Sign in to use this feature.

Years

Between: -

Subjects

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Journals

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Article Types

Countries / Regions

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Search Results (817)

Search Parameters:
Keywords = circulating antigen

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
14 pages, 1952 KB  
Article
Genetic and Serological Analysis of H7N3 Avian Influenza Viruses in Mexico for Pandemic Risk Assessment
by Guadalupe Ayora-Talavera, Irma López-Martínez, Gisela Barrera-Badillo, Rodrigo Aparicio-Antonio, Nidia Aréchiga-Ceballos, Anita Aguirre-Barbosa, Rosa Maria Wong-Chew, Daniel Canul-Canul and Mario Solís-Hernández
Viruses 2025, 17(10), 1376; https://doi.org/10.3390/v17101376 - 15 Oct 2025
Abstract
Avian influenza A viruses pose ongoing threats to human and animal health, with H7 subtypes causing outbreaks globally. In Mexico, highly pathogenic H7N3 viruses have circulated in poultry since 2012, causing sporadic human infections. Here we analyzed genetic markers in hemagglutinin sequences from [...] Read more.
Avian influenza A viruses pose ongoing threats to human and animal health, with H7 subtypes causing outbreaks globally. In Mexico, highly pathogenic H7N3 viruses have circulated in poultry since 2012, causing sporadic human infections. Here we analyzed genetic markers in hemagglutinin sequences from Mexican H7N3 isolates and conducted serological assays on human populations with poultry exposure. Our results show conserved avian-like receptor binding sites, thus limiting human adaptation, alongside antigenic drift and acquisition of glycosylation sites likely driven by vaccination. Serological testing of 1103 individuals revealed no detectable antibodies against H7N3, indicating a naïve population. Phylogenetic analyses revealed multiple virus clades circulating regionally. These findings suggest that while current H7N3 viruses have limited capacity for sustained human transmission, the lack of population immunity underscores the importance of continued surveillance and risk assessment to mitigate potential pandemic threats. Full article
Show Figures

Figure 1

19 pages, 10242 KB  
Article
Molecular Characterization of a Recombinant NADC30-like PRRSV Strain with a Novel Gene Deletion Pattern in Nsp2 Gene
by Zhengqin Ye, Miaojie Zhang, Lin Yuan, Wenqiang Wang, Zhenbang Zhu, Wei Wen, Kegong Tian and Xiangdong Li
Vet. Sci. 2025, 12(10), 983; https://doi.org/10.3390/vetsci12100983 (registering DOI) - 13 Oct 2025
Abstract
PRRSV poses a persistent global challenge to the swine industry due to its rapid evolution. This study aimed to characterize a novel PRRSV2 strain, HeB2023092, isolated from a suspected outbreak in China in September 2023. We performed virus isolation in porcine alveolar macrophages [...] Read more.
PRRSV poses a persistent global challenge to the swine industry due to its rapid evolution. This study aimed to characterize a novel PRRSV2 strain, HeB2023092, isolated from a suspected outbreak in China in September 2023. We performed virus isolation in porcine alveolar macrophages (PAMs), genome sequencing, phylogenetic analysis, and comprehensive genetic characterization. HeB2023092 replicated effectively in PAMs but not in Marc-145 cells. Phylogenetic analysis consistently grouped it with NADC30-like strains (L1.8). Notably, genomic analysis revealed a unique 41-amino acid deletion (478–518 aa) in Nsp2, in addition to the characteristic 111-amino acid deletion of NADC30-like strains. Significant amino acid variations were also found in the antigenic epitopes and N-glycosylation patterns of GP3 and GP5. Comprehensive recombination analysis identified three distinct recombinant regions, revealing a mosaic genome with a predominant NADC30-like backbone. The backbone incorporated genetic sequences from JXA1-like (L8.7) strains in two regions and from NADC34-like (L1.5) strains in one region. These findings highlight the continuous genetic evolution and complex epidemiology of PRRSV, underscoring the critical need for sustained surveillance and detailed characterization of circulating strains to inform effective control and vaccine development strategies. Full article
(This article belongs to the Section Veterinary Microbiology, Parasitology and Immunology)
Show Figures

Figure 1

21 pages, 1300 KB  
Review
Cancer Cell Membrane-Coated NPs as a Biomimetic Strategy for Precision Tumor Therapy
by Junyi Lin, Wei Li, Alaa R. Aboushanab and Jingjing Sun
Pharmaceutics 2025, 17(10), 1322; https://doi.org/10.3390/pharmaceutics17101322 - 11 Oct 2025
Viewed by 276
Abstract
Cancer treatment remains challenging due to the complexity of the tumor microenvironment, which promotes tumor heterogeneity and contributes to the development of multidrug resistance, ultimately hindering drug delivery and reducing therapeutic efficacy. In recent years, biomimetic nanocarriers have emerged as promising tools to [...] Read more.
Cancer treatment remains challenging due to the complexity of the tumor microenvironment, which promotes tumor heterogeneity and contributes to the development of multidrug resistance, ultimately hindering drug delivery and reducing therapeutic efficacy. In recent years, biomimetic nanocarriers have emerged as promising tools to address these challenges. Among them, cancer cell membrane (CCM)-coated nanoparticles (CCM-NPs) have attracted increasing attention due to their unique advantages, including homologous targeting, prolonged circulation mediated by self-recognition, and enhanced tumor penetration. Moreover, CCM-NPs can serve as versatile platforms for tumor vaccines by leveraging their inherent tumor-associated antigens and immunomodulatory potential. By leveraging CCMs to functionalize NPs, researchers have developed innovative approaches to improve drug delivery, enhance tumor immunotherapy, and optimize cancer vaccine efficacy. Despite these advancements, a comprehensive review summarizing the latest progress in CCM-based biomimetic nanocarriers for tumor treatment is lacking. This review integrates recent advances in CCM-NPs for targeted drug delivery and cancer vaccination, and discusses their fabrication, characterization, mechanisms and applications across multiple cancer types, which provides timely insights to guide their future development in precision tumor therapy. Full article
(This article belongs to the Special Issue Innovative Drug Delivery Strategies for Targeted Cancer Immunotherapy)
Show Figures

Figure 1

16 pages, 3337 KB  
Article
Differentiation of West Nile and Usutu Virus Infections by Antibodies Directed to the Non-Structural Protein 1
by Lena Roßbacher, Samuel Taschler, Elena Cecchettin, Amelie Popovitsch, Stephan W. Aberle, Judith H. Aberle, Iris Medits-Weiss and Karin Stiasny
Viruses 2025, 17(10), 1357; https://doi.org/10.3390/v17101357 - 10 Oct 2025
Viewed by 173
Abstract
The genus Orthoflavivirus (family Flaviviridae) comprises several important pathogens that are widespread across the globe, often co-circulating in many regions. In Austria, the closely related mosquito-borne West Nile (WN) and Usutu (USU) viruses have been detected since the early 2000s. Orthoflavivirus-neutralizing antibodies [...] Read more.
The genus Orthoflavivirus (family Flaviviridae) comprises several important pathogens that are widespread across the globe, often co-circulating in many regions. In Austria, the closely related mosquito-borne West Nile (WN) and Usutu (USU) viruses have been detected since the early 2000s. Orthoflavivirus-neutralizing antibodies primarily target the major envelope protein E. However, due to their antigenic relationship, recurring contacts with different orthoflaviviruses can lead to the induction of broadly cross-reactive E-specific antibodies. These can pose a problem in the diagnosis and differentiation of orthoflavivirus infections. Therefore, we established immunological assays based on the non-structural protein 1 (NS1) to differentiate infections caused by WN and USU viruses. The NS1 protein is secreted during acute infection, and NS1-specific antibodies have been reported to be less cross-reactive than those against E. Using sera from individuals with a confirmed WN or USU virus infection, it was possible to distinguish between the two virus infections with high accuracy, specifically when IgM and IgG results were combined. Full article
(This article belongs to the Special Issue Emerging and Re-Emerging Neuroinvasive Arboviruses)
Show Figures

Figure 1

28 pages, 2183 KB  
Review
CRISPR-Powered Liquid Biopsies in Cancer Diagnostics
by Joshua R. Slattery, Noel Ye Naung, Bernd H. Kalinna and Martin Pal
Cells 2025, 14(19), 1539; https://doi.org/10.3390/cells14191539 - 1 Oct 2025
Viewed by 784
Abstract
Liquid biopsies promise major advantages for cancer screening and diagnosis. By detecting biomarkers in peripheral blood samples, liquid biopsies reduce the need for invasive techniques and provide important genetic information integral to the emerging molecular classification of cancers. Unfortunately, the concentrations of most [...] Read more.
Liquid biopsies promise major advantages for cancer screening and diagnosis. By detecting biomarkers in peripheral blood samples, liquid biopsies reduce the need for invasive techniques and provide important genetic information integral to the emerging molecular classification of cancers. Unfortunately, the concentrations of most biomarkers, particularly circulating tumour nucleic acids, are vanishingly small—beyond the sensitivity and specificity of most assays. Clustered Regularly Interspaced Short Palindromic Repeats diagnostics (herein labelled ‘CRISPR-Dx’) use gene editing tools to detect, rather than modify, nucleic acids with extremely high specificity. These tools are commonly combined with isothermal nucleic acid amplification to also achieve sensitivities comparable to high-performance laboratory-based techniques, such as digital PCR. CRISPR assays, however, are inherently well suited to adaptation for point-of-care (POC) use, and unlike antigen-based POC assays, are significantly easier and faster to develop. In this review, we summarise current CRISPR-Dx platforms and their analytical potential for cancer biomarker discovery, with an emphasis on enhancing early diagnosis, disease monitoring, point-of-care testing, and supporting cancer therapy. Full article
(This article belongs to the Special Issue CRISPR-Based Genome Editing Approaches in Cancer Therapy)
Show Figures

Figure 1

13 pages, 948 KB  
Communication
Characterization of the Hemagglutinin Gene of Morbillivirus canis in Domestic Dogs from the Mid-Western Area of Brazil
by Mayara Lima Kavasaki, Aneliza de Oliveira Souza, Amanda Noeli da Silva Campos, Isis Indaiara Gonçalves Granjeiro Taques, Rachel Vieira Paes de Barros, Sofia de Souza Pereira Gomes, Nathalia Assis Pereira, Tayane Bruna Soares Magalhães, Edson Viana Massoli Junior, Lucas Avelino D. Pavelegini, Luiz Donizete Campeiro Junior, Bruno Gomes de Castro, Michele Lunardi and Daniel Moura de Aguiar
Vet. Sci. 2025, 12(10), 948; https://doi.org/10.3390/vetsci12100948 - 30 Sep 2025
Viewed by 226
Abstract
Canine distemper virus (CDV) is a serious and often fatal disease caused by Morbillivirus canis, which affects domestic dogs and wild carnivores, with case-fatality rates reaching up to 47%. The hemagglutinin (H) protein mediates viral adsorption and shows high genetic variability, making [...] Read more.
Canine distemper virus (CDV) is a serious and often fatal disease caused by Morbillivirus canis, which affects domestic dogs and wild carnivores, with case-fatality rates reaching up to 47%. The hemagglutinin (H) protein mediates viral adsorption and shows high genetic variability, making it a valuable molecular marker. This study aimed to detect and characterize the H gene of CDV strains from 14 dogs with fatal neurological disease in the Brazilian states of Mato Grosso and Rondônia. Brain tissue was tested via RT-PCR for the nucleocapsid gene, and positive samples were amplified for the H gene. Ten complete H-gene sequences were obtained. Phylogenetic analysis revealed two distinct clusters within the South America I/Europe lineage: one related to strains from Uruguay and Argentina (with residues 530G/549Y) and another related to Brazilian strains (530S/549Y). One sequence (MT8) showed an intermediate position in the haplotype network but clustered phylogenetically with Uruguay/Argentina-related strains. Most sequences carried 530S/549Y, a pattern linked to altered SLAM receptor usage in wildlife. These findings demonstrate the co-circulation of two CDV clusters in Central–Western Brazil, their regional and international genetic connectivity, and amino acid substitutions potentially influencing host adaptation and antigenicity. Full article
(This article belongs to the Section Veterinary Microbiology, Parasitology and Immunology)
Show Figures

Figure 1

14 pages, 3269 KB  
Article
New Coronavirus in Colombian Caribbean Bats: In Silico Analysis Reveals Possible Risk of Interspecific Jumping
by Caty Martínez, Daniel Echeverri-De la Hoz, Alfonso Calderón, Yésica López, Camilo Guzmán, Ketty Galeano, Valeria Bertel, Bertha Gastelbondo-Pastrana and Salim Mattar
Viruses 2025, 17(10), 1320; https://doi.org/10.3390/v17101320 - 29 Sep 2025
Viewed by 412
Abstract
Since the appearance of the Severe Acute Respiratory Syndrome (SARS) virus, there has been increased interest in understanding the role of bats in the maintenance and circulation of coronaviruses. This study aimed to describe the phylogenetic and evolutionary relationships and antigenic architecture of [...] Read more.
Since the appearance of the Severe Acute Respiratory Syndrome (SARS) virus, there has been increased interest in understanding the role of bats in the maintenance and circulation of coronaviruses. This study aimed to describe the phylogenetic and evolutionary relationships and antigenic architecture of a new coronavirus detected in bats in the Department of Córdoba. In a surveillance study of pathogens of interest to public health, a bat Phyllostomus hastatus was captured. Rectal swabs samples were collected from the bats, and RNA was extracted and sequenced using NGS with MGI-G50 equipment. The results were analyzed using bioinformatics software. A contig of 28,619 nucleotides associated with the Coronaviridae family was obtained. Phylogenetic and molecular clock analyses of the ORF1ab gene revealed a novel divergent Alphacoronavirus that originated directly from an ancestral node. The analysis of the spike (S) protein and receptor-binding domain (RBD) is similar to that of humans (HCoV-229E) and porcine coronaviruses. In silico analysis suggests potential RBD interaction sites with human and pig cellular receptor aminopeptidase N. There is a possible risk of interspecies jumping of the new AlphaCoV/P. hastatus in humans and pigs. This is the first study to perform phylogenetic, evolutionary, and antigenic characterization of bat coronaviruses in Colombia. Full article
(This article belongs to the Special Issue Zoonotic and Vector-Borne Viral Diseases)
Show Figures

Graphical abstract

13 pages, 1961 KB  
Article
A CpG 1018S/QS-21-Adjuvanted HBsAg Therapeutic Vaccine as a Novel Strategy Against HBV
by Zixuan Wang, Jing Wu, Xiaohan Meng, He Weng, Qiang Li, Lin Li, Zhenhao Ma, Sirong Bi, Qiuju Han, Huajun Zhao, Cunbao Liu and Deping Meng
Vaccines 2025, 13(10), 1014; https://doi.org/10.3390/vaccines13101014 - 29 Sep 2025
Viewed by 571
Abstract
Chronic hepatitis B virus (HBV) infection remains a major global health challenge, substantially contributing to liver-related morbidity and mortality. Background/Objectives: Developing therapeutic strategies that overcome immune tolerance and achieve functional cures is an urgent priority. Methods: In this study, we report [...] Read more.
Chronic hepatitis B virus (HBV) infection remains a major global health challenge, substantially contributing to liver-related morbidity and mortality. Background/Objectives: Developing therapeutic strategies that overcome immune tolerance and achieve functional cures is an urgent priority. Methods: In this study, we report a therapeutic vaccine comprising hepatitis B surface antigen (HBsAg) formulated with the dual adjuvant system CpG 1018S and QS-21. The immunogenicity and therapeutic efficacy of this vaccine were systematically evaluated in an rAAV8-HBV1.3-established chronic HBV mouse model. Results: The vaccine elicited a robust Th1-skewed immune response, characterized by elevated anti-HBs IgG2b titers and an increased IgG2b/IgG1 ratio. Notably, immunized mice showed markedly reduced circulating HBsAg levels. Mechanistically, the CpG 1018S and QS-21 adjuvant system enhanced dendritic cell activation, maturation, and antigen presentation, expanded HBV-specific CD4+ and CD8+ T cell populations, and attenuated the expression of the exhaustion markers TIM-3 and TIGIT. Additionally, immunized mice exhibited restored T cell polyfunctionality, with an increased secretion of effector cytokines, including TNF-α and IL-21. These responses collectively contributed to the reversal of T cell exhaustion and breakdown of immune tolerance, facilitating sustained viral suppression. Conclusions: Our findings demonstrate that the CpG 1018S/QS-21-adjuvanted vaccine induces potent humoral and cellular immunity against chronic HBV infection and represents a promising candidate for clinical chronic HBV (CHB) treatment. Full article
(This article belongs to the Section Hepatitis Virus Vaccines)
Show Figures

Figure 1

19 pages, 1644 KB  
Article
Omicron Subvariants Infection Kinetics and Nirmatrelvir Efficacy in Transgenic K18-hACE2 Mice
by Vijeta Sharma, Enriko Dolgov, Taylor Tillery, Camila Mendez Romero, Alberto Rojas-Triana, Diana M. Villalba Guzman, Kira Goldgirsh, Risha Rasheed, Irene Gonzalez-Jimenez, Nadine Alvarez, Steven Park, Madhuvika Murugan, Andrew M. Nelson and David S. Perlin
Int. J. Mol. Sci. 2025, 26(19), 9509; https://doi.org/10.3390/ijms26199509 - 29 Sep 2025
Viewed by 352
Abstract
The persistent evolution of SARS-CoV-2 has led to the emergence of antigenically distinct Omicron subvariants exhibiting increased transmissibility, immune evasion, and altered pathogenicity. Among these, recent subvariants such as JN.1, KP.3.1.1, and LB.1 possess unique antigenic and virological features, underscoring the need for [...] Read more.
The persistent evolution of SARS-CoV-2 has led to the emergence of antigenically distinct Omicron subvariants exhibiting increased transmissibility, immune evasion, and altered pathogenicity. Among these, recent subvariants such as JN.1, KP.3.1.1, and LB.1 possess unique antigenic and virological features, underscoring the need for continued surveillance and therapeutic evaluation. As vaccines and commercial monoclonal antibodies show reduced effectiveness against these variants, the role of direct-acting antivirals, such as Nirmatrelvir, targeting conserved viral elements like the main protease inhibitor, becomes increasingly crucial. In this study, we investigated the replication kinetics, host immune responses, and therapeutic susceptibility of three recently circulating Omicron subvariants in the K18-hACE2 transgenic mouse model, using the SARS-CoV-2 parent WA1/2020 strain as a reference. Omicron subvariants exhibited a marked temporal shift in viral infection kinetics characterized by an early lung viral titer peak (~7–8 Log PFU) at 2 days post-infection (dpi), followed by a decline (1–3 Log PFU) by 4 dpi. Pulmonary cytokine and chemokine responses (GM-CSF, TNF-α, IL-1β, IL-6) showed an earlier increase in subvariant-infected mice compared to a gradual response in WA1/2020 infection. Notably, Nirmatrelvir treatment led to significant reductions in lung viral titers in subvariant-infected mice compared to WA1/2020, surpassing its efficacy against the parent strain. These findings highlight that infection with Omicron subvariants yields a broad dynamic range in viral burden with minimum variability, while retaining a prominent therapeutic response to Nirmatrelvir. This study provides insights into the emerging subvariants’ pathogenesis and therapeutic responsiveness, reinforcing the importance of continued variant monitoring and the development of effective countermeasures. Full article
Show Figures

Graphical abstract

22 pages, 346 KB  
Review
Serum Factors in Primary Podocytopathies
by Edward John Filippone and John L. Farber
Antibodies 2025, 14(4), 82; https://doi.org/10.3390/antib14040082 - 28 Sep 2025
Viewed by 257
Abstract
Primary podocytopathies, including minimal change disease (MCD) and focal segmental glomerulosclerosis (FSGS), are caused by a circulating factor or factors injurious to the podocyte. An immunologic origin seems likely based on responsiveness to corticosteroids or other immunosuppressive agents, including calcineurin inhibitors targeting T-cells [...] Read more.
Primary podocytopathies, including minimal change disease (MCD) and focal segmental glomerulosclerosis (FSGS), are caused by a circulating factor or factors injurious to the podocyte. An immunologic origin seems likely based on responsiveness to corticosteroids or other immunosuppressive agents, including calcineurin inhibitors targeting T-cells and rituximab targeting B-cells. Potential non-antibody-mediated circulating factors have been identified, including cardiotrophin-like cytokine 1, soluble urokinase plasminogen activator receptor, and angiopoietin-like 4, among others. More recent research supports a primary antibody pathogenesis, with anti-nephrin antibodies found in a significant percentage of cases. Such antibodies also predict recurrence after transplantation. Other potential antigenic targets besides nephrin include annexin, the proteosome, podocin, and CD40. Additionally, high-resolution confocal microscopy has identified punctate immunoglobulin deposits along the slit diaphragm and podocyte cell body that may or may not colocalize with abnormal punctate nephrin staining and may correlate with detectable circulating antibodies. The success of rituximab in observational studies in both native kidneys and transplants supports a primary role for autoantibodies. We discuss in detail the data supporting putative non-antibody circulating factors, as well as the recent data supporting antibody pathogenesis, which may provide some clues on treating the individual patient. Full article
(This article belongs to the Section Humoral Immunity)
13 pages, 5338 KB  
Article
High-Performance Silicon Nanowire Array Biosensor for Combined Detection of Colorectal Cancer Biomarkers
by Jiaye Zeng, Mingbin Liu, Xin Chen, Jintao Yi, Wenhe Liu, Xinjian Qu, Chaoran Liu, Serestina Viriri, Guangguang Yang, Weichao Yang and Xun Yang
Micromachines 2025, 16(10), 1089; https://doi.org/10.3390/mi16101089 - 26 Sep 2025
Viewed by 422
Abstract
This study presents a high-performance silicon nanowire (SiNW) array biosensor for the combined detection of two key colorectal cancer (CRC) biomarkers: circulating tumor DNA (ctDNA) and carcinoembryonic antigen (CEA). The device was fabricated using conventional micromachining techniques, enabling the integration of dual SiNW [...] Read more.
This study presents a high-performance silicon nanowire (SiNW) array biosensor for the combined detection of two key colorectal cancer (CRC) biomarkers: circulating tumor DNA (ctDNA) and carcinoembryonic antigen (CEA). The device was fabricated using conventional micromachining techniques, enabling the integration of dual SiNW arrays on a single chip with precise control over structure and surface functionalization. Specific probe DNA and anti-CEA antibodies were immobilized on distinct array regions to facilitate targeted binding. The biosensor demonstrated exceptional performance, achieving an ultralow detection limit of 10 aM for ctDNA with a linear range from 0.1 fM to 10 pM, and a sensitivity of 1 fg/mL for CEA. It exhibited high selectivity against interfering substances, including single-base mismatched DNA and non-specific proteins, and maintained robust performance in human serum samples. The platform offers a scalable, label-free, and real-time detection solution with significant potential for application in early CRC screening and personalized medicine. Full article
(This article belongs to the Special Issue Advanced Micro- and Nano-Manufacturing Technologies, 2nd Edition)
Show Figures

Figure 1

13 pages, 886 KB  
Article
The Acute Immune Response in Sheep Following Immunization with Toxoplasma gondii Tachyzoites or Parasite-Derived Glycoconjugates
by Patrícia Oliveira Meira-Santos, Gabriela Cruz Piedade, Maria Tereza Guedes, Dan Loureiro, José Tadeu Raynal, Roberto Meyer, Letícia Vicentini, Luiz Soares, Blima Fux and Ricardo Wagner Portela
Vet. Sci. 2025, 12(10), 928; https://doi.org/10.3390/vetsci12100928 - 24 Sep 2025
Viewed by 356
Abstract
Toxoplasmosis is a relevant parasitic infection in sheep, with ovine meat an important source of human exposure. Accurate detection of the early immune response to Toxoplasma gondii is essential for preventing reproductive losses and improving diagnostic strategies. This study evaluated the kinetics of [...] Read more.
Toxoplasmosis is a relevant parasitic infection in sheep, with ovine meat an important source of human exposure. Accurate detection of the early immune response to Toxoplasma gondii is essential for preventing reproductive losses and improving diagnostic strategies. This study evaluated the kinetics of the acute immune response in eighteen sheep experimentally exposed to live tachyzoites or immunized with parasite-derived glycoconjugates (GlyC). Animals were divided into three groups and injected with saline solution, tachyzoites, or glycoconjugates combined with an adjuvant. Infected sheep developed specific IgM antibodies against both lysate and glycoconjugate antigens from day 4, and IgG against glycoconjugates from day 12 post-infection. Glycoconjugate-immunized sheep produced IgM against lysate antigens from day 4, and IgG against both antigens from day 12. Flow cytometry revealed a significant increase in circulating CD8+ T cells and a reduction in MHC class II+ cells on day 60 in the infected group. These findings demonstrate the early humoral and cellular immune response profiles following infection or GlyC immunization. This supports their future application in diagnostic tests or as vaccine candidates against toxoplasmosis in sheep. Full article
(This article belongs to the Special Issue Detection of Parasitic Diseases in Livestock)
Show Figures

Graphical abstract

15 pages, 808 KB  
Review
Point-of-Care Testing and Biomarkers in Biliary Diseases: Current Evidence and Future Directions
by Jang Han Jung, Kyong Joo Lee, Se Woo Park, Dong Hee Koh and Jin Lee
J. Clin. Med. 2025, 14(19), 6724; https://doi.org/10.3390/jcm14196724 - 24 Sep 2025
Viewed by 334
Abstract
Biliary tract diseases, including both benign and malignant conditions such as cholangitis, cholelithiasis, primary sclerosing cholangitis, cholangiocarcinoma, and gallbladder cancer, present significant challenges for timely diagnosis and effective clinical management. Conventional diagnostic approaches, which primarily rely on imaging and standard laboratory tests, often [...] Read more.
Biliary tract diseases, including both benign and malignant conditions such as cholangitis, cholelithiasis, primary sclerosing cholangitis, cholangiocarcinoma, and gallbladder cancer, present significant challenges for timely diagnosis and effective clinical management. Conventional diagnostic approaches, which primarily rely on imaging and standard laboratory tests, often lack the sensitivity and specificity needed for early detection, accurate risk stratification, and personalized treatment planning. In recent years, advancements in point-of-care (POC) diagnostic technologies, along with the identification and validation of novel biomarkers, have begun to reshape the diagnostic landscape. This review provides a comprehensive overview of the clinical utility and limitations of current POC tests and biomarkers, ranging from well-established markers such as carbohydrate antigen 19-9 (CA19-9) and carcinoembryonic antigen (CEA) to emerging molecular indicators such as circulating microRNAs and circulating tumor DNA. We examine their applications across acute management, chronic disease monitoring, and cancer detection; identify existing gaps in diagnostic practice; and discuss strategies for incorporating these tools into standard clinical workflows to enhance patient outcomes. Full article
(This article belongs to the Special Issue New Clinical Advances in Pancreatobiliary Diseases)
Show Figures

Figure 1

22 pages, 4713 KB  
Article
Genetic Variation Analysis and Research on Biological Characteristics of Duck Hepatitis Virus Type 3: A Comparison Between Historical Strains in Yunnan and Recent Epidemic Strains
by Sixian Lan, Aiguo Xin, Ke Li, Zhengju Yuan, Rong Zhao, Zhishun Chang, Wengui Li and Hongya Yan
Vet. Sci. 2025, 12(10), 923; https://doi.org/10.3390/vetsci12100923 - 23 Sep 2025
Viewed by 311
Abstract
Duck viral hepatitis, caused by Duck Hepatitis A Virus Type 3 (DHAV-3), remains a major threat to young ducklings. Although DHAV-3 has circulated in China since the 1999s, the complete genomic architecture, exact virulence parameters, and evolutionary distance between early Yunnan isolates and [...] Read more.
Duck viral hepatitis, caused by Duck Hepatitis A Virus Type 3 (DHAV-3), remains a major threat to young ducklings. Although DHAV-3 has circulated in China since the 1999s, the complete genomic architecture, exact virulence parameters, and evolutionary distance between early Yunnan isolates and current field strains have remained undefined. This study investigated six DHAV-3 strains isolated in Yunnan Province, China, between 2004 and 2006, to elucidate their genetic and biological characteristics. Full-genome sequencing and phylogenetic analysis revealed >99.5% nucleotide and >99.6% amino acid identity among the strains, suggesting a common ancestral origin. In vivo challenge assays showed rapid onset of clinical signs and >90% mortality in ducklings within 36 h post-inoculation. Embryonic deaths began at 24 h post-infection and peaked by 90 h. Viral replication was efficient in DEF, DEK, Vero, and BHK-21 cells, but absent in chicken fibroblasts (DF-1). Comparative genomic analysis between the YN/LR/2005 strain and recent field isolates (2022–2024) revealed substantial nucleotide divergence in structural regions, with 32 unique amino acid substitutions—all five located in the immunodominant VP1 region that may influence viral antigenicity and host interaction—alongside changes in N-glycosylation sites and alterations in protein secondary structure. Histopathological examination confirmed characteristic hepatic lesions. These findings demonstrate that while DHAV-3 has undergone genetic evolution, it retains high virulence, underscoring the need for ongoing molecular surveillance and supporting future vaccine and diagnostic development. Full article
Show Figures

Figure 1

13 pages, 3181 KB  
Article
Human Leukocyte Antigen-DR Expression on Monocytes Is a Useful Predictor in a Systemic Inflammation Response-Based Prognostic Model in Advanced Non-Small Cell Lung Cancer
by Gergő Szűcs, András Gézsi, Márton Szentkereszty, György Losonczy, Gábor Barna, Gabriella Gálffy, Anikó Bohács, Lilla Tamási, Veronika Müller, Edit I. Buzás and Zsolt I. Komlósi
Int. J. Mol. Sci. 2025, 26(18), 9226; https://doi.org/10.3390/ijms26189226 - 21 Sep 2025
Viewed by 508
Abstract
Inflammation and immune evasion promote tumorigenesis and progression. Elevated systemic inflammation response index (SIRI) is associated with poor progression-free survival (PFS) and overall survival (OS) in non-small cell lung cancer (NSCLC) patients. Low Human Leukocyte Antigen-DR (HLA-DR) expression on monocytes is also associated [...] Read more.
Inflammation and immune evasion promote tumorigenesis and progression. Elevated systemic inflammation response index (SIRI) is associated with poor progression-free survival (PFS) and overall survival (OS) in non-small cell lung cancer (NSCLC) patients. Low Human Leukocyte Antigen-DR (HLA-DR) expression on monocytes is also associated with poor prognosis in NSCLC. We aimed to investigate the relationship between these two indicators and develop a predictive model based on them. SIRI was calculated and monocyte HLA-DR expression was measured by flow cytometry in 58 advanced (stage IIIB-IV) NSCLC patients. The log-rank test and multivariate Cox proportional hazard regression model were used for analysis. We confirmed that both high SIRI and low monocyte HLA-DR expression were associated with poor PFS and OS, respectively. We found a significant inverse correlation between SIRI and monocyte HLA-DR expression. In the multivariable Cox regression model, both SIRI and monocyte HLA-DR expression were identified as independent prognostic markers for PFS and OS. We also developed a nomogram for predicting PFS and OS. In conclusion, we demonstrated that the systemic inflammation response of advanced NSCLC patients, estimated by SIRI, was associated with reduced HLA-DR expression on circulating monocytes, which may influence their antigen-presenting function. Consequently, the integration of these two biomarkers into one prognostic model improves short term survival prediction in advanced NSCLC. To our knowledge, this is the first integration of SIRI and HLA-DR into a combined prognostic nomogram. Full article
(This article belongs to the Special Issue Biomarkers of Tumor Progression, Prognosis and Therapy: 2nd Edition)
Show Figures

Figure 1

Back to TopTop