Sign in to use this feature.

Years

Between: -

Subjects

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Journals

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Article Types

Countries / Regions

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Search Results (1,854)

Search Parameters:
Keywords = circulation structure

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
17 pages, 2223 KB  
Article
Dynamic Evolution Analysis of Incentive Strategies and Symmetry Enhancement in the Personal-Data Valorization Industry Chain
by Jun Ma, Junhao Yu and Yingying Cheng
Symmetry 2025, 17(10), 1639; https://doi.org/10.3390/sym17101639 (registering DOI) - 3 Oct 2025
Abstract
The value of personal data can only be unlocked through efficient circulation. This study explores a multi-party collaborative mechanism for personal-data trading, aiming to improve data quality and market vitality via incentive-compatible institutional design, thereby supporting the high-quality development of the digital economy. [...] Read more.
The value of personal data can only be unlocked through efficient circulation. This study explores a multi-party collaborative mechanism for personal-data trading, aiming to improve data quality and market vitality via incentive-compatible institutional design, thereby supporting the high-quality development of the digital economy. Symmetry enhancement refers to the use of strategies and mechanisms to narrow the information gap among data controllers, operators, and demanders, enabling all parties to facilitate personal-data transactions on relatively equal footing. Drawing on evolutionary-game theory, we construct a tripartite dynamic-game model that incorporates data controllers, data operators, and data demanders. We analyze how initial willingness, payoff structures, breach costs, and risk factors (e.g., data leakage) shape each party’s strategic choices (cooperate vs. defect) and their evolutionary trajectories, in search of stable equilibrium conditions and core incentive mechanisms for a healthy market. We find that (1) the initial willingness to cooperate among participants is the foundation of a virtuous cycle; (2) the net revenue of data products significantly influences operators’ and demanders’ propensity to cooperate; and (3) the severity of breach penalties and the potential losses from data leakage jointly affect the strategies of all three parties, serving as key levers for maintaining market trust and compliance. Accordingly, we recommend strengthening contract enforcement and trust-building; refining the legal and regulatory framework for data rights confirmation, circulation, trading, and security; and promoting stable supply–demand cooperation and market education to enhance awareness of data value and compliance, thereby stimulating individuals’ willingness to authorize the use of their data and maximizing its value. Full article
Show Figures

Figure 1

24 pages, 5840 KB  
Article
Numerical Study of Blast Load Acting on Typical Precast Segmental Reinforced Concrete Piers in Near-Field Explosions
by Lu Liu, Zhouhong Zong, Yulin Shan, Yao Yao, Chenglin Li and Yihao Cheng
CivilEng 2025, 6(4), 53; https://doi.org/10.3390/civileng6040053 - 2 Oct 2025
Abstract
Explosions, including those from war weapons, terrorist attacks, etc., can lead to damage and overall collapse of bridges. However, there are no clear guidelines for anti-blast design and protective measures for bridges under blast loading in current bridge design specifications. With advancements in [...] Read more.
Explosions, including those from war weapons, terrorist attacks, etc., can lead to damage and overall collapse of bridges. However, there are no clear guidelines for anti-blast design and protective measures for bridges under blast loading in current bridge design specifications. With advancements in intelligent construction, precast segmental bridge piers have become a major trend in social development. There is a lack of full understanding of the anti-blast performance of precast segmental bridge piers. To study the engineering calculation method for blast load acting on a typical precast segmental reinforced concrete (RC) pier in near-field explosions, an air explosion test of the precast segmental RC pier is firstly carried out, then a fluid–structure coupling numerical model of the precast segmental RC pier is established and the interaction between the explosion shock wave and the precast segmental RC pier is discussed. A numerical simulation of the precast segmental RC pier in a near-field explosion is conducted based on a reliable numerical model, and the distribution of the blast load acting on the precast segmental RC pier in the near-field explosion is analyzed. The results show that the reflected overpressure on the pier and the incident overpressure in the free field are reliable. The simulation results are basically consistent with the experimental results (with a relative error of less than 8%), and the fluid–structure coupling model is reasonable and reliable. The explosion shock wave has effects of reflection and circulation on the precast segmental RC pier. In the near-field explosion, the back and side blast loads acting on the precast segmental RC bridge pier can be ignored in the blast-resistant design. The front blast loads can be simplified and equalized, and a blast-resistant design load coefficient (1, 0.2, 0.03, 0.02, and 0.01) and a calculation formula of maximum equivalent overpressure peak value (applicable scaled distance [0.175 m/kg1/3, 0.378 m/kg1/3]) are proposed, which can be used as a reference for the blast-resistant design of precast segmental RC piers. Full article
(This article belongs to the Section Mathematical Models for Civil Engineering)
Show Figures

Figure 1

23 pages, 14097 KB  
Article
Comparative Analysis of Local Flow Fields of Typical Inner Jet Holes-Type Reverse Circulation Drill Bit for Pneumatic Hollow-Through DTH Hammer Based on CFD Simulation
by Jiwei Wen, Jiang Chen and Fengtao Zhang
Symmetry 2025, 17(10), 1625; https://doi.org/10.3390/sym17101625 - 1 Oct 2025
Abstract
The reverse circulation drill bit is the key component for the efficient and smooth implementation of the pneumatic hollow-through down-the-hole (DTH) hammer reverse circulation continuous coring (sampling) technology. To obtain the structural form of a reverse circulation drill bit with better reverse circulation [...] Read more.
The reverse circulation drill bit is the key component for the efficient and smooth implementation of the pneumatic hollow-through down-the-hole (DTH) hammer reverse circulation continuous coring (sampling) technology. To obtain the structural form of a reverse circulation drill bit with better reverse circulation performance, revealing its local flow fields by computational fluid dynamics (CFD) simulation is an effective approach. Taking the inner jet holes-type reverse circulation drill bit as the research object, three kinds of symmetrical and asymmetrical structures of inner jet holes were proposed. The CFD simulation results show that increasing the air volume supply and the number of inner jet holes leads to an increase in the velocity of air flow jet within the inner jet holes, an increase in the negative pressure formed in the central through channel below the inner jet holes, an enhancement of the reverse circulation performance and suction capacity formed by the reverse circulation drill bit, and an acceleration of the upward flow velocity of the rock cores (samples) located at the bottom of the borehole. Additionally, the reverse circulation performance formed by the reverse circulation drill bit with staggered arranged inner jet holes is superior to that of the reverse circulation drill bit with uniformly distributed inner jet holes. Under the same simulation conditions, the static pressure (i.e., negative pressure) and the upward flow velocity formed by the JB6 model are 2.34 kPa and 30.778 m/s higher than those formed by the JB3-3 model, while these two values formed by the JC6 model are 0.197 kPa and 3.689 m/s higher than those formed by the JB6 model, respectively. In conclusion, an asymmetric structural design would be more reasonable for the design of the inner jet holes-type reverse circulation drill bit. Full article
Show Figures

Figure 1

22 pages, 3227 KB  
Article
Associations Between Regulatory Immune Cells, Thymus Cellular Remodeling, and Vascular Aging in Advanced Coronary Atherosclerosis: A Pilot Study
by Irina Kologrivova, Alexey Dmitriukov, Natalia Naryzhnaya, Olga Koshelskaya, Olga Kharitonova, Alexandra Vyrostkova, Elena Kravchenko, Ivan Stepanov, Sergey Andreev, Vladimir Evtushenko, Anna Gusakova, Oksana Ogurkova and Tatiana Suslova
Diagnostics 2025, 15(19), 2494; https://doi.org/10.3390/diagnostics15192494 - 30 Sep 2025
Abstract
Background/Objectives: Biological aging phenotypes in coronary artery disease (CAD) include coronary atherosclerosis, vascular aging, and endothelial dysfunction. The aim of the present study was to investigate the potential links between aging phenotypes, regulatory immune cells, and features of the thymus in patients with [...] Read more.
Background/Objectives: Biological aging phenotypes in coronary artery disease (CAD) include coronary atherosclerosis, vascular aging, and endothelial dysfunction. The aim of the present study was to investigate the potential links between aging phenotypes, regulatory immune cells, and features of the thymus in patients with CAD. Methods: A single-center, cross-sectional, comparative study was conducted. Patients were stratified according to the severity of coronary atherosclerosis: patients with a Gensini score ≥ 65 points and patients with a Gensini score < 65 points. Peripheral blood and thymus biopsy were obtained. Imaging flow cytometry, ELISA, and immunohistochemical analysis were used for analysis. Results: Thymic morphology ranged from total fatty involution to a preserved structure of the thymus (20–80% area in 31% of obtained samples) but was not associated with the severity of atherosclerosis. Meanwhile, patients with a Gensini score ≥ 65 had impaired thymus cellular composition compared to patients with a Gensini score < 65 points; increased frequency of CD8+ T lymphocytes and NK cells; and decreased frequency of CD4 + CD8+ T lymphocytes. In peripheral blood, the main determinants of a Gensini score ≥ 65 points were low absolute counts of eMDSCs and CD25low Tregs with FoxP3 nuclear translocation, while advanced vascular aging was associated with elevated eMDSC absolute counts. Advanced coronary atherosclerosis was also associated with decreased numbers of endothelial progenitor cells in circulation. Conclusions: Thymus dysfunction accompanies CAD progression and is manifested in changes in cellular composition rather than morphology. In CAD patients, MDSC and Treg lymphocytes are equally involved in the progression of coronary atherosclerosis, which is aggravated by the decreased regulatory potential of the endothelium. Vascular aging represents a distinct phenotype of biological aging in CAD patients, characterized by the expansion of eMDSCs. Full article
(This article belongs to the Special Issue Molecular Diagnosis and Medical Management of Cardiovascular Diseases)
18 pages, 4107 KB  
Article
Intertypic Recombination Between Coxsackievirus A16 and Enterovirus A71 Structural and Non-Structural Genes Modulates Virulence and Protection Efficacy
by Hooi Yee Chang, Han Kang Tee, Kien Chai Ong, Kartini Jasni, Syahril Abdullah, I.-Ching Sam and Yoke Fun Chan
Vaccines 2025, 13(10), 1017; https://doi.org/10.3390/vaccines13101017 - 29 Sep 2025
Abstract
Background/Objectives: Enterovirus A71 (EV-A71) and coxsackievirus A16 (CVA16) are major causative agents of hand, foot and mouth disease (HFMD), often co-circulating and occasionally undergoing genetic recombination. While natural recombinants often involve genomic regions encoding non-structural proteins, their effects on replication and pathogenesis [...] Read more.
Background/Objectives: Enterovirus A71 (EV-A71) and coxsackievirus A16 (CVA16) are major causative agents of hand, foot and mouth disease (HFMD), often co-circulating and occasionally undergoing genetic recombination. While natural recombinants often involve genomic regions encoding non-structural proteins, their effects on replication and pathogenesis remain unclear. Methods: To address this, four chimera viruses (Chi-CCE, Chi-ECE, Chi-EEC, and Chi-CEC) were constructed with 5′UTR, capsid P1, and non-structural P2 and P3 genes, from CVA16 (denoted as C) or EV-A71 (denoted as E). These chimeras were tested for replication kinetics and cytopathic effects in rhabdomyosarcoma cells while in vivo virulence and protection efficacy were evaluated using a newborn BALB/c mouse model. Results: All chimeric viruses remained viable and exhibited higher replication than CVA16. In vivo, all chimeric viruses were avirulent except Chi-CCE and CVA16, which showed high virulence and viral titres in the brains and limbs of infected newborn mice. This suggests that 5′UTR and capsid P1 genes of CVA16 are critical genetic determinants of virulence. Notably, only the anti-inflammatory cytokine IL-10 was elevated, suggesting potential immune modulation during infection. Inactivated Chi-CCE immunisation conferred 100% protection against lethal CVA16 or mouse-adapted EV-A71 challenge revealing its potential as a bivalent vaccine candidate. Conclusions: Our study demonstrates that recombination between CVA16 and EV-A71 influences viral virulence and protection efficacy with implications for future development of multivalent vaccines. Full article
(This article belongs to the Section Vaccines against Tropical and other Infectious Diseases)
Show Figures

Figure 1

51 pages, 4345 KB  
Review
Zwitterionic Poly(Carboxybetaine Methacrylate)s in Drug Delivery, Antifouling Coatings, and Regenerative Tissue Platforms
by Theodore Sentoukas, Wojciech Walach, Katarzyna Filipek and Barbara Trzebicka
Materials 2025, 18(19), 4514; https://doi.org/10.3390/ma18194514 - 28 Sep 2025
Abstract
Poly(carboxybetaine methacrylate)s (PCBMA) belongs to a class of zwitterionic polymers that offer promising alternatives to polyethylene glycol (PEG) in biomedical applications. This review highlights how the unique zwitterionic structure of PCBMA dictates its strong antifouling behavior, low immunogenicity, and sensitivity to environmental stimuli [...] Read more.
Poly(carboxybetaine methacrylate)s (PCBMA) belongs to a class of zwitterionic polymers that offer promising alternatives to polyethylene glycol (PEG) in biomedical applications. This review highlights how the unique zwitterionic structure of PCBMA dictates its strong antifouling behavior, low immunogenicity, and sensitivity to environmental stimuli such as pH and ionic strength. These features make PCBMA promising for designing advanced systems suited for complex biological environments. This review describes PCBMA-based materials—ranging from hydrogels, nanogels, and surface coatings to drug carriers and protein conjugates—and critically evaluates their performance in drug delivery, tissue engineering, diagnostics, and implantable devices. Comparative studies demonstrated that PCBMA consistently outperformed other zwitterionic polymers and PEG in resisting protein adsorption, maintaining bioactivity of conjugated molecules, and ensuring long circulation times in vivo. Molecular dynamics simulations provide additional information into the hydration shells and conformational behaviors of PCBMA in aqueous dispersions. These insights underscore PCBMA’s broad potential as a promising high-performance material for next generation healthcare technologies. Full article
(This article belongs to the Special Issue Feature Paper in the Section 'Polymeric Materials' (3rd Edition))
Show Figures

Graphical abstract

13 pages, 5338 KB  
Article
High-Performance Silicon Nanowire Array Biosensor for Combined Detection of Colorectal Cancer Biomarkers
by Jiaye Zeng, Mingbin Liu, Xin Chen, Jintao Yi, Wenhe Liu, Xinjian Qu, Chaoran Liu, Serestina Viriri, Guangguang Yang, Weichao Yang and Xun Yang
Micromachines 2025, 16(10), 1089; https://doi.org/10.3390/mi16101089 - 26 Sep 2025
Abstract
This study presents a high-performance silicon nanowire (SiNW) array biosensor for the combined detection of two key colorectal cancer (CRC) biomarkers: circulating tumor DNA (ctDNA) and carcinoembryonic antigen (CEA). The device was fabricated using conventional micromachining techniques, enabling the integration of dual SiNW [...] Read more.
This study presents a high-performance silicon nanowire (SiNW) array biosensor for the combined detection of two key colorectal cancer (CRC) biomarkers: circulating tumor DNA (ctDNA) and carcinoembryonic antigen (CEA). The device was fabricated using conventional micromachining techniques, enabling the integration of dual SiNW arrays on a single chip with precise control over structure and surface functionalization. Specific probe DNA and anti-CEA antibodies were immobilized on distinct array regions to facilitate targeted binding. The biosensor demonstrated exceptional performance, achieving an ultralow detection limit of 10 aM for ctDNA with a linear range from 0.1 fM to 10 pM, and a sensitivity of 1 fg/mL for CEA. It exhibited high selectivity against interfering substances, including single-base mismatched DNA and non-specific proteins, and maintained robust performance in human serum samples. The platform offers a scalable, label-free, and real-time detection solution with significant potential for application in early CRC screening and personalized medicine. Full article
(This article belongs to the Special Issue Advanced Micro- and Nano-Manufacturing Technologies, 2nd Edition)
Show Figures

Figure 1

33 pages, 5582 KB  
Review
The Role of Oral and Gut Microbiota in Bone Health: Insights from Bacterial Extracellular Vesicles
by Ping Liang, Xuanyu Chen, Zhikang Su, Yunlin Luo, Tao Wang, Jiang Li, Lvhua Guo and Tao Luo
Microorganisms 2025, 13(10), 2254; https://doi.org/10.3390/microorganisms13102254 - 25 Sep 2025
Abstract
Bone health is critically influenced by the oral and gut microbiota, which are among the largest microbial reservoirs in the human body. These microbiota play essential roles in maintaining bone mass through immune modulation, metabolite production, and nutrient resorption. Recent observations have underscored [...] Read more.
Bone health is critically influenced by the oral and gut microbiota, which are among the largest microbial reservoirs in the human body. These microbiota play essential roles in maintaining bone mass through immune modulation, metabolite production, and nutrient resorption. Recent observations have underscored that extracellular vesicles (EVs) derived from oral and gut microbiota may circulate to the brain and bone marrow, suggesting their integral roles in the gut–brain–bone axis and oral–brain–bone axis. This review outlines the current research status of bacterial extracellular vesicles (BEVs), including their biogenesis, classification, structural features, and cargo composition, with emphasis on factors influencing cargo heterogeneity and the consequences of cellular uptake and presentation. Oral-microbiota-derived BEVs and their cargo associated with bone health are highlighted, along with recent evidence linking BEVs to systemic dis-eases and the potential integration into the oral–gut–bone axis. Preclinical animal studies on BEV dosage, routes of administration, and disease models are summarized, together with the limitations of current approaches and strategies for engineering BEVs. Finally, an overview of translational applications and future therapeutic prospects is provided, aiming to advance the understanding of BEVs as innovative tools for the treatment and prevention of bone-related diseases. Full article
(This article belongs to the Section Molecular Microbiology and Immunology)
Show Figures

Figure 1

19 pages, 3459 KB  
Article
Influence of Sealing Surface Microstructure Characteristics on Flow Resistance and Leakage Between Contact Surfaces
by Przemysław Jaszak, Anna Piwowar and Marcin Bieganowski
Materials 2025, 18(19), 4474; https://doi.org/10.3390/ma18194474 - 25 Sep 2025
Abstract
This paper presents the results of preliminary numerical and experimental studies concerning the sealing performance of static seals (gaskets) with geometrically designed sealing surface microstructures. The concept of the microstructure, inspired by the operating principle of Tesla’s one-way valve, relies on the generation [...] Read more.
This paper presents the results of preliminary numerical and experimental studies concerning the sealing performance of static seals (gaskets) with geometrically designed sealing surface microstructures. The concept of the microstructure, inspired by the operating principle of Tesla’s one-way valve, relies on the generation of localized flow circulation within the microchannels formed between the contact surfaces, which increases flow resistance and reduces leakage. CFD simulations were performed to assess the influence of the geometric parameters of the microstructure on the leakage rate. The numerical calculations demonstrated that introducing microstructures into the gap formed between the contact interfaces can significantly reduce leakage, with the most critical geometric parameters being the gap width between the microprotrusions, their packing density, and their height. Experimental studies confirmed the higher sealing performance of structured gaskets compared to quasi-smooth gaskets, particularly at lower contact pressures. An analysis of the effective contact surface revealed that the improvement in tightness is a result of both the local intensification of the contact pressure and the flow effects induced by the microprotrusions. The results obtained confirm that an appropriately designed surface microstructure can substantially enhance the sealing performance of flange-bolted joints, even under relatively low clamping loads. Full article
(This article belongs to the Section Materials Simulation and Design)
Show Figures

Figure 1

20 pages, 2930 KB  
Article
Global Mobility Networks of Smart City Researchers: Spatiotemporal and Multi-Scale Perspectives, 2000–2020
by Ying Na and Xintao Liu
Smart Cities 2025, 8(5), 159; https://doi.org/10.3390/smartcities8050159 - 25 Sep 2025
Abstract
This study examines the global mobility of researchers in the smart city domain from 2000 to 2020, using inter-country and intercity affiliation data from the Web of Science. Employing network analysis and spatial econometric models, the paper maps the structural reconfiguration of scientific [...] Read more.
This study examines the global mobility of researchers in the smart city domain from 2000 to 2020, using inter-country and intercity affiliation data from the Web of Science. Employing network analysis and spatial econometric models, the paper maps the structural reconfiguration of scientific labor circulation. The results show that the international mobility network is dense yet asymmetric, dominated by a small set of high-frequency corridors such as China–United States, which intensified markedly over the two decades. While early networks were fragmented and polycentric, the later period reveals a multipolar configuration with significant growth in South–South and intra-European exchanges. At the city level, Beijing, Shanghai, Wuhan, and Nanjing emerged as central nodes, reflecting the consolidation of East Asian hubs within the global knowledge system. Mesoscale community detection highlights the coexistence of territorially embedded ecosystems and transregional corridors sustained by thematic and reputational affinities. Growth decomposition indicates that high-income countries benefit from both talent retention and international inflows, while upper-middle-income countries rely heavily on inbound mobility. Spatial regression and quantile models confirm that economic growth and baseline scientific visibility remain robust drivers of urban smart city performance. In contrast, mobility effects are context-dependent and heterogeneous across city positions. Together, these findings demonstrate that researcher mobility is not only a vector of knowledge exchange but also a mechanism that reinforces spatial hierarchies and reshapes the geography of global smart city innovation. Full article
Show Figures

Figure 1

22 pages, 2710 KB  
Article
Divergent Hepatic Outcomes of Chronic Ketone Supplementation: Ketone Salts Preserve Liver Health While Ketone Esters and Precursors Drive Inflammation and Steatosis
by Csilla Ari and Dominic P. D’Agostino
Pharmaceuticals 2025, 18(10), 1436; https://doi.org/10.3390/ph18101436 - 25 Sep 2025
Abstract
Background/Objectives: Exogenous ketone supplements elevate circulating ketones without carbohydrate restriction, but their long-term hepatic safety remains unclear. This study evaluated the formulation-dependent impact of chronic ketone supplementation on liver histopathology, inflammatory signaling, and systemic biomarkers in rats. Methods: Male Sprague-Dawley rats were orally [...] Read more.
Background/Objectives: Exogenous ketone supplements elevate circulating ketones without carbohydrate restriction, but their long-term hepatic safety remains unclear. This study evaluated the formulation-dependent impact of chronic ketone supplementation on liver histopathology, inflammatory signaling, and systemic biomarkers in rats. Methods: Male Sprague-Dawley rats were orally administered 1,3-butanediol (BD), medium-chain triglycerides (MCTs), ketone ester (KE), ketone electrolytes/salts (KSs), or a ketone salt–MCT combination (KSMCT) for 4 weeks. In a separate arm, animals received standard diet (SD), or SD supplemented with low-dose KE (LKE) or high-dose KE (HKE), for 83 days. Liver structure was assessed by hematoxylin and eosin staining with quantification of red blood cell density and lipid accumulation. Inflammatory and metabolic responses were evaluated by TNF-α and arginase immunohistochemistry. Serum biochemistry included glucose, proteins, electrolytes, and liver and kidney function markers. Results: BD and KE induced macrovesicular steatosis, vascular congestion, and elevated TNF-α and arginase expression, consistent with hepatic stress. MCT caused moderate hepatocellular ballooning and lipid deposition, whereas KS preserved near-normal hepatic morphology. KSMCT produced intermediate effects, reducing lipid accumulation and TNF-α compared with MCT or KE alone. KE supplementation caused dose-dependent reductions in globulin and elevations in creatinine, while HKE reduced sodium and glucose levels. Conclusions: Chronic hepatic responses to exogenous ketones are highly formulation dependent. KS demonstrated the most favorable safety profile under the tested conditions, maintaining normal hepatic structure, while BD and KE elicited adverse changes. Formulation choice is critical for the safe long-term use of exogenous ketones. Full article
(This article belongs to the Section Pharmacology)
Show Figures

Graphical abstract

22 pages, 4713 KB  
Article
Genetic Variation Analysis and Research on Biological Characteristics of Duck Hepatitis Virus Type 3: A Comparison Between Historical Strains in Yunnan and Recent Epidemic Strains
by Sixian Lan, Aiguo Xin, Ke Li, Zhengju Yuan, Rong Zhao, Zhishun Chang, Wengui Li and Hongya Yan
Vet. Sci. 2025, 12(10), 923; https://doi.org/10.3390/vetsci12100923 - 23 Sep 2025
Viewed by 100
Abstract
Duck viral hepatitis, caused by Duck Hepatitis A Virus Type 3 (DHAV-3), remains a major threat to young ducklings. Although DHAV-3 has circulated in China since the 1999s, the complete genomic architecture, exact virulence parameters, and evolutionary distance between early Yunnan isolates and [...] Read more.
Duck viral hepatitis, caused by Duck Hepatitis A Virus Type 3 (DHAV-3), remains a major threat to young ducklings. Although DHAV-3 has circulated in China since the 1999s, the complete genomic architecture, exact virulence parameters, and evolutionary distance between early Yunnan isolates and current field strains have remained undefined. This study investigated six DHAV-3 strains isolated in Yunnan Province, China, between 2004 and 2006, to elucidate their genetic and biological characteristics. Full-genome sequencing and phylogenetic analysis revealed >99.5% nucleotide and >99.6% amino acid identity among the strains, suggesting a common ancestral origin. In vivo challenge assays showed rapid onset of clinical signs and >90% mortality in ducklings within 36 h post-inoculation. Embryonic deaths began at 24 h post-infection and peaked by 90 h. Viral replication was efficient in DEF, DEK, Vero, and BHK-21 cells, but absent in chicken fibroblasts (DF-1). Comparative genomic analysis between the YN/LR/2005 strain and recent field isolates (2022–2024) revealed substantial nucleotide divergence in structural regions, with 32 unique amino acid substitutions—all five located in the immunodominant VP1 region that may influence viral antigenicity and host interaction—alongside changes in N-glycosylation sites and alterations in protein secondary structure. Histopathological examination confirmed characteristic hepatic lesions. These findings demonstrate that while DHAV-3 has undergone genetic evolution, it retains high virulence, underscoring the need for ongoing molecular surveillance and supporting future vaccine and diagnostic development. Full article
Show Figures

Figure 1

20 pages, 458 KB  
Review
The Role of OCTA and Microperimetry in Revealing Retinal and Choroidal Perfusion and Functional Changes Following Silicone Oil Tamponade in Rhegmatogenous Retinal Detachment: A Narrative Review
by Dan-Grigore Dunca and Simona-Delia Nicoară
Diagnostics 2025, 15(19), 2422; https://doi.org/10.3390/diagnostics15192422 - 23 Sep 2025
Viewed by 109
Abstract
Background: Rhegmatogenous retinal detachment (RRD), the most common type of retinal detachment, requires prompt surgery to reattach the retina and avoid permanent vision loss. While surgical treatment is adapted to each individual case, one frequent option is pars plana vitrectomy (PPV) with [...] Read more.
Background: Rhegmatogenous retinal detachment (RRD), the most common type of retinal detachment, requires prompt surgery to reattach the retina and avoid permanent vision loss. While surgical treatment is adapted to each individual case, one frequent option is pars plana vitrectomy (PPV) with silicone oil (SO) tamponade. Despite achieving anatomical success (complete retinal attachment), concerns persist regarding potential microvascular alterations in the retina and choroid, with a negative impact on visual function. Optical coherence tomography angiography (OCTA) allows detailed, in-depth imaging of retinal and choroidal circulation, whereas microperimetry makes it possible to accurately assess macular function. This review aims to strengthen the existing evidence on vascular and functional alterations at the macular level after SO tamponade in cases of RRD. Methods: A narrative review was conducted using a structured approach, utilizing a PubMed search from January 2000 up to April 2025. Twenty-three studies on OCTA and microperimetry after SO tamponade for RRD were included. Data on vessel densities, choroidal vascular index (CVI), foveal avascular zone (FAZ) size, and retinal sensitivity were extracted and qualitatively analyzed. Results: Studies consistently reported a reduction in the vessel density within the superficial capillary plexus (SCP) under SO tamponade, with partial but incomplete reperfusion post-removal. Choroidal perfusion and CVI were also decreased, exhibiting a negative correlation with the duration of SO tamponade. Microperimetry demonstrated significant reductions in retinal sensitivity (~5–10 dB) during SO tamponade, which modestly improved (~1–2 dB) following removal but generally remaining below normal levels. Conclusions: SO tamponade causes substantial retinal and choroidal vascular impairment and measurable macular dysfunction, even after anatomical reattachment of the retina. It is recommended to perform early SO removal (~3–4 months) and implement routine monitoring by OCTA and microperimetry with the aim of optimizing patient outcomes. Future research should focus on investigating protective strategies and enhancing visual rehabilitation following RRD repair. Full article
(This article belongs to the Special Issue Diagnosis, Treatment and Management of Eye Diseases, Third Edition)
Show Figures

Figure 1

21 pages, 2359 KB  
Article
TDMQ20 as A Drug Candidate for Wilson’s Disease: Comparison with D-Penicillamine, Trientine, and Tetrathiomolybdate In Vitro and In Mice
by Yingshan Zhu, Weiling Peng, Guangwei Liu, Longxin Li, Zikang Zhou, Michel Nguyen, Anne Robert, Yan Liu and Bernard Meunier
Pharmaceutics 2025, 17(9), 1237; https://doi.org/10.3390/pharmaceutics17091237 - 22 Sep 2025
Viewed by 228
Abstract
Background/Objectives: The lifelong treatment of Wilson’s disease (WD) currently relies on copper chelators with relatively poor metal specificity, which frequently exhibit serious adverse effects. There is a real medical need for a specific copper chelator to regulate the copper excess efficiently, at [...] Read more.
Background/Objectives: The lifelong treatment of Wilson’s disease (WD) currently relies on copper chelators with relatively poor metal specificity, which frequently exhibit serious adverse effects. There is a real medical need for a specific copper chelator to regulate the copper excess efficiently, at lower doses than those used for penicillamine (DPA) or trientine (TETA), and with lower toxicity in long-term treatments. Methods: The efficiency of the specific Cu(II) chelator named TDMQ20 was evaluated by oral treatment of TX mice, used as a WD model, and compared with those of DPA, TETA, and also tetrathiomolybdate (bcTTM). We documented TDMQ20′s ability to (i) decrease the hepatic copper load, (ii) increase the amount and ferroxidase activity of ceruloplasmin (CP), and (iii) regulate liver proteins that are impaired in WD mice. Results: Compared to the other copper chelators, TDMQ20 was the only one that efficiently mediated excretion of Cu and restoration of active ceruloplasmin levels at doses 8 times lower than DPA. Such efficacy is related to the design of this chelator, which specifically coordinates Cu(II) as a discrete and soluble complex. Conversely, DPA, TETA, and bcTTM give rise to various complexes with copper ions, often with oligomeric or cluster structures that can be retained in blood circulation or sequestered by proteins. Conclusions: Taking into consideration all the advantages of TDMQ20 compared to other ligands, including its lack of toxicity during long-term administration in mice, the drug candidate TDMQ20 appears to be a first-class challenger to the currently used treatments, i.e., DPA, TETA, and bcTTM. Full article
(This article belongs to the Section Drug Targeting and Design)
Show Figures

Figure 1

14 pages, 2652 KB  
Article
Design and Study of a New Rotary Jet Wellbore Washing Device
by Shupei Li, Zhongrui Ji, Qi Feng, Shuangchun Yang and Xiuli Sun
Processes 2025, 13(9), 3015; https://doi.org/10.3390/pr13093015 - 21 Sep 2025
Viewed by 151
Abstract
Wellbore washing technology is a basic operation in wellbore maintenance. Problems such as low automation levels, long processing times, the fact that it is easy to cause downhole falling, and cleaning blind areas greatly affect the use and maintenance of traditional cleaning equipment. [...] Read more.
Wellbore washing technology is a basic operation in wellbore maintenance. Problems such as low automation levels, long processing times, the fact that it is easy to cause downhole falling, and cleaning blind areas greatly affect the use and maintenance of traditional cleaning equipment. These problems usually come from design defects such as a complicated installation process, a lack of an anti-impact structure, and a fixed jet direction. To address the aforementioned issues, this paper proposes an efficient and integrated rapid-disassembly and -assembly automatic filtration rotary jet cleaning device. The device is divided into two main units and further subdivided into four modules. The quick-assembly unit comprises an elastic connection module and a downstroke quick-assembly module, which can automatically compensate for deviations in equipment position during the installation process, ensuring the reliability of the installation process and the sealing of the equipment and facilitating the rapid connection and separation of the tool string. The wellbore cleaning unit includes a hydraulic rotary washing module and a rotary filtration storage module. The wellbore is jet-flushed by hydraulic drive, and the solid particles are separated and filtered during the cleaning fluid circulation process to realize the purification and reuse of the cleaning fluid. The device reduces the installation operation time and labor cost, improves the reliability of equipment in the well, improves the flushing coverage area and the cleaning efficiency, realizes the reuse of the cleaning liquid in the wellbore, reduces the energy consumption of the flowback treatment, and comprehensively improves the cleaning efficiency and the energy utilization efficiency. Full article
(This article belongs to the Section Manufacturing Processes and Systems)
Show Figures

Figure 1

Back to TopTop