Sign in to use this feature.

Years

Between: -

Subjects

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Journals

Article Types

Countries / Regions

Search Results (10)

Search Parameters:
Keywords = chem/bio sensor

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
9 pages, 1605 KB  
Article
RobustATR: Substrate-Integrated Hollow Waveguide Coupled Infrared Attenuated Total Reflectance Sensors
by Andrea Teuber and Boris Mizaikoff
Appl. Sci. 2022, 12(19), 10019; https://doi.org/10.3390/app121910019 - 6 Oct 2022
Cited by 2 | Viewed by 1724
Abstract
Small and compact mid-infrared devices are of increasing importance, as there are several applications demanding on-site and real-time measurements in harsh real-world scenarios. The RobustATR, an innovative infrared attenuated total reflectance (IR-ATR) accessory, has been developed and tested with exemplary analytes integrating a [...] Read more.
Small and compact mid-infrared devices are of increasing importance, as there are several applications demanding on-site and real-time measurements in harsh real-world scenarios. The RobustATR, an innovative infrared attenuated total reflectance (IR-ATR) accessory, has been developed and tested with exemplary analytes integrating a single-wavelength Fabry–Pérot quantum cascade laser as light source for testing the feasibility of a potentially miniaturized overall sensor design. Successful direct coupling of the laser radiation via substrate-integrated hollow waveguide (iHWG) coupling elements to the sensor interface could be shown, whereby exemplary analytes of environmental and medical relevance were tested, revealing the future potential for real-world applications. Full article
(This article belongs to the Special Issue Molecular Sensing Technologies)
Show Figures

Figure 1

18 pages, 5159 KB  
Review
Recent Progress of Perovskite Nanocrystals in Chem/Bio Sensing
by Dailu Jia, Meng Xu, Shuang Mu, Wei Ren and Chenghui Liu
Biosensors 2022, 12(9), 754; https://doi.org/10.3390/bios12090754 - 14 Sep 2022
Cited by 14 | Viewed by 4501
Abstract
Perovskite nanocrystals (PNCs) are endowed with extraordinary photophysical properties such as wide absorption spectra, high quantum yield, and narrow emission bands. However, the inherent shortcomings, especially the instability in polar solvents and water incompatibility, have hindered their application as probes in chem/bio sensing. [...] Read more.
Perovskite nanocrystals (PNCs) are endowed with extraordinary photophysical properties such as wide absorption spectra, high quantum yield, and narrow emission bands. However, the inherent shortcomings, especially the instability in polar solvents and water incompatibility, have hindered their application as probes in chem/bio sensing. In this review, we give a fundamental understanding of the challenges when using PNCs for chem/bio sensing and summarize recent progress in this area, including the application of PNCs in various sensors and the corresponding strategies to maintain their structural integrity. Finally, we provide perspectives to promote the future development of PNCs for chem/bio sensing applications. Full article
(This article belongs to the Special Issue Advances in Quantum Dots Biosensing)
Show Figures

Figure 1

20 pages, 3763 KB  
Review
Infrared Spectroscopy–Quo Vadis?
by Michael Hlavatsch, Julian Haas, Robert Stach, Vjekoslav Kokoric, Andrea Teuber, Mehmet Dinc and Boris Mizaikoff
Appl. Sci. 2022, 12(15), 7598; https://doi.org/10.3390/app12157598 - 28 Jul 2022
Cited by 6 | Viewed by 4704
Abstract
Given the exquisite capability of direct, non-destructive label-free sensing of molecular transitions, IR spectroscopy has become a ubiquitous and versatile analytical tool. IR application scenarios range from industrial manufacturing processes, surveillance tasks and environmental monitoring to elaborate evaluation of (bio)medical samples. Given recent [...] Read more.
Given the exquisite capability of direct, non-destructive label-free sensing of molecular transitions, IR spectroscopy has become a ubiquitous and versatile analytical tool. IR application scenarios range from industrial manufacturing processes, surveillance tasks and environmental monitoring to elaborate evaluation of (bio)medical samples. Given recent developments in associated fields, IR spectroscopic devices increasingly evolve into reliable and robust tools for quality control purposes, for rapid analysis within at-line, in-line or on-line processes, and even for bed-side monitoring of patient health indicators. With the opportunity to guide light at or within dedicated optical structures, remote sensing as well as high-throughput sensing scenarios are being addressed by appropriate IR methodologies. In the present focused article, selected perspectives on future directions for IR spectroscopic tools and their applications are discussed. These visions are accompanied by a short introduction to the historic development, current trends, and emerging technological opportunities guiding the future path IR spectroscopy may take. Highlighted state-of-the art implementations along with novel concepts enhancing the performance of IR sensors are presented together with cutting-edge developments in related fields that drive IR spectroscopy forward in its role as a versatile analytical technology with a bright past and an even brighter future. Full article
(This article belongs to the Special Issue Molecular Sensing Technologies)
Show Figures

Figure 1

50 pages, 9389 KB  
Review
Recent Advances of Field-Effect Transistor Technology for Infectious Diseases
by Abbas Panahi, Deniz Sadighbayan, Saghi Forouhi and Ebrahim Ghafar-Zadeh
Biosensors 2021, 11(4), 103; https://doi.org/10.3390/bios11040103 - 2 Apr 2021
Cited by 66 | Viewed by 9591
Abstract
Field-effect transistor (FET) biosensors have been intensively researched toward label-free biomolecule sensing for different disease screening applications. High sensitivity, incredible miniaturization capability, promising extremely low minimum limit of detection (LoD) at the molecular level, integration with complementary metal oxide semiconductor (CMOS) technology and [...] Read more.
Field-effect transistor (FET) biosensors have been intensively researched toward label-free biomolecule sensing for different disease screening applications. High sensitivity, incredible miniaturization capability, promising extremely low minimum limit of detection (LoD) at the molecular level, integration with complementary metal oxide semiconductor (CMOS) technology and last but not least label-free operation were amongst the predominant motives for highlighting these sensors in the biosensor community. Although there are various diseases targeted by FET sensors for detection, infectious diseases are still the most demanding sector that needs higher precision in detection and integration for the realization of the diagnosis at the point of care (PoC). The COVID-19 pandemic, nevertheless, was an example of the escalated situation in terms of worldwide desperate need for fast, specific and reliable home test PoC devices for the timely screening of huge numbers of people to restrict the disease from further spread. This need spawned a wave of innovative approaches for early detection of COVID-19 antibodies in human swab or blood amongst which the FET biosensing gained much more attention due to their extraordinary LoD down to femtomolar (fM) with the comparatively faster response time. As the FET sensors are promising novel PoC devices with application in early diagnosis of various diseases and especially infectious diseases, in this research, we have reviewed the recent progress on developing FET sensors for infectious diseases diagnosis accompanied with a thorough discussion on the structure of Chem/BioFET sensors and the readout circuitry for output signal processing. This approach would help engineers and biologists to gain enough knowledge to initiate their design for accelerated innovations in response to the need for more efficient management of infectious diseases like COVID-19. Full article
Show Figures

Figure 1

17 pages, 3369 KB  
Article
Design of an on-Chip Room Temperature Group-IV Quantum Photonic Chem/Bio Interferometric Sensor Based on Parity Detection
by Francesco De Leonardis, Richard A. Soref and Vittorio M. N. Passaro
Nanomaterials 2020, 10(10), 1984; https://doi.org/10.3390/nano10101984 - 7 Oct 2020
Viewed by 2559
Abstract
We propose and analyze three Si-based room-temperature strip-guided “manufacturable” integrated quantum photonic chem/bio sensor chips operating at wavelengths of 1550 nm, 1330 nm, and 640 nm, respectively. We propose design rules that will achieve super-sensitivity (above the classical limit) by means of mixing [...] Read more.
We propose and analyze three Si-based room-temperature strip-guided “manufacturable” integrated quantum photonic chem/bio sensor chips operating at wavelengths of 1550 nm, 1330 nm, and 640 nm, respectively. We propose design rules that will achieve super-sensitivity (above the classical limit) by means of mixing between states of coherent light and single-mode squeezed-light. The silicon-on-insulator (SOI), silicon-on-sapphire (SOS), and silicon nitride-on-SiO2-on Si (SiN) platforms have been investigated. Each chip is comprised of photonic building blocks: a race-track resonator, a pump filter, an integrated Mach-Zehnder interferometric chem/bio sensor, and a photonic circuit to perform parity measurements, where our homodyne measurement circuit avoids the use of single-photon-counting detectors and utilizes instead conventional photodetectors. A combination of super-sensitivity with super-resolution is predicted for all three platforms to be used for chem/bio sensing applications. Full article
(This article belongs to the Special Issue Nanophotonics for Light-Matter Interaction)
Show Figures

Figure 1

16 pages, 3096 KB  
Review
Strategies of Luminescent Gold Nanoclusters for Chemo-/Bio-Sensing
by Zhi He, Tong Shu, Lei Su and Xueji Zhang
Molecules 2019, 24(17), 3045; https://doi.org/10.3390/molecules24173045 - 22 Aug 2019
Cited by 27 | Viewed by 6060
Abstract
Recent booming advances in luminescent gold nanoclusters (AuNCs), have prompted the development of novel fluorescent sensors. The luminescent AuNCs possess unique and intriguing physical and chemical properties including responsive photoluminescence and peroxide-like activity, providing abundant potentials for sensing strategy design. As of now, [...] Read more.
Recent booming advances in luminescent gold nanoclusters (AuNCs), have prompted the development of novel fluorescent sensors. The luminescent AuNCs possess unique and intriguing physical and chemical properties including responsive photoluminescence and peroxide-like activity, providing abundant potentials for sensing strategy design. As of now, a wide variety of chem-/bio-sensors based on AuNCs have been developed and reviewed according to varied analytes. In this review, from a different point of view, we follow the route of how those sensors realize their functions and focus on the actual roles AuNCs play, in order to hierarchically and logically display the recent progress in the sensing applications of AuNCs. This review not only opens new windows to understand the development of sensors based on AuNCs but can also inspire broader and deeper utilization of luminescent nanomaterials. Full article
(This article belongs to the Special Issue Luminescent Materials: The Never-Ending Story)
Show Figures

Figure 1

33 pages, 11253 KB  
Review
Sensors that Learn: The Evolution from Taste Fingerprints to Patterns of Early Disease Detection
by Nicolaos Christodoulides, Michael P. McRae, Glennon W. Simmons, Sayli S. Modak and John T. McDevitt
Micromachines 2019, 10(4), 251; https://doi.org/10.3390/mi10040251 - 16 Apr 2019
Cited by 13 | Viewed by 5422
Abstract
The McDevitt group has sustained efforts to develop a programmable sensing platform that offers advanced, multiplexed/multiclass chem-/bio-detection capabilities. This scalable chip-based platform has been optimized to service real-world biological specimens and validated for analytical performance. Fashioned as a sensor that learns, the platform [...] Read more.
The McDevitt group has sustained efforts to develop a programmable sensing platform that offers advanced, multiplexed/multiclass chem-/bio-detection capabilities. This scalable chip-based platform has been optimized to service real-world biological specimens and validated for analytical performance. Fashioned as a sensor that learns, the platform can host new content for the application at hand. Identification of biomarker-based fingerprints from complex mixtures has a direct linkage to e-nose and e-tongue research. Recently, we have moved to the point of big data acquisition alongside the linkage to machine learning and artificial intelligence. Here, exciting opportunities are afforded by multiparameter sensing that mimics the sense of taste, overcoming the limitations of salty, sweet, sour, bitter, and glutamate sensing and moving into fingerprints of health and wellness. This article summarizes developments related to the electronic taste chip system evolving into a platform that digitizes biology and affords clinical decision support tools. A dynamic body of literature and key review articles that have contributed to the shaping of these activities are also highlighted. This fully integrated sensor promises more rapid transition of biomarker panels into wide-spread clinical practice yielding valuable new insights into health diagnostics, benefiting early disease detection. Full article
(This article belongs to the Special Issue Electronic Tongues)
Show Figures

Graphical abstract

5 pages, 378 KB  
Proceeding Paper
Development of All-Around SiO2/Al2O3 Gate, Suspended Silicon Nanowire Chemical Field Effect Transistors Si-nw-ChemFET
by Ahmet Lale, Auriane Grappin, Laurent Mazenq, David Bourrier, Aurélie Lecestre, Jérôme Launay and Pierre Temple-Boyer
Proceedings 2017, 1(4), 419; https://doi.org/10.3390/proceedings1040419 - 8 Aug 2017
Viewed by 2089
Abstract
We present a sensor platform associated to silicon-nanowire chemical field effect transistors (Si-nw-ChemFET). Innovations concern the use of networks of suspended silicon N+/P/N+ nanowires as conducting channel, the realization by thermal oxidation and Atomic-Layer Deposition (ALD) of a SiO2 [...] Read more.
We present a sensor platform associated to silicon-nanowire chemical field effect transistors (Si-nw-ChemFET). Innovations concern the use of networks of suspended silicon N+/P/N+ nanowires as conducting channel, the realization by thermal oxidation and Atomic-Layer Deposition (ALD) of a SiO2/Al2O3 gate insulator all-around the silicon nanowires, and their final integration into covered SU8-based microfluidic channels. The Si-nw-MOSFET/ChemFET fabrication process and electrical/electrochemical characterizations are presented. The fabrication process did not need an expensive and time-consuming e-beam lithography, but only fast and “low cost” standard photolithography protocols. Such microdevice will provide new opportunities for bio-chemical analysis at the micro/nanoscale. Full article
(This article belongs to the Proceedings of Proceedings of Eurosensors 2017, Paris, France, 3–6 September 2017)
Show Figures

Figure 1

10 pages, 2177 KB  
Article
Electrochemical Detection of Hydrogen Peroxide by Inhibiting the p-Benzenediboronic Acid-Triggered Assembly of Citrate-Capped Au/Ag Nanoparticles on Electrode Surface
by Lin Liu, Ting Sun and Huizhu Ren
Materials 2017, 10(1), 40; https://doi.org/10.3390/ma10010040 - 5 Jan 2017
Cited by 6 | Viewed by 6651
Abstract
Metal nanoparticles (NPs) possess unique physicochemical attributes for creating effective recognition and transduction processes in chem/bio-sensing. In this work, we suggested that citrate-capped Au/Ag NPs could be used as the reporters for the design of hydrogen peroxide (H2O2) sensors [...] Read more.
Metal nanoparticles (NPs) possess unique physicochemical attributes for creating effective recognition and transduction processes in chem/bio-sensing. In this work, we suggested that citrate-capped Au/Ag NPs could be used as the reporters for the design of hydrogen peroxide (H2O2) sensors with a simple manipulation principle and an easy detection procedure. Specifically, p-benzenediboronic acid (BDBA) induced the aggregation of citrate-capped Au NPs through the cross-linking reaction between citrate and boronic acid of BDBA in solution. By modifying the electrode with a boronic acid derivative, the BDBA-induced assembly of Au NPs was achieved on the electrode surface. This led to a significant decrease in the electron transfer resistance due to the unique conductive ability of Au NPs. However, when the boronate group on the electrode surface was oxidized into its phenol format, the assembly of Au NPs on the electrode surface was not achieved. As a result, a higher electron transfer resistance was observed. The process could be monitored by electrochemical impedance technique. Furthermore, when Ag NPs were used instead of Au NPs in this design, the H2O2 concentration could be determined by measuring the linear-sweep voltammetry (LSV) current through the solid-state Ag/AgCl reaction of Ag NPs. The results indicated that NP-based colorimetric assays could be developed into more sensitive electrochemical analysis. Full article
(This article belongs to the Special Issue Noble Metal Nanoparticles)
Show Figures

Figure 1

16 pages, 7193 KB  
Article
Combining Remote Temperature Sensing with in-Situ Sensing to Track Marine/Freshwater Mixing Dynamics
by Margaret McCaul, Jack Barland, John Cleary, Conor Cahalane, Tim McCarthy and Dermot Diamond
Sensors 2016, 16(9), 1402; https://doi.org/10.3390/s16091402 - 31 Aug 2016
Cited by 21 | Viewed by 6338
Abstract
The ability to track the dynamics of processes in natural water bodies on a global scale, and at a resolution that enables highly localised behaviour to be visualized, is an ideal scenario for understanding how local events can influence the global environment. While [...] Read more.
The ability to track the dynamics of processes in natural water bodies on a global scale, and at a resolution that enables highly localised behaviour to be visualized, is an ideal scenario for understanding how local events can influence the global environment. While advances in in-situ chem/bio-sensing continue to be reported, costs and reliability issues still inhibit the implementation of large-scale deployments. In contrast, physical parameters like surface temperature can be tracked on a global scale using satellite remote sensing, and locally at high resolution via flyovers and drones using multi-spectral imaging. In this study, we show how a much more complete picture of submarine and intertidal groundwater discharge patterns in Kinvara Bay, Galway can be achieved using a fusion of data collected from the Earth Observation satellite (Landsat 8), small aircraft and in-situ sensors. Over the course of the four-day field campaign, over 65,000 in-situ temperatures, salinity and nutrient measurements were collected in parallel with high-resolution thermal imaging from aircraft flyovers. The processed in-situ data show highly correlated patterns between temperature and salinity at the southern end of the bay where freshwater springs can be identified at low tide. Salinity values range from 1 to 2 ppt at the southern end of the bay to 30 ppt at the mouth of the bay, indicating the presence of a freshwater wedge. The data clearly show that temperature differences can be used to track the dynamics of freshwater and seawater mixing in the inner bay region. This outcome suggests that combining the tremendous spatial density and wide geographical reach of remote temperature sensing (using drones, flyovers and satellites) with ground-truthing via appropriately located in-situ sensors (temperature, salinity, chemical, and biological) can produce a much more complete and accurate picture of the water dynamics than each modality used in isolation. Full article
(This article belongs to the Section Remote Sensors)
Show Figures

Figure 1

Back to TopTop