Sign in to use this feature.

Years

Between: -

Subjects

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Journals

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Article Types

Countries / Regions

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Search Results (548)

Search Parameters:
Keywords = circular statistics

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
21 pages, 3878 KB  
Article
Utilizing Recycled PET and Mining Waste to Produce Non-Traditional Bricks for Sustainable Construction
by Gonzalo Díaz-García, Piero Diaz-Miranda and Christian Tineo-Villón
Sustainability 2025, 17(19), 8841; https://doi.org/10.3390/su17198841 - 2 Oct 2025
Abstract
Plastic waste, particularly polyethylene terephthalate (PET), poses a growing environmental challenge. This study investigates the feasibility of incorporating recycled PET into clay bricks as a sustainable alternative in construction. Bricks were fabricated with 0%, 5%, 10%, and 15% PET content. Clay characterization included [...] Read more.
Plastic waste, particularly polyethylene terephthalate (PET), poses a growing environmental challenge. This study investigates the feasibility of incorporating recycled PET into clay bricks as a sustainable alternative in construction. Bricks were fabricated with 0%, 5%, 10%, and 15% PET content. Clay characterization included particle size distribution, Atterberg limits, and moisture content. Physical and mechanical tests evaluated dimensional variability, void percentage, warping, water absorption, suction, unit compressive strength (fb), and prism compressive strength (fm). Statistical analysis (Shapiro–Wilk, p < 0.05) validated the results. PET addition improved physical properties—reducing water absorption, suction, and voids—while slightly compromising mechanical strength. The 15% PET mix showed the best overall performance (fb = 24.00 kg/cm2; fm = 20.40 kg/cm2), with uniform deformation and lower absorption (18.7%). Recycled PET enhances key physical attributes of clay bricks, supporting its use in eco-friendly construction. However, reduced compressive strength limits its structural applications. Optimizing PET particle size, clay type, and firing conditions is essential to improve load-bearing capacity. Current formulations are promising for non-structural uses, contributing to circular material strategies. Full article
(This article belongs to the Topic Sustainable Building Materials)
Show Figures

Figure 1

26 pages, 5547 KB  
Article
Coffee Waste as a Green Precursor for Iron Nanoparticles: Toward Circular, Efficient and Eco-Friendly Dye Removal from Aqueous Systems
by Cristina Rodríguez-Rasero, Juan Manuel Garrido-Zoido, María del Mar García-Galán, Eduardo Manuel Cuerda-Correa and María Francisca Alexandre-Franco
J. Xenobiot. 2025, 15(5), 158; https://doi.org/10.3390/jox15050158 - 2 Oct 2025
Abstract
In this study, the use of spent coffee waste as a green precursor of polyphenolic compounds, which are subsequently employed as reducing agents for the synthesis of zero-valent iron nanoparticles (nZVI) aimed at the efficient removal of dyes from aqueous systems, has been [...] Read more.
In this study, the use of spent coffee waste as a green precursor of polyphenolic compounds, which are subsequently employed as reducing agents for the synthesis of zero-valent iron nanoparticles (nZVI) aimed at the efficient removal of dyes from aqueous systems, has been investigated. The nanoparticles, generated in situ in the presence of controlled amounts of hydrogen peroxide, were applied in the removal of organic dyes—including methylene blue, methyl orange, and orange G—through a heterogeneous Fenton-like catalytic process. The synthesized nZVI were thoroughly characterized by nitrogen adsorption at 77 K, scanning electron microscopy (SEM), transmission electron microscopy (TEM), Fourier-transform infrared spectroscopy (FT-IR), and powder X-ray diffraction (XRD). A statistical design of experiments and response surface methodology were employed to evaluate the effect of polyphenol, Fe(III), and H2O2 concentrations on dye removal efficiency. Results showed that under optimized conditions, a 100% removal efficiency could be achieved. This work highlights the potential of nZVI synthesized from agro-industrial waste through sustainable routes as an effective solution for water remediation, contributing to circular economy strategies and environmental protection. Full article
Show Figures

Graphical abstract

20 pages, 2127 KB  
Article
Real-World Fuel Consumption of a Passenger Car with Oil Filters of Different Characteristics at High Altitude
by Edgar Vicente Rojas-Reinoso, Cristian Malla-Toapanta, Paúl Plaza-Roldán, Carmen Mata, Javier Barba and Luis Tipanluisa
Lubricants 2025, 13(10), 437; https://doi.org/10.3390/lubricants13100437 - 1 Oct 2025
Abstract
This study evaluates media-level filtration behaviour and short-term fuel consumption outcomes for five spin-on lubricating oil filters operated under real driving conditions at high altitude. To improve interpretability, filters are reported using parameter-based identifiers (media descriptors and equivalent circular diameter, ECD) rather than [...] Read more.
This study evaluates media-level filtration behaviour and short-term fuel consumption outcomes for five spin-on lubricating oil filters operated under real driving conditions at high altitude. To improve interpretability, filters are reported using parameter-based identifiers (media descriptors and equivalent circular diameter, ECD) rather than internal codes. Pore-scale morphology was quantified by microscopy and expressed as ECD, and bulk fluid cleanliness was summarised using ISO 4406 codes. Trials were conducted over representative urban and extra-urban routes at altitude; fuel consumption was analysed using ANCOVA. The results indicated clear media-level differences (tighter pore envelopes and cleaner ISO codes, particularly for two OEM units). However, fuel-consumption differences were not statistically significant (ANCOVA, p = 0.29). Accordingly, findings are reported as short-term cleanliness and media characterisation under high-altitude duty rather than durability or efficiency claims. The parameter-based framing clarifies trade-offs across metrics and avoids over-generalisation from brand or part numbers. The work highlights the value of ECD as a comparative pore metric and underscores limitations of microscopy/cleanliness data for inferring engine wear or long-term consumption. Future work will incorporate formal multi-pass testing (ISO 4548-12), direct differential-pressure instrumentation, used-oil viscosity tracking, and wear-metal spectrometry to enable cross-vendor benchmarking and causal interpretation. Findings are presented as short-term cleanliness and media characterisation; no durability claims are made in the absence of direct wear measurements. Full article
Show Figures

Figure 1

17 pages, 810 KB  
Article
Characterisation and Fertiliser Potential of Mechanically Dewatered Faecal Sludge from Anaerobic Digestion
by Dennis Ofori-Amanfo, Eugene Appiah-Effah, Barbara Gyapong-Korsah, Esi Awuah, Helen M. K. Essandoh, Miriam Appiah-Brempong and Issahaku Ahmed
Waste 2025, 3(4), 31; https://doi.org/10.3390/waste3040031 - 29 Sep 2025
Abstract
While mechanical dewatering is widely used in faecal sludge treatment, the agricultural potential of mechanically dewatered faecal sludge (MDFS) combined with anaerobic digestion (AD) remains underexplored, particularly in sub-Saharan Africa where nutrient recovery is critical for food security. This study provides the first [...] Read more.
While mechanical dewatering is widely used in faecal sludge treatment, the agricultural potential of mechanically dewatered faecal sludge (MDFS) combined with anaerobic digestion (AD) remains underexplored, particularly in sub-Saharan Africa where nutrient recovery is critical for food security. This study provides the first comprehensive characterisation of MDFS from Ghana’s largest treatment facility and evaluates anaerobic digestion effectiveness for agricultural application. Over six months, 182 composite MDFS samples from Lavender Hill Faecal Treatment Plant were analysed for physicochemical properties, nutrients, heavy metals, and microbial contaminants before and after AD treatment. MDFS demonstrated exceptional nutrient density, with total nitrogen (2141.05 mg/kg), phosphorus (190.08 mg/kg), and potassium (4434.88 mg/kg) concentrations comparable to commercial organic fertilisers. AD achieved significant pathogen reduction, decreasing total coliforms from 148,808.70 to 493.33 cfu/100 g (p < 0.001) and Ascaris lumbricoides eggs from 12.08 to 3.33 eggs/L, while maintaining nutrient integrity and keeping heavy metals within safe agricultural limits. Statistical modelling revealed a significant correlation between treatment duration and pathogen reduction efficiency. Despite substantial improvements, treated MDFS still exceeded some regulatory thresholds, indicating a need for complementary post-treatment strategies. This research establishes AD as an effective primary treatment for converting MDFS into a nutrient-rich organic fertiliser, supporting circular economy principles in urban sanitation systems and providing a sustainable pathway for agricultural nutrient recovery in resource-constrained settings. Full article
Show Figures

Figure 1

17 pages, 2835 KB  
Article
Sustainable Soil Amendment: Effect of Reusing Saturated Dolomitic Calcareous Amendment (DCAS) on Chemical Properties of Two Types of Agricultural Soils
by Lisa Eliana Samudio Legal, Simeón Aguayo Trinidad, Pedro Gabriel Gamarra Alfonso, María Natalia Piol, Andrea Beatriz Saralegui, Jiam Pires Frigo and Andréia Cristina Furtado
Sustainability 2025, 17(19), 8557; https://doi.org/10.3390/su17198557 - 24 Sep 2025
Viewed by 111
Abstract
Replacing the linear process based on production, consumption, and disposal gives rise to the circular economy, in which materials are reincorporated into a new production process to create new amendments, following the model of sustainable agriculture. Through the circular economy approach, the aim [...] Read more.
Replacing the linear process based on production, consumption, and disposal gives rise to the circular economy, in which materials are reincorporated into a new production process to create new amendments, following the model of sustainable agriculture. Through the circular economy approach, the aim is to add value to the waste generated during the adsorption process by recovering and reusing it as sustainable soil amendments. The present study analyzes the effects of saturated dolomitic calcareous amendment (DCAS) on the chemical properties of sandy-textured and clayey-textured agricultural soils. For this purpose, the dolomitic calcareous amendment, saturated with nutrients from hydroponic effluent through an adsorption process, was reused, and its effects on the chemical properties of agricultural soils were evaluated during incubation periods of 30, 60, and 90 days and compared with other amendments. A completely randomized experimental design was used, applying 4 treatments with 5 replications, totaling 20 experimental units for each soil type (sandy and clayey): T1 (control), T2 (dolomitic calcareous amendment in natura—DCAN), T3 (saturated dolomitic calcareous amendment—DCAS), and T4 (granulated dolomitic calcareous amendment—DCAG). The chemical properties evaluated were: pH in water, exchangeable aluminum, exchangeable calcium and magnesium, and available phosphorus. An interaction test between treatments and incubation periods was performed for each soil type and analyzed through analysis of variance, with means compared using Tukey’s test (p < 0.05) in InfoStat software, version 2020I. Through statistical analysis, it was confirmed that there was both interaction and a time effect for the variables pH, exchangeable aluminum, and available phosphorus in both sandy and clayey soils. Furthermore, the results showed that the saturated dolomitic calcareous amendment—DCAS (T3)—had good compatibility with both soil types, highlighting its ability to improve soil chemical properties by increasing pH, and available phosphorus levels, as well as completely reducing exchangeable aluminum concentration. This indicates that the saturated dolomitic calcareous amendment (DCAS) derived from the adsorption of nutrients from hydroponic effluent, can be effectively used to amend soil chemical properties, thereby promoting more efficient and environmentally sustainable agriculture. Full article
Show Figures

Figure 1

20 pages, 7280 KB  
Article
Optimisation of Enzyme Lignin Degradation Using Response Surface Methodology for Sustainable Lignocellulosic By-Products Management
by Alexandra Burlacu (Grigoraș), Aglaia Popa and Florentina Israel-Roming
AgriEngineering 2025, 7(10), 314; https://doi.org/10.3390/agriengineering7100314 - 23 Sep 2025
Viewed by 148
Abstract
The efficient degradation of lignin from agricultural by-products is a critical step in the development of sustainable bioprocessing technologies for waste valorisation. Enzymatic degradation of kraft lignin performed with lignin peroxidase (LiP), manganese peroxidase (MnP), and laccase (Lac) was investigated. A response surface [...] Read more.
The efficient degradation of lignin from agricultural by-products is a critical step in the development of sustainable bioprocessing technologies for waste valorisation. Enzymatic degradation of kraft lignin performed with lignin peroxidase (LiP), manganese peroxidase (MnP), and laccase (Lac) was investigated. A response surface methodology (RSM) based on a Box–Behnken Design (BBD) was employed in order to optimise key process parameters including enzyme concentration, lignin concentration, pH, incubation temperature, and activator concentration. The surface plots were used to determine the best conditions for each enzyme in order to better degrade kraft lignin. Therefore, LiP needed a stronger acidic environment and moderate temperature, MnP needed an almost neutral pH and moderate temperature, and Lac needed a neutral pH and higher temperature. This work contributes to the development of smart agricultural waste management practices by combining enzymatic treatments with statistical modelling for process optimisation. This study provides a framework for lignin degradation that can be used as a starting point for diverse lignocellulosic by-product fragmentation, thus supporting a circular bioeconomy initiative in accordance with today’s trends. The optimised enzymatic parameters could help enhance efficiency, enable process standardisation across feedstocks, and support economically and environmentally sustainable industrial-scale lignin valorisation in integrated biorefineries. Full article
(This article belongs to the Section Sustainable Bioresource and Bioprocess Engineering)
Show Figures

Figure 1

17 pages, 275 KB  
Article
Circular Economy Indicators and Capital Structure Determinants of Small Agricultural Enterprises: Evidence from Serbia
by Dragana Novaković, Dragan Milić, Zoran Ilić, Tihomir Novaković, Bogdan Jocić, Vladislav Zekić and Mirela Tomaš Simin
Sustainability 2025, 17(19), 8521; https://doi.org/10.3390/su17198521 - 23 Sep 2025
Viewed by 143
Abstract
This study examines the determinants of capital structure in small agricultural enterprises in Serbia, with a particular emphasis on the external context shaped by circular economy (CE) indicators. Using a balanced panel of 254 firms between 2014 and 2022 (2286 firm-year observations), we [...] Read more.
This study examines the determinants of capital structure in small agricultural enterprises in Serbia, with a particular emphasis on the external context shaped by circular economy (CE) indicators. Using a balanced panel of 254 firms between 2014 and 2022 (2286 firm-year observations), we estimate random-effects models with panel-corrected standard errors. The dependent variable is financial leverage, while explanatory variables include internal firm characteristics (liquidity, debt ratio, profitability, and asset tangibility) and territory-level CE indicators (municipal waste generated per capita, municipal waste recycling rate, and greenhouse-gas emissions from production activities). The model is statistically significant (χ2 = 82.49; p < 0.01) and explains 33.7% of leverage variation. The results show that debt ratio positively and strongly relates to leverage, whereas profitability exhibits a negative and significant association, consistent with the pecking-order theory. Regarding the CE context, higher waste generation and higher GHG emissions are associated with lower leverage, while a higher recycling rate has a positive, marginal effect, suggesting that improved circular performance may ease access to external finance by lowering perceived risk among creditors. These findings highlight that environmental performance and local circularity conditions matter for financing decisions in agriculture. Policy implications include promoting CE practices and local recycling capacities to support sustainable financing. Future research should test dynamic specifications and enterprise-level CE metrics. Full article
25 pages, 3314 KB  
Article
A Statistical Methodology for Evaluating the Potential for Poleward Expansion of Warm Temperate and Subtropical Plants Under Climate Change: A Case Study of South Korean Islands
by Woosung Kim and Su Young Jung
Forests 2025, 16(9), 1500; https://doi.org/10.3390/f16091500 - 22 Sep 2025
Viewed by 133
Abstract
Many studies have examined how species are shifting their ranges poleward in response to climate change, using statistical approaches such as graphical analyses, t-tests, correlation analyses, and circular data methods. However, these methods are often constrained by assumptions of linearity or reliance [...] Read more.
Many studies have examined how species are shifting their ranges poleward in response to climate change, using statistical approaches such as graphical analyses, t-tests, correlation analyses, and circular data methods. However, these methods are often constrained by assumptions of linearity or reliance on a single explanatory variable, which limits their ecological applicability. This study introduces a new statistical methodology to evaluate the significance of poleward range expansion, aiming to overcome these limitations and improve the robustness of ecological inference. We developed four parameterized nonlinear models—simple, multivariable, fixed, and transformed—to characterize the relationship between latitude and species richness across 1253 islands. Model parameters were estimated using the Gauss–Newton algorithm, and residuals were calculated as the difference between observed and predicted values. To test for distributional shifts, likelihood ratio tests were applied to the residuals, with statistical significance assessed using chi-square statistics and p-values derived from the −2 log-likelihood ratio. Finally, an intuitive indicator based on the fitted models was introduced to evaluate the direction of range shifts, thereby providing a direct means of identifying northward expansion trends under climate change. Applying this framework revealed significant poleward shifts of warm temperate and subtropical species (χ2 = 52.4–61.3; p < 0.001). Among the four models, the multivariable model incorporating island area provided the best fit (AIC, BIC), reflecting its ability to account for collinearity. Taken together, these results underscore the robustness and ecological relevance of the methodology, demonstrating its utility for detecting species-specific range shifts and comparing alternative models under climate change. Full article
(This article belongs to the Special Issue Ecological Responses of Forests to Climate Change)
Show Figures

Figure 1

29 pages, 1718 KB  
Review
Bacillus Pectinases as Key Biocatalysts for a Circular Bioeconomy: From Green Extraction to Process Optimization and Industrial Scale-Up
by Fatima Zohra Kaissar, Khelifa Bouacem, Mohammed Lamine Benine, Sondes Mechri, Shubha Rani Sharma, Vishal Kumar Singh, Mahfoud Bakli, Seif El Islam Lebouachera and Giovanni Emiliani
BioTech 2025, 14(3), 74; https://doi.org/10.3390/biotech14030074 - 19 Sep 2025
Viewed by 467
Abstract
Pectins are high-value plant cell-wall polysaccharides with extensive applications in the food, pharmaceutical, textile, paper, and environmental sectors. Traditional extraction and processing methodologies rely heavily on harsh acids, high temperatures, and non-renewable solvents, generating substantial environmental and economic costs. This review consolidates recent [...] Read more.
Pectins are high-value plant cell-wall polysaccharides with extensive applications in the food, pharmaceutical, textile, paper, and environmental sectors. Traditional extraction and processing methodologies rely heavily on harsh acids, high temperatures, and non-renewable solvents, generating substantial environmental and economic costs. This review consolidates recent advances across the entire Bacillus–pectinase value chain, from green pectin extraction and upstream substrate characterization, through process and statistical optimization of enzyme production, to industrial biocatalysis applications. We propose a practical roadmap for developing high-efficiency, low-environmental-footprint enzyme systems that support circular bioeconomy objectives. Critical evaluation of optimization strategies, including submerged versus solid-state fermentation, response surface methodology, artificial neural networks, and design of experiments, is supported by comparative data on strain performance, fermentation parameters, and industrial titers. Sector-specific case studies demonstrate the efficacy of Bacillus pectinases in fruit-juice clarification, textile bio-scouring, paper bio-bleaching, bio-based detergents, coffee and tea processing, oil extraction, animal feed enhancement, wastewater treatment, and plant-virus purification. Remaining challenges, including enzyme stability in complex matrices, techno-economic scale-up, and structure-guided protein engineering, are identified. Future directions are charted toward CRISPR-driven enzyme design and fully integrated circular-economy bioprocessing platforms. Full article
(This article belongs to the Section Industry, Agriculture and Food Biotechnology)
Show Figures

Graphical abstract

14 pages, 2058 KB  
Article
Geolocation for Low-Carbon Dunaliella salina-Based Biorefineries with Valorization of Industrial Exhaust Gases
by Rosangela Rodrigues Dias, Richard Luan Silva Machado, Mariany Costa Deprá, Leila Queiroz Zepka and Eduardo Jacob-Lopes
Processes 2025, 13(9), 2958; https://doi.org/10.3390/pr13092958 - 17 Sep 2025
Viewed by 238
Abstract
The utilization of carbon dioxide (CO2) from industrial emissions as an input in microalgal biorefineries represents an integrated strategy that contributes to mitigating and transforming residual resources into value-added products. The valorization of CO2 from gaseous effluents through biotechnological routes [...] Read more.
The utilization of carbon dioxide (CO2) from industrial emissions as an input in microalgal biorefineries represents an integrated strategy that contributes to mitigating and transforming residual resources into value-added products. The valorization of CO2 from gaseous effluents through biotechnological routes also contributes to the development of a bio-based circular economy. This article aims to present the carbon footprint of a microalgal biorefinery system with CO2 recovery from exhaust gases for the 193 countries of the world. The results reveal that the tons of carbon dioxide equivalent (tCO2e) emissions of the proposed biorefinery system can be as low as 3 tCO2e per year and as high as 590 tCO2e per year. Countries with emissions greater than 445.98 tCO2e per year were considered, following a statistical approach, as having low environmental performance in terms of the implementation of the proposed technology. This study’s insights help establish benchmarks for the implementation of microalgal biorefineries that are more capable of recovering industrial emissions—environmentally. Full article
(This article belongs to the Special Issue Microalgae in Biotechnological Applications)
Show Figures

Figure 1

25 pages, 3297 KB  
Article
White Grape Skin Extraction, Analytical Profile, and Biological Activity: From the Laboratory to the Industrial Scale Within a Circular Economy Framework
by Larissa Della Vedova, Giovanna Baron, Paolo Morazzoni, Sandro Santinello, Safwa Moheb El Haddad, Jose Antonio Valdés-González, Stefano Piazza, Mario Dell’Agli, Giancarlo Aldini and Francesca Gado
Pharmaceuticals 2025, 18(9), 1373; https://doi.org/10.3390/ph18091373 - 13 Sep 2025
Viewed by 307
Abstract
Background: The sustainable use of agro-industrial by-products is essential to reduce environmental impact and enhance resource efficiency. In this study, white grape skins (WGSs), a distillation by-product of grappa production, are valorized through the development of an eco-friendly extraction process. Methods: At the [...] Read more.
Background: The sustainable use of agro-industrial by-products is essential to reduce environmental impact and enhance resource efficiency. In this study, white grape skins (WGSs), a distillation by-product of grappa production, are valorized through the development of an eco-friendly extraction process. Methods: At the laboratory scale, water-based and hydroalcoholic extractions are evaluated, prioritizing the water-based method due to its better scalability and eco-sustainability. Furthermore, this green extraction method enables industrial scale-up by Distillerie Bonollo Umberto S.p.A. (Mestrino, Italy), resulting in Vituva®, an industrial extract with a composition comparable to its water-based laboratory counterpart. LC-HRMS-based targeted metabolomics identified 50 metabolites in the hydroalcoholic extract, 36 in the water-based extract, and 37 in the industrial extract, which included mainly polyphenols such as flavonoids and phenolic acids. Results: In vitro assays show that the water-based and industrial extracts exhibit significant anti-inflammatory activity, especially in gastric epithelial cells, while the hydroalcoholic extract displays stronger antioxidant activity via Nrf2 pathway activation but was more cytotoxic, possibly due to polyphenol-induced hormesis. Notably, the industrial extract also activates Nrf2 to a lesser extent, supporting its dual bioactivity profile. Chemoinformatic and statistical analyses support the identification of the likely mechanisms of action. Conclusions: Overall, this work demonstrates how green chemistry and circular economy principles transform a waste product into a high-value bioactive ingredient. Full article
(This article belongs to the Section Medicinal Chemistry)
Show Figures

Graphical abstract

31 pages, 9617 KB  
Article
Alleviate Data Scarcity in Remanufacturing: Classifying the Reusability of Parts with Data-Efficient Generative Adversarial Networks (DE-GANs)
by Maximilian Herold, Engjëll Ahmeti, Naga Sai Teja Kolakaleti, Cagatay Odabasi, Jan Koller and Frank Döpper
Appl. Sci. 2025, 15(17), 9833; https://doi.org/10.3390/app15179833 - 8 Sep 2025
Viewed by 536
Abstract
Remanufacturing, a key element of the circular economy, enables products and parts to have new life cycles through a systematic process. Initially, used products (cores) are visually inspected and categorized according to their manufacturer and variant before being disassembled and cleaned. Subsequently, parts [...] Read more.
Remanufacturing, a key element of the circular economy, enables products and parts to have new life cycles through a systematic process. Initially, used products (cores) are visually inspected and categorized according to their manufacturer and variant before being disassembled and cleaned. Subsequently, parts are manually classified as directly reusable, reusable after reconditioning, or recyclable. As demand for remanufactured parts increases, automated classification becomes crucial. However, current Deep Learning (DL) methods, constrained by the scarcity of unique parts, often suffer from insufficient datasets, leading to overfitting. This research explores the effectiveness of Data-Efficient Generative Adversarial Network (DE-GAN) optimization approaches like FastGAN, APA, and InsGen in enhancing dataset diversity. These methods were evaluated against the State-of-the-Art (SOTA) Deep Convolutional Generative Adversarial Network (DCGAN) using metrics such as the Inception Score (IS), Fréchet Inception Distance (FID), and the classification accuracy of ResNet18 models trained with partially synthetic data. FastGAN achieved the lowest FID values among all models and led to a statistically significant improvement in ResNet18 classification accuracy. At a [1:1] real-to-synthetic ratio, the mean accuracy increased from 72% ± 4% (real-data-only) to 87% ± 3% (p < 0.001), and reached 94% ± 3% after hyperparameter optimization. In contrast, synthetic data generated by the SOTA DCGAN did not yield statistically significant improvements. Full article
Show Figures

Figure 1

16 pages, 1271 KB  
Article
Conversion of Komagataella phaffii Biomass Waste to Yeast Extract Supplement
by Laura Murphy and David J. O’Connell
Appl. Microbiol. 2025, 5(3), 95; https://doi.org/10.3390/applmicrobiol5030095 - 4 Sep 2025
Viewed by 420
Abstract
Valorisation of spent yeast biomass post-fermentation requires energy-intensive autolysis or enzymatic hydrolysis that reduces the net benefit. Here, we present a simple and reproducible method for generating functional yeast extract recycled from Komagataella phaffii biomass without a requirement of a pre-treatment process. Spent [...] Read more.
Valorisation of spent yeast biomass post-fermentation requires energy-intensive autolysis or enzymatic hydrolysis that reduces the net benefit. Here, we present a simple and reproducible method for generating functional yeast extract recycled from Komagataella phaffii biomass without a requirement of a pre-treatment process. Spent yeast pellets from fermentations were freeze-dried to produce a fine powder that can be used directly at low concentrations, 0.0015% (w/v), together with 2% peptone (w/v), to formulate complete media ready for secondary fermentations. This media formulation supported growth rates of yeast culture that were statistically indistinguishable (p-value > 0.05) from cultures grown in standard YPD media containing commercial yeast extract, and these cultures produced equivalent titres of recombinant β-glucosidase (0.998 Abs405nm commercial extract vs. 0.899 Abs405nm recycled extract). Additionally, nutrient analyses highlight equivalent levels of sugars (~23 g/L), total proteins, and cell yield per carbon source (~2.17 g) with this recycled yeast extract media formulation when compared to commercial media. This method reduces process complexity and cost and enables the circular reuse of yeast biomass. The protocol is technically straightforward to implement, using freeze drying that is commonly available in research laboratories, representing a broadly applicable and sustainable alternative to conventional media supplementation that achieves a circular approach within the same fermentation system. Full article
Show Figures

Figure 1

20 pages, 2449 KB  
Article
From Waste to Resource: Circular Economy Approaches to Valorize Fine Glass, Ceramic, and Plastic Residues in a Glass Recycling Plant
by Ewa Siedlecka, Jarosław Siedlecki, Beniamin Bednarski and Szymon Białek
Sustainability 2025, 17(17), 7966; https://doi.org/10.3390/su17177966 - 4 Sep 2025
Viewed by 816
Abstract
Waste glass recycling generates waste streams such as fine glass fraction, waste ceramics containing fine glass, and waste polyethylene plastics. All of the aforementioned streams contain contaminants of organic and inorganic origin that are difficult to remove. This research was conducted to determine [...] Read more.
Waste glass recycling generates waste streams such as fine glass fraction, waste ceramics containing fine glass, and waste polyethylene plastics. All of the aforementioned streams contain contaminants of organic and inorganic origin that are difficult to remove. This research was conducted to determine technological processes aimed at achieving a circular economy (CE) in the recycling of waste glass. Foam glass was made from the fine-grained, multicolored fraction of contaminated glass, an effective method for recycling glass waste at a low cost. A frothing system based on manganese oxide (MnO2) and silicon carbide (SiC) was proposed, and an optimum weight ratio of MnO2/SiC equal to 1.0 was determined. The possibility of controlling the process to achieve the desired foam glass densities was demonstrated. Statistical analysis was used to determine the effect of the MnO2/SiC ratio and MnO2 content on the density of the resulting foam glass products. Waste ceramics contaminated with different-colored glass were transformed into ceramic–glass granules. The characteristic temperature curve of the technological process was determined. The metal content in water extracts from ceramic–glass granules and pH value indicate their potential use for alkalizing areas degraded by industry and agriculture. Waste polyethylene-based plastics were converted into polyethylene waxes by thermal treatment carried out in two temperature ranges: low temperature (155–175 °C) and high temperature (optimum in 395 °C). The melting temperature range of the obtained waxes (95–105 °C) and their FTIR spectral characteristics indicate the potential application of these materials in the plastics and rubber industries. The integrated management of all material streams generated in the glass recycling process allowed for the development of a CE model for the glass recycling plant. Full article
Show Figures

Figure 1

24 pages, 1274 KB  
Article
Integration of Ulva ohnoi in a Recirculating Aquaculture System for Gilthead Seabream (Sparus aurata) and Its Use as Feed for Sea Urchin (Paracentrotus lividus) Production: A Contribution to Circular and Sustainable Aquaculture Practices
by João Araújo, Ana Catarina Carvalho, Ana Carolina Matias, Maria Carolina Ribeiro, Florbela Soares and Pedro Pousão-Ferreira
Fishes 2025, 10(9), 447; https://doi.org/10.3390/fishes10090447 - 3 Sep 2025
Viewed by 447
Abstract
This study evaluated the performance of a recirculating aquaculture system (RAS) integrated with macroalgae (Ulva ohnoi) cultivation and sea urchin (Paracentrotus lividus) feeding, in a multi-trophic aquaculture approach. This system aimed to enhance sustainability through water bioremediation by macroalgae [...] Read more.
This study evaluated the performance of a recirculating aquaculture system (RAS) integrated with macroalgae (Ulva ohnoi) cultivation and sea urchin (Paracentrotus lividus) feeding, in a multi-trophic aquaculture approach. This system aimed to enhance sustainability through water bioremediation by macroalgae and valorization of the algal biomass as echinoderms feed. Over a 180-day trial, biomass production of U. ohnoi remained stable, with daily growth rates ranging from 7.4 to 24.4%. Statistical analyses (PCA and GAM) indicated no significant linear or non-linear relationship between macroalgae growth and environmental parameters (temperature, radiation, photoperiod). A theoretical estimate of nutrient production showed fairly stable values that do not statistically explain biomass production variation, highlighting the species’ adaptability. Sea urchins fed with fresh U. ohnoi showed regular growth, supporting the nutritional suitability of this macroalgae. For fish (Sparus aurata), no significant differences in growth or feed conversion ratio were observed between systems with and without algae. Parasitological monitoring revealed lower parasite loads and egg deposition in tanks in recirculation with U. ohnoi during certain periods, suggesting a potential role of macroalgae in reducing monogenean propagation. These findings underscore the feasibility of integrating Ulva cultivation into RAS, contributing to circular aquaculture models with improved sustainability and resource efficiency. Full article
Show Figures

Graphical abstract

Back to TopTop