS systems of the future. Full article
Show Figures

Figure 1

46 pages, 9390 KB  
Article
Multi-Objective Optimization of Distributed Generation Placement in Electric Bus Transit Systems Integrated with Flash Charging Station Using Enhanced Multi-Objective Grey Wolf Optimization Technique and Consensus-Based Decision Support
by Yuttana Kongjeen, Pongsuk Pilalum, Saksit Deeum, Kittiwong Suthamno, Thongchai Klayklueng, Supapradit Marsong, Ritthichai Ratchapan, Krittidet Buayai, Kaan Kerdchuen, Wutthichai Sa-nga-ngam and Krischonme Bhumkittipich
Energies 2025, 18(14), 3638; https://doi.org/10.3390/en18143638 - 9 Jul 2025
Viewed by 659
Abstract
This study presents a comprehensive multi-objective optimization framework for optimal placement and sizing of distributed generation (DG) units in electric bus (E-bus) transit systems integrated with a high-power flash charging infrastructure. An enhanced Multi-Objective Grey Wolf Optimizer (MOGWO), utilizing Euclidean distance-based Pareto ranking, [...] Read more.
This study presents a comprehensive multi-objective optimization framework for optimal placement and sizing of distributed generation (DG) units in electric bus (E-bus) transit systems integrated with a high-power flash charging infrastructure. An enhanced Multi-Objective Grey Wolf Optimizer (MOGWO), utilizing Euclidean distance-based Pareto ranking, is developed to minimize power loss, voltage deviation, and voltage violations. The framework incorporates realistic E-bus operation characteristics, including a 31-stop, 62 km route, 600 kW pantograph flash chargers, and dynamic load profiles over a 90 min simulation period. Statistical evaluation on IEEE 33-bus and 69-bus distribution networks demonstrates that MOGWO consistently outperforms MOPSO and NSGA-II across all DG deployment scenarios. In the three-DG configuration, MOGWO achieved minimum power losses of 0.0279 MW and 0.0179 MW, and voltage deviations of 0.1313 and 0.1362 in the 33-bus and 69-bus systems, respectively, while eliminating voltage violations. The proposed method also demonstrated superior solution quality with low variance and faster convergence, requiring under 7 h of computation on average. A five-method compromise solution strategy, including TOPSIS and Lp-metric, enabled transparent and robust decision-making. The findings confirm the proposed framework’s effectiveness and scalability for enhancing distribution system performance under the demands of electric transit electrification and smart grid integration. Full article
Show Figures

Figure 1

15 pages, 1572 KB  
Article
AI-Driven Optimization Framework for Smart EV Charging Systems Integrated with Solar PV and BESS in High-Density Residential Environments
by Md Tanjil Sarker, Marran Al Qwaid, Siow Jat Shern and Gobbi Ramasamy
World Electr. Veh. J. 2025, 16(7), 385; https://doi.org/10.3390/wevj16070385 - 9 Jul 2025
Cited by 1 | Viewed by 1208
Abstract
The rapid growth of electric vehicle (EV) adoption necessitates advanced energy management strategies to ensure sustainable, reliable, and efficient operation of charging infrastructure. This study proposes a hybrid AI-based framework for optimizing residential EV charging systems through the integration of Reinforcement Learning (RL), [...] Read more.
The rapid growth of electric vehicle (EV) adoption necessitates advanced energy management strategies to ensure sustainable, reliable, and efficient operation of charging infrastructure. This study proposes a hybrid AI-based framework for optimizing residential EV charging systems through the integration of Reinforcement Learning (RL), Linear Programming (LP), and real-time grid-aware scheduling. The system architecture includes smart wall-mounted chargers, a 120 kWp rooftop solar photovoltaic (PV) array, and a 60 kWh lithium-ion battery energy storage system (BESS), simulated under realistic load conditions for 800 residential units and 50 charging points rated at 7.4 kW each. Simulation results, validated through SCADA-based performance monitoring using MATLAB/Simulink and OpenDSS, reveal substantial technical improvements: a 31.5% reduction in peak transformer load, voltage deviation minimized from ±5.8% to ±2.3%, and solar utilization increased from 48% to 66%. The AI framework dynamically predicts user demand using a non-homogeneous Poisson process and optimizes charging schedules based on a cost-voltage-user satisfaction reward function. The study underscores the critical role of intelligent optimization in improving grid reliability, minimizing operational costs, and enhancing renewable energy self-consumption. The proposed system demonstrates scalability, resilience, and cost-effectiveness, offering a practical solution for next-generation urban EV charging networks. Full article
Show Figures

Figure 1

Back to TopTop