Sign in to use this feature.

Years

Between: -

Subjects

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Journals

Article Types

Countries / Regions

Search Results (15)

Search Parameters:
Keywords = class halobacteria

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
12 pages, 2325 KB  
Brief Report
Genome-Based Reclassification of Two Haloarcula Species and Characterization of Haloarcula montana sp. nov.
by Ji-Qiang Liu, Ling-Rui Zhu, Ya-Ling Mao, Xue Ma and Jing Hou
Biology 2025, 14(6), 615; https://doi.org/10.3390/biology14060615 - 27 May 2025
Viewed by 597
Abstract
The genus Haloarcula is one of the most extensively studied genera within the class Halobacteria. In this study, analyses of average nucleotide identity (ANI), average amino acid identity (AAI), digital DNA–DNA hybridization (dDDH) values, and phylogenomic data indicated that “Haloarcula californiae [...] Read more.
The genus Haloarcula is one of the most extensively studied genera within the class Halobacteria. In this study, analyses of average nucleotide identity (ANI), average amino acid identity (AAI), digital DNA–DNA hybridization (dDDH) values, and phylogenomic data indicated that “Haloarcula californiae” ATCC 33799 and “Haloarcula sinaiiensis” ATCC 33800 served as reference strains for Haloarcula marismortui. Furthermore, a halophilic archaeal strain, GH36T, isolated from the inland Gahai Salt Lake in China, was subjected to comprehensive polyphasic taxonomic characterization. The ANI, AAI, and dDDH comparisons between strain GH36T and other Haloarcula species were below the established thresholds for species demarcation. Strain GH36T was assigned to a novel species within the genus Haloarcula based on phylogenetic, phylogenomic, and comparative genomic analyses. Moreover, distinct phenotypic differences were observed in strain GH36T. In strain GH36T, the primary phospholipids detected were phosphatidylglycerol (PG), phosphatidylglycerol phosphate methyl ester (PGP-Me), and phosphatidylglycerol sulfate (PGS), whereas the principal glycolipids were sulfated mannosyl glucosyl diether (S-DGD-1) and mannosyl glucosyl diether (DGD-1). Accordingly, the novel species Haloarcula montana sp. nov. is proposed to accommodate strain GH36T (=CGMCC 1.62631T = MCCC 4K00122T). Full article
(This article belongs to the Section Microbiology)
Show Figures

Figure 1

16 pages, 3753 KB  
Article
Microbial Biodiversity in Sediment from the Amuyo Ponds: Three Andean Hydrothermal Lagoons in Northern Chile
by Claudia Vilo, Francisca Fábrega, Víctor L. Campos and Benito Gómez-Silva
Microorganisms 2024, 12(11), 2238; https://doi.org/10.3390/microorganisms12112238 - 5 Nov 2024
Viewed by 1705
Abstract
The Amuyo Ponds (APs) are a group of three brackish hydrothermal lagoons located at 3700 m above sea level in a pre-Andean setting in the Atacama Desert. Each pond shows a conspicuous green (GP), red (RP), or yellow (YP) coloration, and discharges water [...] Read more.
The Amuyo Ponds (APs) are a group of three brackish hydrothermal lagoons located at 3700 m above sea level in a pre-Andean setting in the Atacama Desert. Each pond shows a conspicuous green (GP), red (RP), or yellow (YP) coloration, and discharges water rich in arsenic and boron into the Caritaya River (Camarones Basin, northern Chile). Microorganisms are subjected to harsh environmental conditions in these ponds, and the microbial composition and diversity in the Amuyo Ponds’ sediments are unknown. The microbial life colonizing AP sediments was explored by metagenomics analyses, showing a diverse microbial life dominated by members of the bacterial domain, with nearly 800 bacterial genome sequences, and sequences associated with Archaea, Eukarya, and viruses. The genus Pseudomonas was more abundant in GP and YP sediments, while the genera Pseudomonas, Aeromonas, and Shewanella were enriched in RP sediments. Archaeal composition was similar in all sediments, and enriched with methanogens sequences from the Archaeoglobi and Halobacteria classes. Abundant fungi sequences were detected in all sediments from the phyla Blastocladiomycota and Ascomycota. We also report putative functional capabilities related to virulence and defense genes, the biosynthesis of secondary metabolites, and tolerance to arsenic. Thirteen bacterial and fourteen viral metagenome-assembled genomes were reconstructed and informed here. This work expands our knowledge on the richness of the microorganisms in the APs and open further studies on the ecology and genomics of this striking Andean geosite. Full article
(This article belongs to the Special Issue Microbial Life and Ecology in Extreme Environments)
Show Figures

Figure 1

17 pages, 9569 KB  
Article
Comprehensive Bioinformatics Analysis of the Biodiversity of Lsm Proteins in the Archaea Domain
by Gloria Payá, Vanesa Bautista, Mónica Camacho, Julia Esclapez and María-José Bonete
Microorganisms 2023, 11(5), 1196; https://doi.org/10.3390/microorganisms11051196 - 3 May 2023
Cited by 4 | Viewed by 2651
Abstract
The Sm protein superfamily includes Sm, like-Sm (Lsm), and Hfq proteins. Sm and Lsm proteins are found in the Eukarya and Archaea domains, respectively, while Hfq proteins exist in the Bacteria domain. Even though Sm and Hfq proteins have been extensively studied, archaeal [...] Read more.
The Sm protein superfamily includes Sm, like-Sm (Lsm), and Hfq proteins. Sm and Lsm proteins are found in the Eukarya and Archaea domains, respectively, while Hfq proteins exist in the Bacteria domain. Even though Sm and Hfq proteins have been extensively studied, archaeal Lsm proteins still require further exploration. In this work, different bioinformatics tools are used to understand the diversity and distribution of 168 Lsm proteins in 109 archaeal species to increase the global understanding of these proteins. All 109 archaeal species analyzed encode one to three Lsm proteins in their genome. Lsm proteins can be classified into two groups based on molecular weight. Regarding the gene environment of lsm genes, many of these genes are located adjacent to transcriptional regulators of the Lrp/AsnC and MarR families, RNA-binding proteins, and ribosomal protein L37e. Notably, only proteins from species of the class Halobacteria conserved the internal and external residues of the RNA-binding site identified in Pyrococcus abyssi, despite belonging to different taxonomic orders. In most species, the Lsm genes show associations with 11 genes: rpl7ae, rpl37e, fusA, flpA, purF, rrp4, rrp41, hel308, rpoD, rpoH, and rpoN. We propose that most archaeal Lsm proteins are related to the RNA metabolism, and the larger Lsm proteins could perform different functions and/or act through other mechanisms of action. Full article
(This article belongs to the Special Issue New Insights into the Diversity and Characterization of Extremophiles)
Show Figures

Figure 1

14 pages, 4794 KB  
Article
Towards the Understanding of the Function of Lanthipeptide and TOMM-Related Genes in Haloferax mediterranei
by Thales Costa, Elena Cassin, Catarina Moreirinha, Sónia Mendo and Tânia Sousa Caetano
Biology 2023, 12(2), 236; https://doi.org/10.3390/biology12020236 - 2 Feb 2023
Cited by 2 | Viewed by 2440
Abstract
Research on secondary metabolites produced by Archaea such as ribosomally synthesized and post-translationally modified peptides (RiPPs) is limited. The genome of Haloferax mediterranei ATCC 33500 encodes lanthipeptide synthetases (medM1, medM2, and medM3) and a thiazole-forming cyclodehydratase (ycaO), [...] Read more.
Research on secondary metabolites produced by Archaea such as ribosomally synthesized and post-translationally modified peptides (RiPPs) is limited. The genome of Haloferax mediterranei ATCC 33500 encodes lanthipeptide synthetases (medM1, medM2, and medM3) and a thiazole-forming cyclodehydratase (ycaO), possibly involved in the biosynthesis of lanthipeptides and the TOMMs haloazolisins, respectively. Lanthipeptides and TOMMs often have antimicrobial activity, and H. mediterranei has antagonistic activity towards haloarchaea shown to be independent of medM genes. This study investigated (i) the transcription of ycaO and medM genes, (ii) the involvement of YcaO in bioactivity, and (iii) the impact of YcaO and MedM-encoding genes’ absence in the biomolecular profile of H. mediterranei. The assays were performed with biomass grown in agar and included RT-qPCR, the generation of knockout mutants, bioassays, and FTIR analysis. Results suggest that ycaO and medM genes are transcriptionally active, with the highest number of transcripts observed for medM2. The deletion of ycaO gene had no effect on H. mediterranei antihaloarchaea activity. FTIR analysis of medM and ycaO knockout mutants suggest that MedMs and YcaO activity might be directly or indirectly related t lipids, a novel perspective that deserves further investigation. Full article
Show Figures

Graphical abstract

20 pages, 4592 KB  
Article
Diversity and Potential Multifunctionality of Archaeal CetZ Tubulin-like Cytoskeletal Proteins
by Hannah J. Brown and Iain G. Duggin
Biomolecules 2023, 13(1), 134; https://doi.org/10.3390/biom13010134 - 9 Jan 2023
Cited by 7 | Viewed by 3209
Abstract
Tubulin superfamily (TSF) proteins are widespread, and are known for their multifaceted roles as cytoskeletal proteins underpinning many basic cellular functions, including morphogenesis, division, and motility. In eukaryotes, tubulin assembles into microtubules, a major component of the dynamic cytoskeletal network of fibres, whereas [...] Read more.
Tubulin superfamily (TSF) proteins are widespread, and are known for their multifaceted roles as cytoskeletal proteins underpinning many basic cellular functions, including morphogenesis, division, and motility. In eukaryotes, tubulin assembles into microtubules, a major component of the dynamic cytoskeletal network of fibres, whereas the bacterial homolog FtsZ assembles the division ring at midcell. The functions of the lesser-known archaeal TSF proteins are beginning to be identified and show surprising diversity, including homologs of tubulin and FtsZ as well as a third archaea-specific family, CetZ, implicated in the regulation of cell shape and possibly other unknown functions. In this study, we define sequence and structural characteristics of the CetZ family and CetZ1 and CetZ2 subfamilies, identify CetZ groups and diversity amongst archaea, and identify potential functional relationships through analysis of the genomic neighbourhoods of cetZ genes. We identified at least three subfamilies of orthologous CetZ proteins in the archaeal class Halobacteria, including CetZ1 and CetZ2 as well as a novel uncharacterized subfamily. CetZ1 and CetZ2 were correlated to one another as well as to cell shape and motility phenotypes across diverse Halobacteria. Among other known CetZ clusters in orders Archaeoglobales, Methanomicrobiales, Methanosarcinales, and Thermococcales, an additional uncharacterized group from Archaeoglobales and Methanomicrobiales is affiliated strongly with Halobacteria CetZs, suggesting that they originated via horizontal transfer. Subgroups of Halobacteria CetZ2 and Thermococcales CetZ genes were found adjacent to different type IV pili regulons, suggesting potential utilization of CetZs by type IV systems. More broadly conserved cetZ gene neighbourhoods include nucleotide and cofactor biosynthesis (e.g., F420) and predicted cell surface sugar epimerase genes. These findings imply that CetZ subfamilies are involved in multiple functions linked to the cell surface, biosynthesis, and motility. Full article
(This article belongs to the Collection Archaea: Diversity, Metabolism and Molecular Biology)
Show Figures

Figure 1

14 pages, 2040 KB  
Article
Distribution of Denitrification among Haloarchaea: A Comprehensive Study
by Jose María Miralles-Robledillo, Eric Bernabeu, Micaela Giani, Elena Martínez-Serna, Rosa María Martínez-Espinosa and Carmen Pire
Microorganisms 2021, 9(8), 1669; https://doi.org/10.3390/microorganisms9081669 - 4 Aug 2021
Cited by 17 | Viewed by 4040
Abstract
Microorganisms from the Halobacteria class, also known as haloarchaea, inhabit a wide range of ecosystems of which the main characteristic is the presence of high salt concentration. These environments together with their microbial communities are not well characterized, but some of the common [...] Read more.
Microorganisms from the Halobacteria class, also known as haloarchaea, inhabit a wide range of ecosystems of which the main characteristic is the presence of high salt concentration. These environments together with their microbial communities are not well characterized, but some of the common features that they share are high sun radiation and low availability of oxygen. To overcome these stressful conditions, and more particularly to deal with oxygen limitation, some microorganisms drive alternative respiratory pathways such as denitrification. In this paper, denitrification in haloarchaea has been studied from a phylogenetic point of view. It has been demonstrated that the presence of denitrification enzymes is a quite common characteristic in Halobacteria class, being nitrite reductase and nitric oxide reductase the enzymes with higher co-occurrence, maybe due to their possible role not only in denitrification, but also in detoxification. Moreover, copper-nitrite reductase (NirK) is the only class of respiratory nitrite reductase detected in these microorganisms up to date. The distribution of this alternative respiratory pathway and their enzymes among the families of haloarchaea has also been discussed and related with the environment in which they constitute the major populations. Complete denitrification phenotype is more common in some families like Haloarculaceae and Haloferacaceae, whilst less common in families such as Natrialbaceae and Halorubraceae. Full article
(This article belongs to the Section Environmental Microbiology)
Show Figures

Figure 1

43 pages, 1738 KB  
Article
Open Issues for Protein Function Assignment in Haloferax volcanii and Other Halophilic Archaea
by Friedhelm Pfeiffer and Mike Dyall-Smith
Genes 2021, 12(7), 963; https://doi.org/10.3390/genes12070963 - 24 Jun 2021
Cited by 5 | Viewed by 4160
Abstract
Background: Annotation ambiguities and annotation errors are a general challenge in genomics. While a reliable protein function assignment can be obtained by experimental characterization, this is expensive and time-consuming, and the number of such Gold Standard Proteins (GSP) with experimental support remains very [...] Read more.
Background: Annotation ambiguities and annotation errors are a general challenge in genomics. While a reliable protein function assignment can be obtained by experimental characterization, this is expensive and time-consuming, and the number of such Gold Standard Proteins (GSP) with experimental support remains very low compared to proteins annotated by sequence homology, usually through automated pipelines. Even a GSP may give a misleading assignment when used as a reference: the homolog may be close enough to support isofunctionality, but the substrate of the GSP is absent from the species being annotated. In such cases, the enzymes cannot be isofunctional. Here, we examined a variety of such issues in halophilic archaea (class Halobacteria), with a strong focus on the model haloarchaeon Haloferax volcanii. Results: Annotated proteins of Hfx. volcanii were identified for which public databases tend to assign a function that is probably incorrect. In some cases, an alternative, probably correct, function can be predicted or inferred from the available evidence, but this has not been adopted by public databases because experimental validation is lacking. In other cases, a probably invalid specific function is predicted by homology, and while there is evidence that this assigned function is unlikely, the true function remains elusive. We listed 50 of those cases, each with detailed background information, so that a conclusion about the most likely biological function can be drawn. For reasons of brevity and comprehension, only the key aspects are listed in the main text, with detailed information being provided in a corresponding section of the Supplementary Materials. Conclusions: Compiling, describing and summarizing these open annotation issues and functional predictions will benefit the scientific community in the general effort to improve the evaluation of protein function assignments and more thoroughly detail them. By highlighting the gaps and likely annotation errors currently in the databases, we hope this study will provide a framework for experimentalists to systematically confirm (or disprove) our function predictions or to uncover yet more unexpected functions. Full article
(This article belongs to the Special Issue Molecular Biology of Extremophiles)
Show Figures

Figure 1

25 pages, 2714 KB  
Article
Assessment of 16S rRNA Gene-Based Phylogenetic Diversity of Archaeal Communities in Halite-Crystal Salts Processed from Natural Saharan Saline Systems of Southern Tunisia
by Afef Najjari, Panagiota Stathopoulou, Khaled Elmnasri, Faten Hasnaoui, Ines Zidi, Haitham Sghaier, Hadda Imene Ouzari, Ameur Cherif and George Tsiamis
Biology 2021, 10(5), 397; https://doi.org/10.3390/biology10050397 - 4 May 2021
Cited by 13 | Viewed by 3971
Abstract
A thorough assessment of the phylogenetic diversity and community structure of halophilic archaea from three halite-crystal salts, processed from two separated saline systems of Southern Tunisia has been performed using culture dependent and independent methods targeting different regions of 16S rRNA gene sequences [...] Read more.
A thorough assessment of the phylogenetic diversity and community structure of halophilic archaea from three halite-crystal salts, processed from two separated saline systems of Southern Tunisia has been performed using culture dependent and independent methods targeting different regions of 16S rRNA gene sequences including DGGE, 16S rRNA clone libraries and Illumina Miseq sequencing. Two samples, CDR (red halite-crystal salts) and CDW (white halite-crystal salts), were collected from Chott-Eljerid and one sample CDZ (white halite-crystal salts) from Chott Douz. Fourteen isolates were identified as Halorubrum, Haloferax, Haloarcula, and Halogeometricum genera members. Culture-independent approach revealed a high diversity of archaeal members present in all samples, represented by the Euryarchaeal phylum and the dominance of the Halobacteria class. Nanohaloarchaea were also identified only in white halite samples based on metagenomic analysis. In fact, a total of 61 genera were identified with members of the Halorhabdus, Halonotius, Halorubrum, Haloarcula, and unclassified. Halobacteriaceae were shared among all samples. Unexpected diversity profiles between samples was observed where the red halite crust sample was considered as the most diverse one. The highest diversity was observed with Miseq approach, nevertheless, some genera were detected only with 16S rRNA clone libraries and cultured approaches. Full article
(This article belongs to the Special Issue Extremophilic Archaea)
Show Figures

Figure 1

20 pages, 4125 KB  
Review
Phylogenetic Diversity of Archaea in Shallow Hydrothermal Vents of Eolian Islands, Italy
by Concetta Gugliandolo and Teresa L. Maugeri
Diversity 2019, 11(9), 156; https://doi.org/10.3390/d11090156 - 5 Sep 2019
Cited by 27 | Viewed by 5912
Abstract
Shallow hydrothermal systems (SHS) around the Eolian Islands (Italy), related to both active and extinct volcanism, are characterized by high temperatures, high concentrations of CO2 and H2S, and low pH, prohibitive for the majority of eukaryotes which are less tolerant [...] Read more.
Shallow hydrothermal systems (SHS) around the Eolian Islands (Italy), related to both active and extinct volcanism, are characterized by high temperatures, high concentrations of CO2 and H2S, and low pH, prohibitive for the majority of eukaryotes which are less tolerant to the extreme conditions than prokaryotes. Archaea and bacteria are the key elements for the functioning of these ecosystems, as they are involved in the transformation of inorganic compounds released from the vent emissions and are at the basis of the hydrothermal system food web. New extremophilic archaea (thermophilic, hyperthermophilic, acidophilic, alkalophilic, etc.) have been isolated from vents of Vulcano Island, exhibiting interesting features potentially valuable in biotechnology. Metagenomic analyses, which mainly involved molecular studies of the 16S rRNA gene, provided different insights into microbial composition associated with Eolian SHS. Archaeal community composition at Eolian vent sites results greatly affected by the geochemistry of the studied vents, principally by hypersaline conditions and declining temperatures. Archaeal community in sediments was mostly composed by hyperthermophilic members of Crenarchaeota (class Thermoprotei) and Euryarchaeota (Thermococci and Methanococci) at the highest temperature condition. Mesophilic Euryarchaeota (Halobacteria, Methanomicrobia, and Methanobacteria) increased with decreasing temperatures. Eolian SHS harbor a high diversity of largely unknown archaea, and the studied vents may be an important source of new isolates potentially useful for biotechnological purposes. Full article
Show Figures

Figure 1

19 pages, 2988 KB  
Article
The Patchy Distribution of Restriction–Modification System Genes and the Conservation of Orphan Methyltransferases in Halobacteria
by Matthew S. Fullmer, Matthew Ouellette, Artemis S. Louyakis, R. Thane Papke and Johann Peter Gogarten
Genes 2019, 10(3), 233; https://doi.org/10.3390/genes10030233 - 19 Mar 2019
Cited by 30 | Viewed by 8507
Abstract
Restriction–modification (RM) systems in bacteria are implicated in multiple biological roles ranging from defense against parasitic genetic elements, to selfish addiction cassettes, and barriers to gene transfer and lineage homogenization. In bacteria, DNA-methylation without cognate restriction also plays important roles in DNA replication, [...] Read more.
Restriction–modification (RM) systems in bacteria are implicated in multiple biological roles ranging from defense against parasitic genetic elements, to selfish addiction cassettes, and barriers to gene transfer and lineage homogenization. In bacteria, DNA-methylation without cognate restriction also plays important roles in DNA replication, mismatch repair, protein expression, and in biasing DNA uptake. Little is known about archaeal RM systems and DNA methylation. To elucidate further understanding for the role of RM systems and DNA methylation in Archaea, we undertook a survey of the presence of RM system genes and related genes, including orphan DNA methylases, in the halophilic archaeal class Halobacteria. Our results reveal that some orphan DNA methyltransferase genes were highly conserved among lineages indicating an important functional constraint, whereas RM systems demonstrated patchy patterns of presence and absence. This irregular distribution is due to frequent horizontal gene transfer and gene loss, a finding suggesting that the evolution and life cycle of RM systems may be best described as that of a selfish genetic element. A putative target motif (CTAG) of one of the orphan methylases was underrepresented in all of the analyzed genomes, whereas another motif (GATC) was overrepresented in most of the haloarchaeal genomes, particularly in those that encoded the cognate orphan methylase. Full article
(This article belongs to the Special Issue Genetics of Halophilic Microorganisms)
Show Figures

Figure 1

18 pages, 1577 KB  
Article
Proteomic Analysis of Methanonatronarchaeum thermophilum AMET1, a Representative of a Putative New Class of Euryarchaeota, “Methanonatronarchaeia”
by Manuel Ferrer, Dimitry Y. Sorokin, Yuri I. Wolf, Sergio Ciordia, María C. Mena, Rafael Bargiela, Eugene V. Koonin and Kira S. Makarova
Genes 2018, 9(2), 28; https://doi.org/10.3390/genes9020028 - 23 Jan 2018
Cited by 5 | Viewed by 5495
Abstract
The recently discovered Methanonatronarchaeia are extremely halophilic and moderately thermophilic methyl-reducing methanogens representing a novel class-level lineage in the phylum Euryarchaeota related to the class Halobacteria. Here we present a detailed analysis of 1D-nano liquid chromatography–electrospray ionization tandem mass spectrometry data obtained for [...] Read more.
The recently discovered Methanonatronarchaeia are extremely halophilic and moderately thermophilic methyl-reducing methanogens representing a novel class-level lineage in the phylum Euryarchaeota related to the class Halobacteria. Here we present a detailed analysis of 1D-nano liquid chromatography–electrospray ionization tandem mass spectrometry data obtained for “Methanonatronarchaeum thermophilum” AMET1 grown in different physiological conditions, including variation of the growth temperature and substrates. Analysis of these data allows us to refine the current understanding of the key biosynthetic pathways of this triple extremophilic methanogenic euryarchaeon and identify proteins that are likely to be involved in its response to growth condition changes. Full article
(This article belongs to the Special Issue Genetics and Genomics of Extremophiles)
Show Figures

Figure 1

15 pages, 3799 KB  
Article
Cloning and Molecular Characterization of an Alpha-Glucosidase (MalH) from the Halophilic Archaeon Haloquadratum walsbyi
by Mara F. Cuebas-Irizarry, Ricardo A. Irizarry-Caro, Carol López-Morales, Keyla M. Badillo-Rivera, Carlos M. Rodríguez-Minguela and Rafael Montalvo-Rodríguez
Life 2017, 7(4), 46; https://doi.org/10.3390/life7040046 - 21 Nov 2017
Cited by 4 | Viewed by 7425
Abstract
We report the heterologous expression and molecular characterization of the first extremely halophilic alpha-glucosidase (EC 3.2.1.20) from the archaeon Haloquadratum walsbyi. A 2349 bp region (Hqrw_2071) from the Hqr. walsbyi C23 annotated genome was PCR-amplified and the resulting amplicon ligated [...] Read more.
We report the heterologous expression and molecular characterization of the first extremely halophilic alpha-glucosidase (EC 3.2.1.20) from the archaeon Haloquadratum walsbyi. A 2349 bp region (Hqrw_2071) from the Hqr. walsbyi C23 annotated genome was PCR-amplified and the resulting amplicon ligated into plasmid pET28b(+), expressed in E. coli Rosetta cells, and the resulting protein purified by Ni-NTA affinity chromatography. The recombinant protein showed an estimated molecular mass of 87 kDa, consistent with the expected value of the annotated protein, and an optimal activity for the hydrolysis of α-PNPG was detected at 40 °C, and at pH 6.0. Enzyme activity values were the highest in the presence of 3 M NaCl or 3–4 M KCl. However, specific activity values were two-fold higher in the presence of 3–4 M KCl when compared to NaCl suggesting a cytoplasmic localization. Phylogenetic analyses, with respect to other alpha-glucosidases from members of the class Halobacteria, showed that the Hqr. walsbyi MalH was most similar (up to 41%) to alpha-glucosidases and alpha-xylosidases of Halorubrum. Moreover, computational analyses for the detection of functional domains, active and catalytic sites, as well as 3D structural predictions revealed a close relationship with an E. coli YicI-like alpha-xylosidase of the GH31 family. However, the purified enzyme did not show alpha-xylosidase activity. This narrower substrate range indicates a discrepancy with annotations from different databases and the possibility of specific substrate adaptations of halophilic glucosidases due to high salinity. To our knowledge, this is the first report on the characterization of an alpha-glucosidase from the halophilic Archaea, which could serve as a new model to gain insights into carbon metabolism in this understudied microbial group. Full article
Show Figures

Figure 1

19 pages, 4322 KB  
Article
Effect of Sewage and Industrial Effluents on Bacterial and Archaeal Communities of Creek Sediments in the Taihu Basin
by Da Li, Xia Jiang, Jinzhi Wang, Kun Wang and Binghui Zheng
Water 2017, 9(6), 373; https://doi.org/10.3390/w9060373 - 25 May 2017
Cited by 18 | Viewed by 5848
Abstract
Different characteristics of wastewater have different effects on the diversity and abundance of bacteria and archaea in rivers. There are many creeks around Taihu Lake, and they receive a large volume of industrial wastewater and domestic sewage, which is discharged into these creeks, [...] Read more.
Different characteristics of wastewater have different effects on the diversity and abundance of bacteria and archaea in rivers. There are many creeks around Taihu Lake, and they receive a large volume of industrial wastewater and domestic sewage, which is discharged into these creeks, and finally into Taihu Lake. The present study determined Illumina reads (16S rRNA gene amplicons) to analyze the effects of industrial wastewater and domestic sewage on the bacterial and archaeal communities at the different sampling sites along two creeks. The bacterial and archaeal diversity of the creek receiving sewage was higher than that of the creek receiving industrial waste. Proteobacteria dominated the microbial communities of all samples in both creeks. Betaproteobacteria dominated in the sewage creek, and its abundance declined along the creek. Certain pollutant-resistant classes were more abundant at the site near to the pollution source of the industry creek (e.g., Epsilonproteobacteria and Flavobacteria). Halobacteria belonging to the phylum Euryarchaeota was the dominant archaea at all sites in both creeks, while Methanobacteria was more abundant in the industry creek. The bacterial community was more affected by the distance between the sampling site and the pollutant source than the archaeal community, indicating that bacterial diversity and abundance could be a good index to distinguish domestic and industrial pollution, especially when the main pollution sources are difficult to identify. Full article
Show Figures

Figure 1

22 pages, 465 KB  
Review
Horizontal Gene Transfer, Dispersal and Haloarchaeal Speciation
by R. Thane Papke, Paulina Corral, Nikhil Ram-Mohan, Rafael R. de la Haba, Cristina Sánchez-Porro, Andrea Makkay and Antonio Ventosa
Life 2015, 5(2), 1405-1426; https://doi.org/10.3390/life5021405 - 19 May 2015
Cited by 30 | Viewed by 11241
Abstract
The Halobacteria are a well-studied archaeal class and numerous investigations are showing how their diversity is distributed amongst genomes and geographic locations. Evidence indicates that recombination between species continuously facilitates the arrival of new genes, and within species, it is frequent enough to [...] Read more.
The Halobacteria are a well-studied archaeal class and numerous investigations are showing how their diversity is distributed amongst genomes and geographic locations. Evidence indicates that recombination between species continuously facilitates the arrival of new genes, and within species, it is frequent enough to spread acquired genes amongst all individuals in the population. To create permanent independent diversity and generate new species, barriers to recombination are probably required. The data support an interpretation that rates of evolution (e.g., horizontal gene transfer and mutation) are faster at creating geographically localized variation than dispersal and invasion are at homogenizing genetic differences between locations. Therefore, we suggest that recurrent episodes of dispersal followed by variable periods of endemism break the homogenizing forces of intrapopulation recombination and that this process might be the principal stimulus leading to divergence and speciation in Halobacteria. Full article
(This article belongs to the Special Issue Archaea: Evolution, Physiology, and Molecular Biology)
20 pages, 1019 KB  
Article
Phylogeny and Taxonomy of Archaea: A Comparison of the Whole-Genome-Based CVTree Approach with 16S rRNA Sequence Analysis
by Guanghong Zuo, Zhao Xu and Bailin Hao
Life 2015, 5(1), 949-968; https://doi.org/10.3390/life5010949 - 17 Mar 2015
Cited by 22 | Viewed by 12145
Abstract
A tripartite comparison of Archaea phylogeny and taxonomy at and above the rank order is reported: (1) the whole-genome-based and alignment-free CVTree using 179 genomes; (2) the 16S rRNA analysis exemplified by the All-Species Living Tree with 366 archaeal sequences; and (3) the [...] Read more.
A tripartite comparison of Archaea phylogeny and taxonomy at and above the rank order is reported: (1) the whole-genome-based and alignment-free CVTree using 179 genomes; (2) the 16S rRNA analysis exemplified by the All-Species Living Tree with 366 archaeal sequences; and (3) the Second Edition of Bergey’s Manual of Systematic Bacteriology complemented by some current literature. A high degree of agreement is reached at these ranks. From the newly proposed archaeal phyla, Korarchaeota, Thaumarchaeota, Nanoarchaeota and Aigarchaeota, to the recent suggestion to divide the class Halobacteria into three orders, all gain substantial support from CVTree. In addition, the CVTree helped to determine the taxonomic position of some newly sequenced genomes without proper lineage information. A few discrepancies between the CVTree and the 16S rRNA approaches call for further investigation. Full article
(This article belongs to the Special Issue Archaea: Evolution, Physiology, and Molecular Biology)
Show Figures

Figure 1

Back to TopTop