Sign in to use this feature.

Years

Between: -

Subjects

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Journals

Article Types

Countries / Regions

Search Results (231)

Search Parameters:
Keywords = circular polarized antennas

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
18 pages, 4581 KB  
Article
Metamaterial-Enhanced Microstrip Antenna with Integrated Channel Performance Evaluation for Modern Communication Networks
by Jasim Khudhair Salih Turfa and Oguz Bayat
Appl. Sci. 2025, 15(19), 10692; https://doi.org/10.3390/app151910692 - 3 Oct 2025
Viewed by 229
Abstract
This paper investigates the channel performance through a high-gain, circularly polarized microstrip patch antenna that is developed for contemporary wireless communication systems. The proposed antenna creates two orthogonal modes for circular propagation with slightly varying resonance frequencies by using a cross line and [...] Read more.
This paper investigates the channel performance through a high-gain, circularly polarized microstrip patch antenna that is developed for contemporary wireless communication systems. The proposed antenna creates two orthogonal modes for circular propagation with slightly varying resonance frequencies by using a cross line and truncations to circulate surface currents. Compactness, reduced surface wave losses, and enhanced impedance bandwidth are made possible by the coaxial probe feed, periodic electromagnetic gap (EBG) slots, and fractal patch geometry. For in-phase reflection and beam focusing, a specially designed single-layer metasurface (MTS) reflector with an 11 × 11 circular aperture array is placed 20 mm behind the antenna. A log-normal shadowing model was used to test the antenna in real-world scenarios, and the results showed a strong correlation between the model predictions and actual data. At up to 250 m, the polarization-agile, high-gain antenna demonstrated reliable performance across a variety of channel conditions, enabling accurate characterization of the Channel Quality Indicator (CQI), Signal-to-Noise Ratio (SNR), and Reference Signal Received Power (RSRP). By combining cutting-edge antenna architecture with an empirical channel performance study, this research presents a compact, affordable, and fabrication-friendly solution for increased wireless coverage and efficiency. Full article
Show Figures

Figure 1

22 pages, 3340 KB  
Article
Microstrip Patch Antenna for GNSS Applications
by Hatice-Andreea Topal and Teodor Lucian Grigorie
Appl. Sci. 2025, 15(19), 10663; https://doi.org/10.3390/app151910663 - 2 Oct 2025
Viewed by 145
Abstract
This research paper presents the results of an analysis conducted on a microstrip patch antenna designed to operate within the 1.559–1.591 GHz frequency band, which encompasses three major satellite constellations: GPS, Galileo and BeiDou. The objective of this study is to perform a [...] Read more.
This research paper presents the results of an analysis conducted on a microstrip patch antenna designed to operate within the 1.559–1.591 GHz frequency band, which encompasses three major satellite constellations: GPS, Galileo and BeiDou. The objective of this study is to perform a comparative evaluation of the materials used in the antenna design, assess the geometric configuration and analyze the key performance parameters of the proposed microstrip patch antenna. Prior to the numerical modeling and simulation process, a preliminary assessment was conducted to evaluate how different substrate materials influence antenna efficiency. For instance, a comparison between FR-4 and RT Duroid 5880 dielectric substrates revealed signal attenuation differences of approximately −1 dB at the target frequency. The numerical simulations were carried out using Ansys HFSS design. The antenna was mounted on a dielectric substrate, which was also mounted on a ground plane. The microstrip antenna was fed using a coaxial cable at a single point, strategically positioned to achieve circular polarization within the operating frequency band. The aim of this study is to design and analyze a microstrip antenna that operates within the previously specified frequency range, ensuring optimal impedance matching of 50 Ω with a return loss of S11 < −10 dB at the operating frequency (with these parameters also contributing to the definition of the antenna’s operational bandwidth). Furthermore, the antenna is required to provide a gain greater than 3 dB for integration into GNSS’ receivers and to achieve an Axial Ratio value below 3 dB in order to ensure circular polarization, thereby facilitating the antenna’s integration into GNSSs. Full article
Show Figures

Figure 1

19 pages, 5645 KB  
Article
Low-Backward Radiation Circular Polarization RFID Reader Antenna Design for Sports-Event Applications
by Chia-Hung Chang, Ting-An Chang, Ming-Zhang Kuo, Tung-Ming Koo, Chung-I G. Hsu and Xinhua Wang
Electronics 2025, 14(18), 3582; https://doi.org/10.3390/electronics14183582 - 9 Sep 2025
Viewed by 673
Abstract
This paper presents the design of a circularly polarized RFID ground mat antenna for UHF-band sports-event applications. Considering a practical sports-event timing system, the ground-based mat antenna with characteristics of a low-backward radiation and circular polarization is proposed. A multilayer square patch antenna [...] Read more.
This paper presents the design of a circularly polarized RFID ground mat antenna for UHF-band sports-event applications. Considering a practical sports-event timing system, the ground-based mat antenna with characteristics of a low-backward radiation and circular polarization is proposed. A multilayer square patch antenna using an acrylic dielectric substrate with a wideband branch-line coupler feeding network is employed to improve overall radiation efficiency, which, in turn, provides two excitation port with a phase difference of 90°. Thus, right-hand circular polarization can be obtained. Instead of a conventional FR4–air–FR4 structure, the proposed FR4–acrylic–FR4 composite configuration is adopted to substantially increase the antenna’s mechanical strength and durability against external pressure from runners. The antenna’s performance is attributed to the use of an effective composite dielectric constant and an optimized design of its parameters. Additionally, the patch antenna’s low-backward radiation characteristic helps reduce multipath interference in real-world applications. The measured results are in good agreement with the simulated data, validating the proposed antenna design. In order to further assess the practical performance of the antenna, outdoor measurements are carried out to validate the estimated reading distances derived from controlled anechoic chamber tests. The measured return loss remained below −10 dB across the frequency range of 755–990 MHz, exhibiting a slight discrepancy compared to the simulated bandwidth of 800–1030 MHz. For the characteristic of the circular polarization, the measured axial ratio is below 3 dB within the range of 860–920 MHz. While a more relaxed criterion of an axial ratio below 6 dB is considered, the operating frequency range extends from 560 MHz to 985 MHz, which falls within the frequency band relevant for RFID reader applications. Full article
(This article belongs to the Special Issue Analog/RF Circuits: Latest Advances and Prospects)
Show Figures

Figure 1

11 pages, 16124 KB  
Article
Wideband Circularly Polarized 1-D Connected Array Antennas with Slant Slot Feeders and Gradient Artificial Dielectric Layers
by Taeho Yu, Dongju Choi, Jin Myeong Heo and Gangil Byun
Appl. Sci. 2025, 15(17), 9568; https://doi.org/10.3390/app15179568 - 30 Aug 2025
Viewed by 482
Abstract
This paper proposes wideband circularly polarized (CP) 1-D connected array antennas with slant slot feeders and gradient artificial dielectric layers (ADLs). The slant slot feeder introduces an identical electric field (E-field) along the x- and y-directions. Three slabs consisting [...] Read more.
This paper proposes wideband circularly polarized (CP) 1-D connected array antennas with slant slot feeders and gradient artificial dielectric layers (ADLs). The slant slot feeder introduces an identical electric field (E-field) along the x- and y-directions. Three slabs consisting of multiple ADLs are stacked above the slot feeder. Due to the different boundary conditions of a 1-D connected array in the zx- and zy-planes, the guided wave in the slabs exhibits different multipath lengths along the x- and y-directions, leading to a 90° phase difference between the Ex and Ey components. Moreover, the cascaded slabs are designed with gradient effective permittivities for a gradual impedance transition from the guided mode to the radiating mode, allowing for wideband matching and CP performance. To validate the proposed design approach, an 8 × 1 array was fabricated and measured. The antenna shows a 1.96:1 (10.1–20 GHz) impedance bandwidth (VSWR < 2) and a 1.46:1 (12–17.5 GHz) 3 dB axial ratio bandwidth in measurement. The array exhibits an average right-hand CP boresight gain of 12.39 dBic. Moreover, we produced a frequency-invariant beam pattern with an average half-power beamwidth (HPBW) of 24.77° and a standard deviation below 3.63° over 12–18 GHz for the target pattern, with a HPBW of 26°, demonstrating wideband electronic warfare performance using the proposed array. Full article
(This article belongs to the Special Issue Antenna System: From Methods to Applications)
Show Figures

Figure 1

11 pages, 3327 KB  
Article
Coupled Split-Ring Resonators for Isolation Improvement in a 1 × 2 Microstrip Patch Antenna Array
by Kam Eucharist Kedze, Wenyu Zhou, Eqab Almajali, Hojjat Jamshidi-Zarmehri, Nima Javanbakht, Gaozhi (George) Xiao, Jafer Shaker and Rony E. Amaya
Electronics 2025, 14(17), 3340; https://doi.org/10.3390/electronics14173340 - 22 Aug 2025
Viewed by 524
Abstract
In this paper, a method to reduce mutual coupling between an E-plane and H-plane coupled microstrip patch antenna is presented. Two dual differentially fed square patches are designed in a 1 × 2 antenna array configuration. To minimize mutual coupling and its effects, [...] Read more.
In this paper, a method to reduce mutual coupling between an E-plane and H-plane coupled microstrip patch antenna is presented. Two dual differentially fed square patches are designed in a 1 × 2 antenna array configuration. To minimize mutual coupling and its effects, coupled split-ring resonators (SRRs) are designed, characterized and positioned between the patches. Circular SRRs are designed and coupled to produce a band-stop response to suppress surface waves propagating within the dielectric substrate while enhancing isolation. Mutual coupling interactions and the suppression mechanism are discussed in relation to the patches and SRRs. The patch radiators are dual differentially fed to achieve polarization diversity. E- and H-planes decoupling is achieved between the two patches throughout their bandwidth while maintaining good antenna performance. A prototype of the antenna array and the SRR is fabricated and measured to validate the decoupling approach. With a separation distance of 0.49λ between the patches, the measured S-parameters show an impedance bandwidth of |S11|≤−10 dB, covering 9.27–9.46 GHz, and −38 dB and −35 dB mutual coupling for E- and H-planes, respectively, are observed throughout the antenna operating bandwidth. Full article
Show Figures

Figure 1

24 pages, 8256 KB  
Article
Dual-Element Wideband CP Slot-Integrated MIMO Antenna with X-Notch Square AMC for DSRC Applications
by Chanwit Musika, Nathapat Supreeyatitikul, Jessada Konpang, Pongsathorn Chomtong and Prayoot Akkaraekthalin
Technologies 2025, 13(8), 367; https://doi.org/10.3390/technologies13080367 - 17 Aug 2025
Viewed by 841
Abstract
This study proposes a dual-element wideband circularly polarized (CP) slot-integrated multiple-input multiple-output (MIMO) antenna with an X-notch square-shaped artificial magnetic conductor (AMC) for dedicated short-range communications (DSRC) applications. The proposed antenna design consists of two substrate layers separated by an air gap. The [...] Read more.
This study proposes a dual-element wideband circularly polarized (CP) slot-integrated multiple-input multiple-output (MIMO) antenna with an X-notch square-shaped artificial magnetic conductor (AMC) for dedicated short-range communications (DSRC) applications. The proposed antenna design consists of two substrate layers separated by an air gap. The upper layer features a dual-element coplanar waveguide-fed slot antenna and a defected ground structure decoupling isolator, while the lower layer comprises an 8 × 8 array of X-notch square-shaped elemental units, functioning as an AMC reflector. Characteristic mode analysis shows that circular polarization is produced by the dominant orthogonal mode pair (modes J5 and J6), whose modal significance exceeds 0.92 and whose characteristic angle separation is 82° around the 5.9 GHz DSRC band. An I-shaped slot embedded in the ground plane of the upper layer serves as a defected ground structure isolator to suppress mutual coupling between antenna elements. Meanwhile, the X-notch square AMC reflector enhances radiation characteristics and antenna gain. The measured return loss bandwidth and axial ratio bandwidth are 32% (4.72–6.61 GHz) and 21.18% (5.2–6.45 GHz), respectively. The dual-element antenna scheme achieves high isolation exceeding 19 dB, with a maximum gain of 8.6 dBic at 5.9 GHz. The envelop correlation coefficient remains below 0.003, while the diversity gain exceeds 9.98 dB. Full article
(This article belongs to the Section Information and Communication Technologies)
Show Figures

Figure 1

32 pages, 8208 KB  
Review
General Overview of Antennas for Unmanned Aerial Vehicles: A Review
by Sara Reis, Fábio Silva, Daniel Albuquerque and Pedro Pinho
Electronics 2025, 14(16), 3205; https://doi.org/10.3390/electronics14163205 - 12 Aug 2025
Viewed by 1658
Abstract
Unmanned Aerial Vehicles (UAVs), commonly known as drones, are becoming increasingly important in multiple areas and various applications, including communication, detection, and monitoring. This review paper examines the development of antennas for UAVs, with a particular focus on miniaturization techniques, polarization strategies, and [...] Read more.
Unmanned Aerial Vehicles (UAVs), commonly known as drones, are becoming increasingly important in multiple areas and various applications, including communication, detection, and monitoring. This review paper examines the development of antennas for UAVs, with a particular focus on miniaturization techniques, polarization strategies, and beamforming solutions. It explores both structural and material-based methods, such as meander lines, slots, high-dielectric substrates, and metasurfaces, which aim to make the antenna more compact without compromising performance. Different antenna types including dipole, monopole, horn, vivaldi, and microstrip patch are explored to identify solutions that meet performance standards while respecting UAV constraints. In terms of polarization strategies, these are often implemented in the feeding network to achieve linear or circular polarization, and beamforming techniques like beam-steering and beam-switching enhance communication efficiency by improving signal directionality. Future research should focus on more lightweight, structurally integrated, and reconfigurable apertures that push miniaturization through conformal substrates and programmable metasurfaces, extending efficient operation from 5/6 GHz into the sub-THz regime and supporting agile beamforming for dense UAV swarms. Full article
(This article belongs to the Section Microwave and Wireless Communications)
Show Figures

Graphical abstract

16 pages, 3042 KB  
Article
A Dual-Circularly Polarized Antenna Array for Space Surveillance: From Design to Experimental Validation
by Chiara Scarselli, Guido Nenna and Agostino Monorchio
Appl. Sci. 2025, 15(15), 8439; https://doi.org/10.3390/app15158439 - 30 Jul 2025
Viewed by 784
Abstract
This paper presents the design, simulation, and experimental validation of a dual-Circularly Polarized (CP) array antenna to be used as single element for a bistatic radar system, aimed at detecting and tracking objects in Low Earth Orbit (LEO). The antenna operates at 412 [...] Read more.
This paper presents the design, simulation, and experimental validation of a dual-Circularly Polarized (CP) array antenna to be used as single element for a bistatic radar system, aimed at detecting and tracking objects in Low Earth Orbit (LEO). The antenna operates at 412 MHz in reception mode and consists of an array of 19 slotted-patch radiating elements with a cavity-based metallic superstrate, designed to support dual circular polarization. These elements are arranged in a hexagonal configuration, enabling the array structure to achieve a maximum realized gain of 17 dBi and a Side Lobe Level (SLL) below −17 dB while maintaining high polarization purity. Two identical analog feeding networks enable the precise control of phase and amplitude, allowing the independent reception of Right-Hand and Left-Hand Circularly Polarized (RHCP and LHCP) signals. Full-wave simulations and experimental measurements confirm the high performance and robustness of the system, demonstrating its suitability for integration into large-scale Space Situational Awareness (SSA) sensor networks. Full article
(This article belongs to the Special Issue Antennas for Next-Generation Electromagnetic Applications)
Show Figures

Figure 1

14 pages, 3371 KB  
Article
A Symmetry-Driven Broadband Circularly Polarized Magnetoelectric Dipole Antenna with Bandpass Filtering Response
by Xianjing Lin, Zuhao Jiang, Miaowang Zeng and Zengpei Zhong
Symmetry 2025, 17(7), 1145; https://doi.org/10.3390/sym17071145 - 17 Jul 2025
Viewed by 356
Abstract
This paper presents a symmetry-driven broadband circularly polarized magnetoelectric dipole antenna with bandpass filtering response, where the principle of symmetry is strategically employed to enhance both radiation and filtering performance. The antenna’s circular polarization is achieved through a symmetrical arrangement of two orthogonally [...] Read more.
This paper presents a symmetry-driven broadband circularly polarized magnetoelectric dipole antenna with bandpass filtering response, where the principle of symmetry is strategically employed to enhance both radiation and filtering performance. The antenna’s circular polarization is achieved through a symmetrical arrangement of two orthogonally placed metallic ME dipoles combined with a phase delay line, creating balanced current distributions for optimal CP characteristics. The design further incorporates symmetrical parasitic elements—a pair of identical inverted L-shaped metallic structures placed perpendicular to the ground plane at −45° relative to the ME dipoles—which introduce an additional CP resonance through their mirror-symmetric configuration, thereby significantly broadening the axial ratio bandwidth. The filtering functionality is realized through a combination of symmetrical modifications: grid slots etched in the metallic ground plane and an open-circuited stub loaded on the microstrip feed line work in tandem to create two radiation nulls in the upper stopband, while the inherent symmetrical properties of the ME dipoles naturally produce a radiation null in the lower stopband. This comprehensive symmetry-based approach results in a well-balanced bandpass filtering response across a wide operating bandwidth. Experimental validation through prototype measurement confirms the effectiveness of the symmetric design with compact dimensions of 0.96λ0 × 0.55λ0 × 0.17λ0 (λ0 is the wavelength at the lowest operating frequency), demonstrating an impedance bandwidth of 66.4% (2.87–5.05 GHz), an AR bandwidth of 31.9% (3.32–4.58 GHz), an average passband gain of 5.5 dBi, and out-of-band suppression levels of 11.5 dB and 26.8 dB at the lower and upper stopbands, respectively, along with good filtering performance characterized by a gain-suppression index (GSI) of 0.93 and radiation skirt index (RSI) of 0.58. The proposed antenna is suitable for satellite communication terminals requiring wide AR bandwidth and strong interference rejection in L/S-bands. Full article
(This article belongs to the Special Issue Symmetry Study in Electromagnetism: Topics and Advances)
Show Figures

Figure 1

23 pages, 5970 KB  
Article
Miniaturized and Circularly Polarized Dual-Port Metasurface-Based Leaky-Wave MIMO Antenna for CubeSat Communications
by Tale Saeidi, Sahar Saleh and Saeid Karamzadeh
Electronics 2025, 14(14), 2764; https://doi.org/10.3390/electronics14142764 - 9 Jul 2025
Viewed by 794
Abstract
This paper presents a compact, high-performance metasurface-based leaky-wave MIMO antenna with dimensions of 40 × 30 mm2, achieving a gain of 12.5 dBi and a radiation efficiency of 85%. The antenna enables precise control of electromagnetic waves, featuring a flower-like metasurface [...] Read more.
This paper presents a compact, high-performance metasurface-based leaky-wave MIMO antenna with dimensions of 40 × 30 mm2, achieving a gain of 12.5 dBi and a radiation efficiency of 85%. The antenna enables precise control of electromagnetic waves, featuring a flower-like metasurface (MTS) with coffee bean-shaped arrays on substrates of varying permittivity, separated by a cavity layer to enhance coupling. Its dual-port MIMO design boosts data throughput operating in three bands (3.75–5.25 GHz, 6.4–15.4 GHz, and 22.5–30 GHz), while the leaky-wave mechanism supports frequency- or phase-dependent beamsteering without mechanical parts. Ideal for CubeSat communications, its compact size meets CubeSat constraints, and its high gain and efficiency ensure reliable long-distance communication with low power consumption, which is crucial for low Earth orbit operations. Circular polarization (CP) maintains signal integrity despite orientation changes, and MIMO capability supports high data rates for applications such as Earth observations or inter-satellite links. The beamsteering feature allows for dynamic tracking of ground stations or satellites, enhancing mission flexibility and reducing interference. This lightweight, efficient antenna addresses modern CubeSat challenges, providing a robust solution for advanced space communication systems with significant potential to enhance satellite connectivity and data transmission in complex space environments. Full article
(This article belongs to the Special Issue Recent Advancements of Millimeter-Wave Antennas and Antenna Arrays)
Show Figures

Figure 1

14 pages, 2184 KB  
Article
A Wideband Circularly Polarized Filtering Dipole Antenna
by Xianjing Lin, Ruishan Huang, Miaowang Zeng and An Yan
Symmetry 2025, 17(7), 1047; https://doi.org/10.3390/sym17071047 - 3 Jul 2025
Viewed by 479
Abstract
This paper presents a circularly polarized (CP) antenna based on crossed dipoles with bandpass-type filtering radiation response. The antenna employs a pair of crossed dipole arms as radiators, which are printed on the upper and lower planes of the substrate. To achieve bandpass [...] Read more.
This paper presents a circularly polarized (CP) antenna based on crossed dipoles with bandpass-type filtering radiation response. The antenna employs a pair of crossed dipole arms as radiators, which are printed on the upper and lower planes of the substrate. To achieve bandpass filtering effects, radiation nulls are introduced on both sides of the passband. By vertically extending the ends of the four dipole arms, a ring-shaped current is formed between adjacent dipoles, generating the upper-band radiation null. Additionally, four parasitic patches are introduced parallel to the ends of the crossed dipole arms, creating another upper-band radiation null, further enhancing the frequency selectivity at the band edges and broadening the axial ratio (AR) bandwidth. Moreover, a square-ring slot is etched on the ground plane to introduce a lower-band radiation null, ultimately achieving a good bandpass filtering response. The proposed wideband CP filtering dipole antenna is implemented and tested. The antenna has a compact size of 0.49λ0× 0.49λ0× 0.16λ0 (where λ0 denotes the wavelength corresponding to the lowest operating frequency). The measured results show that the proposed antenna has an impedance bandwidth of 75% (1.65–3.66 GHz) and an overlapping AR bandwidth of 46.9% (2.25–3.63 GHz). Without additional filtering circuits, the antenna exhibits a stable gain of approximately 7 dB and three radiation nulls, with suppression levels of 20 dB in both the lower and upper stopbands, achieving good bandpass filtering performance. Full article
(This article belongs to the Section Engineering and Materials)
Show Figures

Figure 1

17 pages, 9122 KB  
Article
A Printed Hybrid-Mode Antenna for Dual-Band Circular Polarization with Flexible Frequency Ratio
by Takafumi Fujimoto and Chai-Eu Guan
Electronics 2025, 14(13), 2504; https://doi.org/10.3390/electronics14132504 - 20 Jun 2025
Cited by 1 | Viewed by 508
Abstract
In this paper, a printed hybrid-mode antenna for dual-band circular polarization (CP) is proposed. In the proposed antenna, one T-shaped element is fed by a coplanar waveguide and one L-shaped element is loaded to the ground plane. The relationship between the antenna’s geometric [...] Read more.
In this paper, a printed hybrid-mode antenna for dual-band circular polarization (CP) is proposed. In the proposed antenna, one T-shaped element is fed by a coplanar waveguide and one L-shaped element is loaded to the ground plane. The relationship between the antenna’s geometric parameters and the circular polarization characteristic (axial ratio) is examined through electric current distribution and radiation field components. In addition, the antenna’s resonant modes are investigated through characteristic mode analysis (CMA). Through parametric studies, the range of two frequency ratios is explored, revealing that the antenna operates as a dual-band single-sense CP antenna, even in ranges where the two frequency ratios (the ratio of high frequency to low frequency) are smaller compared to antennas in other studies. The proposed antenna has a frequency ratio of less than 1.5 between the two frequencies and can be flexibly designed. The proposed antenna is designed for the 2.5 GHz band and 3.5 GHz band. The measured bandwidths of 10 dB impedance with a 3 dB axial ratio are 2.35–2.52 GHz and 3.36–3.71 GHz, respectively. Full article
Show Figures

Figure 1

19 pages, 6471 KB  
Article
A Miniaturized RHCP Slot Antenna for Wideband Applications Including Sub-6 GHz 5G
by Atyaf H. Mohammed, Falih M. Alnahwi, Yasir I. A. Al-Yasir and Sunday C. Ekpo
Technologies 2025, 13(6), 254; https://doi.org/10.3390/technologies13060254 - 17 Jun 2025
Cited by 2 | Viewed by 1049
Abstract
The rapid development of 5G and next-generation wireless systems has increased the demand for antennas that support circular polarization (CP), wide frequency coverage, and a compact size. Achieving wideband CP performance in a low-profile and simple structure remains a key challenge for modern [...] Read more.
The rapid development of 5G and next-generation wireless systems has increased the demand for antennas that support circular polarization (CP), wide frequency coverage, and a compact size. Achieving wideband CP performance in a low-profile and simple structure remains a key challenge for modern antenna designs. In response to this, this paper presents a compact wide-slot antenna with a single feed, offering a wide operational bandwidth and circularly polarized radiation. The proposed design is excited by a 50 Ohm microstrip feedline, and it is fabricated on an (54 × 50 × 1.6 mm3) FR4 dielectric substrate. On the bottom side of the dielectric substrate, the ground plane is engraved to form a square-shaped radiating slot. The shape of the tuning stub of the antenna is modified in order to attain a wide impedance bandwidth and an axial ratio bandwidth (ARBW). The modifications include inserting a rectangular strip and thin horizontal strips into the tuning stub after tapering its upper corner. On the other hand, the radiating slot is appended by two rectangular stubs. The radiation of the resulted structure has right-hand circular polarization (RHCP). The measured results of the proposed antenna show a −10 dB impedance bandwidth equal to 78% (2.65 GHz, 2.08–4.73 GHz), whereas its broadside 3 dB ARBW is 71.6% over the frequencies (2.31 GHz, 2.07–4.38 GHz), which is compatible with various wireless communication applications. Furthermore, the peak value of the measured gain is equal to 4.68 dB, and its value is larger than 2 dBi along the operational bandwidth of the antenna. Full article
(This article belongs to the Section Information and Communication Technologies)
Show Figures

Figure 1

18 pages, 4356 KB  
Article
A Miniaturized Design for a Terahertz Tri-Mirror CATR with High QZ Characteristics
by Zhi Li, Yuan Yao, Haiming Xin and Daocai Xiang
Sensors 2025, 25(12), 3751; https://doi.org/10.3390/s25123751 - 15 Jun 2025
Viewed by 534
Abstract
This paper proposes a miniaturized design for a terahertz tri-mirror compact antenna test range (CATR) system, composed of a square-aperture paraboloid primary mirror with a side length of 0.2 m and two shaped mirrors with circular apertures of 0.06 m and 0.07 m [...] Read more.
This paper proposes a miniaturized design for a terahertz tri-mirror compact antenna test range (CATR) system, composed of a square-aperture paraboloid primary mirror with a side length of 0.2 m and two shaped mirrors with circular apertures of 0.06 m and 0.07 m in diameter. The design first employs the cross-polarization cancelation method based on beam mode expansion to determine the geometric configuration of the system, thereby enabling the structure to exhibit low cross-polarization characteristics. Subsequently, the shaped mirrors, with beamforming and wave-front control capabilities, are synthesized using dynamic ray tracing based on geometric optics (GO) and the dual-paraboloid expansion method. Finally, the strong edge diffraction effects induced by the small-aperture primary mirror are suppressed by optimizing the desired quiet-zone (QZ) field width, adjusting the feed-edge taper, and incorporating rolled-edge structures on the primary mirror. Numerical simulation results indicate that within the 100–500 GHz frequency band, the system’s cross-polarization level is below −40 dB, while the amplitude and phase ripples of the co-polarization in the QZ are, respectively, less than 1.6 dB and 10°, and the QZ usage ratio exceeds 70%. The designed CATR was manufactured and tested. The results show that at 183 GHz and 275 GHz, the measured co-polarization amplitude and phase ripples in the system’s QZ are within 1.8 dB and 15°, respectively. While these values deviate slightly from simulations, they still meet the CATR evaluation criteria, which specify QZ co-polarization amplitude ripple < 2 dB and phase ripple < 20°. The overall physical structure sizes of the system are 0.61 m × 0.2 m × 0.66 m. The proposed miniaturized terahertz tri-mirror CATR design methodology not only enhances the QZ characteristics but also significantly reduces the spatial footprint of the entire system, demonstrating significant potential for practical engineering applications. Full article
(This article belongs to the Section Optical Sensors)
Show Figures

Figure 1

13 pages, 4379 KB  
Article
A Broadband Millimeter-Wave Circularly Polarized Folded Reflectarray Antenna Based on Transmissive Linear-to-Circular Polarization Converter
by Yue Cao, Zhuwei Wang, Qing Wang, Mingzhu Du and Miaojuan Zhang
Micromachines 2025, 16(6), 711; https://doi.org/10.3390/mi16060711 - 14 Jun 2025
Cited by 1 | Viewed by 644
Abstract
In this paper, a wideband circularly polarized folded reflectarray antenna (CPFRA) based on a transmissive linear-to-circular polarization converter is proposed. The CPFRA consists of a primary reflector and a sub-reflector. To achieve broadband performance, a metasurface-based RA element on the primary reflector surface [...] Read more.
In this paper, a wideband circularly polarized folded reflectarray antenna (CPFRA) based on a transmissive linear-to-circular polarization converter is proposed. The CPFRA consists of a primary reflector and a sub-reflector. To achieve broadband performance, a metasurface-based RA element on the primary reflector surface and a transmissive linear-to-circular polarization converter on the sub-reflector surface are applied. Moreover, the transmissive linear-to-circular polarization converter on the sub-reflector surface helps convert linear polarization to circular polarization. To verify the proposed CPFRA, a prototype is designed, fabricated, and tested. The measured results exhibit that the proposed CPFRA presents a 3 dB gain bandwidth of 27.4% and a 3 dB axial ratio bandwidth of 23%. The CPFRA achieves a peak gain of 21.2 dBi with an aperture efficiency of 27.2%. The proposed CPFRA is a promising candidate for millimeter-wave (mm-W) satellite communication applications because of its advantages of high gain, low cost, low profile, and broad bandwidth. Full article
(This article belongs to the Special Issue Microwave Passive Components, 3rd Edition)
Show Figures

Figure 1

Back to TopTop