Sign in to use this feature.

Years

Between: -

Subjects

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Journals

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Article Types

Countries / Regions

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Search Results (10,406)

Search Parameters:
Keywords = chemical component

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
16 pages, 1476 KB  
Article
Estimating Toxicity Putative Mechanisms from Smoking Residual Substances Using a Whole-Cell Bioreporter System
by Tal Bar, Marilou Shagan, Esti Kramarsky-Winter, Robert S. Marks, Karina Golberg and Ariel Kushmaro
Biosensors 2025, 15(11), 733; https://doi.org/10.3390/bios15110733 (registering DOI) - 3 Nov 2025
Abstract
Cigarette smoking is known to be an unhealthy activity that can cause a number of human diseases, including chronic obstructive pulmonary disease (COPD) and lung cancer. It was further reported that even being exposed to secondhand cigarette smoke can affect human health. To [...] Read more.
Cigarette smoking is known to be an unhealthy activity that can cause a number of human diseases, including chronic obstructive pulmonary disease (COPD) and lung cancer. It was further reported that even being exposed to secondhand cigarette smoke can affect human health. To assess the toxicity of the smoke from different cigarette brands, an artificial smoking device was developed, and three fractions designated, Filter Fraction, Smoke Fraction and Tar Fraction, were prepared from the smoke of each brand. Then, to elucidate possible effects of some of the toxins found in cigarette smoke, we investigated their effects in vitro using a bioluminescent bacterial array that comprises three bacterial strains. Using this array, we compare smoke from three cigarette brands, each with different tar and nicotine contents. GC-MS analysis showed that the cigarette smoke extracts (fractions) from different brands differed in their compositions and chemical concentrations. The results further showed that, in general, cigarette smoke triggered mainly an oxidative stress reaction in our bacterial models. The Smoke Fraction was tested for sequential smoking rounds and found to produce cumulative effects following each subsequent smoking cycle for all three cigarette brands. Finally, it was found that cigarette smoke and its specific components are toxic at various degrees with the Smoke Fraction, acting as oxidative stressors, and that this can be effectively analyzed using bioreporter panel arrays. Full article
(This article belongs to the Special Issue Feature Paper in Biosensor and Bioelectronic Devices 2025)
Show Figures

Figure 1

14 pages, 1852 KB  
Article
Simulation of Unidirectional Ion Ejection in Miniature Four-Channel Linear Ion Trap Array
by Yunfan He, Zhuoqing Yang, Yan Zhang, Yunna Sun, Jinyuan Yao and Guifu Ding
Sensors 2025, 25(21), 6701; https://doi.org/10.3390/s25216701 (registering DOI) - 2 Nov 2025
Abstract
With the surging demand for dynamic, real-time, and rapid qualitative analysis of chemical components, chip-scale mass spectrometers have attracted widespread attention. Ion traps have become the preferred mass analyzer for chip-scale mass spectrometers due to their excellent analytical performance. However, the miniaturization of [...] Read more.
With the surging demand for dynamic, real-time, and rapid qualitative analysis of chemical components, chip-scale mass spectrometers have attracted widespread attention. Ion traps have become the preferred mass analyzer for chip-scale mass spectrometers due to their excellent analytical performance. However, the miniaturization of ion traps inevitably leads to a reduction in ion storage capacity, which in turn affects their sensitivity and dynamic range. In this study, a Miniature Four-Channel Linear Ion Trap Array (M-FLITA) with hyperbolic electrodes and a 1 mm field radius was established and optimized. Concurrently, unidirectional ion ejection was accomplished by the application of asymmetric RF voltages on M-FLITA. The results demonstrate that, in the stretched structure, the mass resolution is improved to 732, while the unidirectional ion ejection efficiency is maintained at 96%. M-FLITA demonstrates advantages in terms of high ion storage capacity and mass resolution under high ion flux conditions, providing an ideal solution for high-performance micro mass analyzers in chip-scale mass spectrometers. Full article
(This article belongs to the Section Physical Sensors)
Show Figures

Figure 1

6 pages, 1322 KB  
Communication
Effect of Thermal Stress on the Cuticular Chemical Composition of the Amazonian Social Wasp Polybia rejecta (Fabricius, 1798)
by Tatiane Tagliatti Maciel, Bruno Corrêa Barbosa, Samanta Brito, Jodieh Oliveira Santana Varejão, Eduardo Vinícius Vieira Varejão, Marcio Luiz Oliveira, Rafael Dettogni Guariento and José Eduardo Serrão
Diversity 2025, 17(11), 766; https://doi.org/10.3390/d17110766 (registering DOI) - 1 Nov 2025
Abstract
Insects are facing challenges with climate change, especially in tropical regions where small variations in temperature can affect their survival and behavior. The insect cuticle is a barrier against water loss and a source of signals for chemical communication triggered mainly by cuticular [...] Read more.
Insects are facing challenges with climate change, especially in tropical regions where small variations in temperature can affect their survival and behavior. The insect cuticle is a barrier against water loss and a source of signals for chemical communication triggered mainly by cuticular hydrocarbons. Knowing that tolerance in social wasps to temperature variations mainly depends on changes in the chemical composition of the cuticle, the objective was to evaluate how high temperatures affect the cuticular hydrocarbon composition of the social wasp Polybia rejecta. The wasps were exposed to a temperature of 40 °C for 1 h, 3 h, and 6 h following analyses of the cuticular hydrocarbons by GC-MS. The results revealed five long-chain hydrocarbons and one fatty alcohol. The relative percentages to each class of compounds indicated alkanes as the principal component in all samples. Tricosane was only identified after the third hour of exposure, increasing in the sixth hour, suggesting a possible chemical communication mechanism to alert critical situations between individuals. These results open up new avenues of research into insect communication in response to environmental stress. Full article
(This article belongs to the Section Animal Diversity)
Show Figures

Figure 1

13 pages, 6341 KB  
Article
GaAs Nanowire Growth by MBE with Catalyst Forming Eutectic Points with Both Elements
by Nickolay V. Sibirev, Ilya P. Soshnikov, Igor V. Ilkiv, Evgenii V. Ubyivovk, George E. Cirlin and Igor V. Shtrom
Nanomaterials 2025, 15(21), 1664; https://doi.org/10.3390/nano15211664 (registering DOI) - 1 Nov 2025
Abstract
A3B5 nanowires are usually grown via the vapor-liquid-solid mechanism. Species from the vapor are incorporated into the nanowires using a catalyst droplet. Typically, the droplet is a low-melting-point eutectic alloy of catalyst and group III metal. This growth imposes a set of limitations [...] Read more.
A3B5 nanowires are usually grown via the vapor-liquid-solid mechanism. Species from the vapor are incorporated into the nanowires using a catalyst droplet. Typically, the droplet is a low-melting-point eutectic alloy of catalyst and group III metal. This growth imposes a set of limitations on the heterostructure formation and doping. Axial A3B5 heterostructure nanowires obtained via an interchange of group III metals suffer from blurring and kinking. Amphoteric dopants such as Si could act as donors and acceptors, leading to electron-to-hole ratio oscillations along the nanowire. To overcome these limits, the growth with a catalyst, which could dissolve both components of the nanowire, is studied. Tin has a eutectic with both components, As and Ga. This makes the growth of GaAs nanowires with a tin catalyst different from that with standard catalysts. Nanowire growth occurs with at least two types of catalysts, Ga-rich and Ga-poor (As-rich). This article aims to study the nanowire growth with an Sn catalyst. For the first time, the growth of GaAs nanowires using a tin catalyst by molecular beam epitaxy is shown. Tin can serve as a catalyst not only for the chemical growth of GaAs nanowires but also as a nucleation site for their growth. Both compositions of the catalyst are observed. The annealing of a thin film of tin on a Si and GaAs substrate has also been studied. At temperatures below 450 °C, small metal droplets form, while tin dissolves into the substrate at higher temperatures. Full article
(This article belongs to the Section Synthesis, Interfaces and Nanostructures)
Show Figures

Figure 1

21 pages, 895 KB  
Review
Hybrid Biocatalysis with Photoelectrocatalysis for Renewable Furan Derivatives’ Valorization: A Review
by Shize Zheng, Xiangshi Liu, Bingqian Guo, Yanou Qi, Xifeng Lv, Bin Wang and Di Cai
Photochem 2025, 5(4), 35; https://doi.org/10.3390/photochem5040035 (registering DOI) - 1 Nov 2025
Abstract
Biocatalysis is fundamental to biological processes and sustainable chemical productions. Over time, the biocatalysis strategy has been widely researched. Initially, biomanufacturing and catalysis of high-value chemicals were carried out through direct immobilization and application of biocatalysts, including natural enzymes and living cells. With [...] Read more.
Biocatalysis is fundamental to biological processes and sustainable chemical productions. Over time, the biocatalysis strategy has been widely researched. Initially, biomanufacturing and catalysis of high-value chemicals were carried out through direct immobilization and application of biocatalysts, including natural enzymes and living cells. With the evolution of green chemistry and environmental concern, hybrid photoelectro-biocatalysis (HPEB) platforms are seen as a new approach to enhance biocatalysis. This strategy greatly expands the domain of natural biocatalysis, especially for bio-based components. The selective valorization of renewable furan derivatives, such as 5-hydroxymethylfurfural (HMF) and furfural, is central to advancing biomass-based chemical production. Biocatalysis offers high chemo-, regio-, and stereo-selectivity under mild conditions compared with traditional chemical catalysis, yet it is often constrained by the costly and inefficient regeneration of redox cofactors like NAD(P)H. Photoelectrocatalysis provides a sustainable means to supply reducing equivalents using solar or electrical energy. In recent years, hybrid systems that integrate biocatalysis with photoelectrocatalysis have emerged as a promising strategy to overcome this limitation. This review focuses on recent advances in such systems, where photoelectrochemical platforms enable in situ cofactor regeneration to drive enzymatic transformations of furan-based substrates. We critically analyze representative coupling strategies, materials and device configurations, and reaction engineering approaches. Finally, we outline future directions for developing efficient, robust, and industrially viable hybrid catalytic platforms for green biomass valorization. Full article
(This article belongs to the Special Issue Feature Review Papers in Photochemistry)
Show Figures

Figure 1

27 pages, 5615 KB  
Article
Uncovering Exposure Patterns of Metals, PFAS, Phthalates, and PAHs and Their Combined Effect on Liver Injury Markers
by Doreen Jehu-Appiah and Emmanuel Obeng-Gyasi
J. Xenobiot. 2025, 15(6), 178; https://doi.org/10.3390/jox15060178 (registering DOI) - 1 Nov 2025
Abstract
People are exposed to mixtures of metals, per- and polyfluoroalkyl substances (PFAS), phthalates, and polycyclic aromatic hydrocarbons (PAH) rather than single chemicals, yet mixture inference is hampered by high dimensionality, correlation, missingness, and left-censoring below limits of detection (LOD). We analyzed 2013–2014 National [...] Read more.
People are exposed to mixtures of metals, per- and polyfluoroalkyl substances (PFAS), phthalates, and polycyclic aromatic hydrocarbons (PAH) rather than single chemicals, yet mixture inference is hampered by high dimensionality, correlation, missingness, and left-censoring below limits of detection (LOD). We analyzed 2013–2014 National Health and Nutrition Examination Survey (NHANES) biomarkers (n = 4367) to (i) recover latent, interpretable co-exposure structures and (ii) quantify how these mixtures relate to liver health. To denoise and handle censoring, we applied Principal Component Pursuit with LOD adjustment (PCP-LOD), decomposing the exposure matrix into a non-negative low-rank component (population co-exposure profiles) and a sparse component (individual spikes), and then used Bayesian Kernel Machine Regression (BKMR) to estimate nonlinear and interactive associations with AST, ALT, GGT, ALP, total bilirubin, and the Fatty Liver Index (FLI), retaining analytes with ≥50% detection. PCP-LOD revealed coherent clusters (e.g., long-chain PFAS grouping; shared metal loadings), while the sparse layer highlighted episodic phthalate elevations. BKMR indicated outcome-specific mixture effects: PAHs and selected phthalates showed consistently positive associations with ALP, GGT, and FLI; PFAS (PFOS, PFNA, PFOA) exhibited modest associations with ALP and bilirubin; metals displayed mixed directions. A joint increase in the overall mixture from the 25th to 75th percentile corresponded to an upward shift in FLI and a smaller rise in ALT. This censoring-aware low-rank-plus-sparse framework coupled with flexible mixture modeling recovers actionable exposure architecture and reveals clinically relevant links to liver injury and steatosis, motivating longitudinal and mechanistic studies to strengthen causal interpretation. Full article
Show Figures

Graphical abstract

22 pages, 6617 KB  
Article
The Global Spatial Pattern of Aerosol Optical, Microphysical and Chemical Properties Derived from AERONET Observations
by Ying Zhang, Qiyu Wang, Zhuolin Yang, Chaoyu Yan, Tong Hu, Yisong Xie, Yu Chen and Hua Xu
Remote Sens. 2025, 17(21), 3624; https://doi.org/10.3390/rs17213624 (registering DOI) - 1 Nov 2025
Abstract
This study, based on global AERONET observation data from 2023, employs a synergistic inversion algorithm that integrates aerosol optical, microphysical, and chemical properties to retrieve the global distribution of aerosol parameters. We find that the global annual mean aerosol optical depth (AOD), fine-mode [...] Read more.
This study, based on global AERONET observation data from 2023, employs a synergistic inversion algorithm that integrates aerosol optical, microphysical, and chemical properties to retrieve the global distribution of aerosol parameters. We find that the global annual mean aerosol optical depth (AOD), fine-mode AOD (AODf), coarse-mode AOD (AODc), absorbing aerosol optical depth (AAOD), single scattering albedo (SSA) are 0.20, 0.15, 0.04, 0.024, and 0.87, respectively. From the perspective of spatial distribution, in densely populated urban areas, AOD is mainly determined by AODf, while in the areas dominated by natural sources, AODc contributes more. Combined with the optical and microphysical properties, fine-mode aerosols dominate optical contributions, whereas coarse-mode aerosols dominate volume contributions. In terms of chemical components, fine-mode aerosols at most global sites are primarily carbonaceous. The mass concentrations of black carbon (BC) exceed 10 mg m−2 in parts of South Asia, Southeast Asia, and the Arabian Peninsula, while the mass fraction of brown carbon (BrC) accounts for more than 16% in regions such as the Sahara, Western Africa, and the North Atlantic Ocean reference areas. The dust (DU) dominates in coarse mode, with the annual mean DU fraction reaching 86.07% in the Sahara. In coastal and humid regions, the sea salt (SS) and water content (AWc) contribute significantly to the aerosol mass, with fractions reaching 13.13% and 34.39%. The comparison of aerosol properties in the hemispheres reveals that the aerosol loading in the Northern Hemisphere caused by human activities is higher than in the Southern Hemisphere, and the absorption properties are also stronger. We also find that the uneven distribution of global observation sites leads to a significant underestimation of aerosol absorption and coarse-mode features in global mean values, highlighting the adverse impact of observational imbalance on the assessment of global aerosol properties. By combining analyses of aerosol optical, microphysical, and chemical properties, our study offers a quantitative foundation for understanding the spatiotemporal distribution of global aerosols and their emission contributions, providing valuable insights for climate change assessment and air quality research. Full article
Show Figures

Figure 1

19 pages, 4609 KB  
Article
Geospatial Analysis of Soil Quality Parameters and Soil Health in the Lower Mahanadi Basin, India
by Sagar Kumar Swain, Bikash Ranjan Parida, Ananya Mallick, Chandra Shekhar Dwivedi, Manish Kumar, Arvind Chandra Pandey and Navneet Kumar
GeoHazards 2025, 6(4), 71; https://doi.org/10.3390/geohazards6040071 (registering DOI) - 1 Nov 2025
Abstract
The lower Mahanadi basin in eastern India is experiencing significant land and soil transformations that directly influence agricultural sustainability and ecosystem resilience. In this study, we used geospatial techniques to analyze the spatial-temporal variability of soil quality and land cover between 2011 and [...] Read more.
The lower Mahanadi basin in eastern India is experiencing significant land and soil transformations that directly influence agricultural sustainability and ecosystem resilience. In this study, we used geospatial techniques to analyze the spatial-temporal variability of soil quality and land cover between 2011 and 2020 in the lower Mahanadi basin. The results revealed that the cropland decreased from 39,493.2 to 37,495.9 km2, while forest cover increased from 12,401.2 to 13,822.2 km2, enhancing soil organic carbon (>290 g/kg) and improving fertility. Grassland recovered from 4826.3 to 5432.1 km2, wastelands declined from 133.3 to 93.2 km2, and water bodies expanded from 184.3 to 191.4 km2, reflecting positive land–soil interactions. Soil quality was evaluated using the Simple Additive Soil Quality Index (SQI), with core indicators bulk density, organic carbon, and nitrogen, selected to represent physical, chemical, and biological components of soil. These indicators were chosen as they represent the essential physical, chemical, and biological components influencing soil functionality and fertility. The SQI revealed spatial variability in texture, organic carbon, nitrogen, and bulk density at different depths. SQI values indicated high soil quality (SQI > 0.65) in northern and northwestern zones, supported by neutral to slightly alkaline pH (6.2–7.4), nitrogen exceeding 5.29 g/kg, and higher organic carbon stocks (>48.8 t/ha). In contrast, central and southwestern regions recorded low SQI (0.15–0.35) due to compaction (bulk density up to 1.79 g/cm3) and fertility loss. Clay-rich soils (>490 g/kg) enhanced nutrient retention, whereas sandy soils (>320 g/kg) in the south increased leaching risks. Integration of LULC with soil quality confirms forest expansion as a driver of resilience, while agricultural intensification contributed to localized degradation. These findings emphasize the need for depth-specific soil management and integrated land-use planning to ensure food security and ecological sustainability. Full article
Show Figures

Figure 1

33 pages, 3466 KB  
Article
The Effect of Pre-Sowing Seed Treatment and Foliar Applications of Growth Stimulants on the Productivity of Perennial Grasses Under the Conditions of Northern Kazakhstan
by Saltanat Baidalina, Zhanat Salikova, Akhama Akhet, Ildar Bogapov, Miras Suraganov, Adiya Akhetova, Zhuldyz Alshinbayeva and Marden Baidalin
Agronomy 2025, 15(11), 2547; https://doi.org/10.3390/agronomy15112547 (registering DOI) - 31 Oct 2025
Abstract
A two-year (2023–2024) multifactorial field study was conducted under the agro-climatic conditions of Northern Kazakhstan, with the objective of refining cultivation practices for hayfields of perennial legumes and grasses, including alfalfa (Medicago sativa L.), smooth brome (Bromus inermis Leyss.), and sainfoin [...] Read more.
A two-year (2023–2024) multifactorial field study was conducted under the agro-climatic conditions of Northern Kazakhstan, with the objective of refining cultivation practices for hayfields of perennial legumes and grasses, including alfalfa (Medicago sativa L.), smooth brome (Bromus inermis Leyss.), and sainfoin (Onobrychis arenaria Kit). The elements targeted for optimization included the species composition and component ratios in the mixtures, as well as the regimes of pre-sowing and foliar applications of growth regulators (AminoMax, Black Jak, Miller Start, Lider-S). The integrated experimental design accounted for laboratory and field germination, biometric parameters (plant height, leafiness), phenophase dynamics, autumn survival and overwintering, indicators of photosynthetic activity, as well as yields of green biomass and dry matter, and chemical composition (crude protein, fiber, ash, fat, and nitrogen-free extract). Grass–legume mixtures ensured more stable progression of phenophases, improved overwintering, and enhanced protein value compared to monocultures; the inclusion of sainfoin contributed to improved forage quality without compromising yield. Growth regulators promoted accelerated initial plant development and enhanced the intensity of net photosynthetic productivity. The greatest effect of application was observed in the grass component with Miller Start, whereas in the legume species it was most pronounced with AminoMax. The results of the study revealed that the optimal proportion of legumes in the forage mixtures is 30–40%. Under contrasting hydrothermal conditions, the yield of fresh and dry matter ranged from 4.19 to 4.81 t ha−1 and 1.27–1.51 t ha−1 (2023) to 10.43–14.46 t ha−1 and 3.05–4.63 t ha−1 (2024). The greatest effect was observed with Miller Start and AminoMax treatments (p < 0.05), whereas the action of Black Jak and Lider-S was moderate, confirming differences in their mechanisms of action under contrasting weather conditions. Full article
(This article belongs to the Section Grassland and Pasture Science)
20 pages, 924 KB  
Article
Use of Microbial and Enzymatic Additives on the Nutritional Quality, Fermentation Profile, and In Vitro Digestibility of Mixed Silages of Amaranth and Sweet Potato Vines
by Liuyan Fang, Mengrong Su, Shaoyan Wu, Wenhui Xu, Beiyu Weng, Yaochang Feng, Wenjie Zhang and Jian Ma
Agriculture 2025, 15(21), 2276; https://doi.org/10.3390/agriculture15212276 (registering DOI) - 31 Oct 2025
Abstract
This research evaluated the influence of lactic acid bacteria and cellulase, individually or in combination, on the quality of mixed amaranth and sweet potato vine silages. The experiment included four groups: control group with no additives addition (CG), added cellulase group (AS1), added [...] Read more.
This research evaluated the influence of lactic acid bacteria and cellulase, individually or in combination, on the quality of mixed amaranth and sweet potato vine silages. The experiment included four groups: control group with no additives addition (CG), added cellulase group (AS1), added lactic acid bacteria group (AS2) and combined supplementation group (AS3), with five replicates per group. The ensiling period lasted for 60 days. Parameters of silage, including chemical components, fermentation profile, aerobic stability, and in vitro nutrient digestibility, were determined. The results revealed that the quality of amaranth and sweet potato vine mixed silage was improved to a certain degree after addition of two additives individually. Combining these additives observably increased (p < 0.05) the lactic acid and crude protein contents and decreased the pH, ratio of ammonia nitrogen to total nitrogen and neutral detergent fiber content of mixed silage. Compared with the CG and AS1 groups, the number of lactic acid bacteria in the AS3 group increased significantly (p < 0.05), while aerobic bacteria and mold counts showed the opposite tendency. Also, the in vitro dry matter, crude protein and neutral detergent fiber digestibility of the AS3 group were higher (p < 0.05) than those of the CG group. Combined inoculation observably reduced (p < 0.05) the ammonia nitrogen concentration and increased (p < 0.05) the propionic and butyric acid concentrations of mixed silage under in vitro incubation. In summary, the inoculation of lactic acid bacteria and cellulase can enhance the fermentation profile and nutritional values of mixed silage made from amaranth and sweet potato vine, and the best improvement effects are obtained by the combined utilization of the two additives. Full article
(This article belongs to the Section Farm Animal Production)
17 pages, 1905 KB  
Article
Lipidomic Screening of Marine Diatoms Reveals Release of Dissolved Oxylipins Associated with Silicon Limitation and Growth Phase
by Imanol Ulloa, Jiwoon Hwang, Matthew D. Johnson and Bethanie R. Edwards
Mar. Drugs 2025, 23(11), 424; https://doi.org/10.3390/md23110424 (registering DOI) - 31 Oct 2025
Abstract
Marine diatoms are an important group of phytoplankton that can shape marine ecosystems and global carbon cycling. When stressed, either physiologically or by grazing, diatoms release oxidized, lipid-derived signals known as oxylipins. Diatom-derived oxylipins are proposed to serve as defense and signaling chemicals [...] Read more.
Marine diatoms are an important group of phytoplankton that can shape marine ecosystems and global carbon cycling. When stressed, either physiologically or by grazing, diatoms release oxidized, lipid-derived signals known as oxylipins. Diatom-derived oxylipins are proposed to serve as defense and signaling chemicals that affect multiple components of marine ecosystems. Therefore, to elucidate the diversity of diatom-derived oxylipins produced during stress, we profiled the spectrum of dissolved lipids of five diatom species in culture under silicon limitation and across growth phases using ultra-high performance liquid chromatography coupled with high-resolution accurate mass spectrometry. In this study, we present evidence that physiological changes associated with Si-limitation elicit the extracellular release of linear oxygenated fatty acids (LOFAs) across five diatom species. For diatoms like Skeletonema japonicum and Pseudo-nitzschia multiseries, silicon limitation induced a distinct lipidomic signature driven by oxylipins known to be allelopathic. While their lipoxygenases were found to be different, S. japonicum and P. multiseries had the most similar dissolved lipidomes, suggesting alternative controls on oxylipin biosynthesis. Consequently, elevated oxylipin concentrations with silicon stress, estimated up to 5.91 µM, pose implications for diatoms at sea, potentially affecting ecosystems and biogeochemistry. Full article
(This article belongs to the Special Issue Marine Algal Chemical Ecology 2024)
Show Figures

Graphical abstract

41 pages, 6759 KB  
Review
Essential Oils as Green Antibacterial Modifiers of Polymeric Materials
by Kamila Majewska-Smolarek and Anna Kowalewska
Polymers 2025, 17(21), 2924; https://doi.org/10.3390/polym17212924 (registering DOI) - 31 Oct 2025
Abstract
The need for new strategies to reduce the susceptibility of polymeric materials to bacterial colonization is growing, especially with the emergence of drug-resistant bacterial strains. Antimicrobial agents used to modify polymers should not only be effective against microorganisms in both planktonic and biofilm [...] Read more.
The need for new strategies to reduce the susceptibility of polymeric materials to bacterial colonization is growing, especially with the emergence of drug-resistant bacterial strains. Antimicrobial agents used to modify polymers should not only be effective against microorganisms in both planktonic and biofilm states but also be safe and environmentally friendly. Phytochemicals, which are components of essential oils, may be a suitable choice to help combat microbial resistance to antibiotics. Furthermore, they meet the requirements of green chemistry. Essential oils synthesized by plants as secondary metabolites are capable of combating both Gram-positive and Gram-negative bacteria by disrupting lipid bilayers, affecting efflux pumps, compromising the integrity of bacterial cell membranes, and inhibiting the quorum-sensing system. They are also effective as adjuvants in antibiotic therapies. In this review, we outline the mechanism of action of various essential oil components that resulted in enhanced eradication of planktonic bacteria and biofilms. We summarize the use of these antimicrobial agents in macromolecular systems (nanovessels, fibers, nanocomposites, and blends) and provide an overview of the relationship between the chemical structure of phytochemicals and their antimicrobial activity, as well as their influence on the properties of polymeric systems, with a special focus on green active packaging materials. Full article
(This article belongs to the Section Smart and Functional Polymers)
Show Figures

Figure 1

35 pages, 6178 KB  
Article
Application of Principal Component and Multi-Criteria Analysis to Evaluate Key Physical and Chemical Soil Indicators for Sustainable Land Use Management in Arid Rangeland Ecosystems
by Hesham M. Ibrahim, Zafer Alasmary, Mosaed A. Majrashi, Meshal Abdullah Harbi, Abdullah Abldubise and Abdulaziz G. Alghamdi
Land 2025, 14(11), 2167; https://doi.org/10.3390/land14112167 (registering DOI) - 30 Oct 2025
Viewed by 90
Abstract
Vast areas of natural rangelands in the Kingdom of Saudi Arabia (KSA) suffer from deterioration due to the scarcity of vegetation cover and poor soil quality. Assessing soil quality in rangelands is crucial to identifying degraded lands and to implementing proper sustainable management [...] Read more.
Vast areas of natural rangelands in the Kingdom of Saudi Arabia (KSA) suffer from deterioration due to the scarcity of vegetation cover and poor soil quality. Assessing soil quality in rangelands is crucial to identifying degraded lands and to implementing proper sustainable management practices. In this study, a total data set (TDS) containing 27 physical and chemical soil indicators was generated for three rangelands (Al-Fahyhyl, Al-Sahwa, and Al-Tamryate) in KSA. Principal component analysis (PCA) and analytic hierarchy process (AHP) analysis were employed to establish a minimum data set (MDS) and to evaluate key physical and chemical properties affecting soil quality, along with the associated weight factor for each indicator. Results indicated that the MDS represented ≥70% of the total variability of the TDS and accurately estimated the soil quality index (SQI) based on determined physical and chemical soil properties in the study regions. Linear regression indicated high correlation between SQI-TDS and SQI-MDS, with the R2 ranging between 0.51–0.87. On the surface layer (0–30 cm), the MDS contained seven soil indicators (sand, dispersion ratio (DR), mean weight diameter (MWD), bulk density (BD), total organic carbon (TOC), available phosphorus (Pa), and available potassium (Ka)), whereas in the sub-surface layer it contained six indicators (sand, DR, MWD, BD, TOC, Pa, and Ka). In all regions, sand had the largest weight factor (0.4514–0.4835), followed by TOC (0.2441–0.2512). Under the arid climate present in all the study sites, sand and TOC levels are crucial for nutrient retention, soil structure, and water retention. Most of the study areas had very low and low SQI (Al-Fahyhyl, 74.4%; Al-Sahwa, 61.8%; and Al-Tamryate, 81.7%), indicating an immediate need for suitable agricultural practices such as reduced tillage, increased organic amendments, and proper water management. The outcomes of this study offer valuable insights for land managers, legislators, and agricultural stakeholders to pinpoint regions in need of development, conduct comprehensive and continuous monitoring of SQI in rangeland areas, and implement land management plans for rangeland rehabilitation and environmental sustainability. Full article
Show Figures

Figure 1

22 pages, 2669 KB  
Article
Development of Spray-Dried Mannitol–Pregelatinized Rice Starch Using SeDeM-Based Approach for Direct Compressible Cetirizine Dihydrochloride Tablets
by Phennapha Saokham, Ruttiros Khonkarn, Pratchaya Tipduangta, Pattaraporn Panraksa and Karnkamol Trisopon
Pharmaceutics 2025, 17(11), 1409; https://doi.org/10.3390/pharmaceutics17111409 - 30 Oct 2025
Viewed by 151
Abstract
Background/Objectives: Direct compression offers a cost-effective route for tablet manufacturing but is often limited by poor powder flow and compressibility. This study reported the development of a co-processed excipient comprising 98% mannitol and 2% pregelatinized rice starch (PRS) using spray drying with [...] Read more.
Background/Objectives: Direct compression offers a cost-effective route for tablet manufacturing but is often limited by poor powder flow and compressibility. This study reported the development of a co-processed excipient comprising 98% mannitol and 2% pregelatinized rice starch (PRS) using spray drying with ammonium bicarbonate as a pore-forming agent. Methods: This optimized excipient demonstrated balanced powder flow and enhanced compressibility suitable for direct compression applications. The SeDeM expert system guided the optimization process by evaluating raw and spray-dried components. PRS exhibited excellent flowability that decreased after spray drying but displayed significantly enhanced compressibility, whereas mannitol maintained superior flow but continued to show limited compressibility post-drying. Scanning electron microscopy, differential scanning calorimetry, Fourier-transform infrared spectroscopy, and X-ray powder diffraction confirmed the absence of chemical interactions and unchanged wettability during co-processing. Results: The resulting excipient combined the favorable flow characteristics of mannitol with the improved compressibility of PRS, rendering it suitable for direct compression. Cetirizine dihydrochloride (CET) tablets were formulated via exponential curve fitting within the SeDeM framework, yielding an optimal CET-to-excipient ratio of 13:87. The tablets met all pharmacopeial physicochemical requirements, including uniform mass, adequate tensile strength, rapid disintegration, and dissolution profiles comparable to a reference product, with dissimilarity (f1 = 4.28) and similarity (f2 = 64.03) factors within regulatory acceptance limits. Conclusions: These findings represented the first application of SeDeM methodology to a co-processed mannitol–pregelatinized rice starch system, enabling predictive optimization of powder flow and compressibility in direct compression formulations. Full article
Show Figures

Figure 1

17 pages, 2928 KB  
Article
Exploration of the Chloride Binding Behavior of Anhydrous Calcium Sulfoaluminate Under Dual Chloride Ingress Modes
by Zirui Cheng, Luyan Ji, Zhen Wang, Linlin Gu and Wenbin Tang
Materials 2025, 18(21), 4949; https://doi.org/10.3390/ma18214949 - 30 Oct 2025
Viewed by 173
Abstract
This study explored the chloride binding characteristics and mechanisms of sulphoaluminate cement (SAC) by isolating its principal mineral component, anhydrous calcium sulphoaluminate (C4A3S-), as the research object. Chloride ingress was investigated under external penetration and internal [...] Read more.
This study explored the chloride binding characteristics and mechanisms of sulphoaluminate cement (SAC) by isolating its principal mineral component, anhydrous calcium sulphoaluminate (C4A3S-), as the research object. Chloride ingress was investigated under external penetration and internal incorporation conditions, with gypsum dosage varied at molar ratios of 1:0, 1:1, and 1:2 relative to  C4A3S-. Through chloride binding experiments and hydration product analysis performed by XRD and TG, the following findings were obtained: under external chloride exposure, the binding capacity increased with rising solution concentration and immersion time. External chloride binding was attributed to SO42−/Cl ion exchange in AFm to generate Friedel’s salt and was complemented by physical adsorption of chloride in AH3 gel. Under internal chloride incorporation, binding capacity increased progressively with curing age. Internal chloride binding involved the direct participation of Cl in hydration reactions to form Friedel’s salt in addition to the chemical reaction of AFm and the physical adsorption of AH3. Gypsum dosage critically regulates the AFm/AFt ratio, which in turn governs chloride binding efficiency under both external and internal chloride scenarios (e.g., after immersion in 1 mol/L NaCl solution, the bound chloride content for C4A3S-/gypsum ratios of 1:0, 1:1, and 1:2 was 50.94, 27.28, and 13.47 mg/g, respectively). Full article
(This article belongs to the Section Construction and Building Materials)
Show Figures

Figure 1

Back to TopTop