Sign in to use this feature.

Years

Between: -

Subjects

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Journals

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Article Types

Countries / Regions

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Search Results (928)

Search Parameters:
Keywords = clay stabilization

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
23 pages, 11076 KB  
Article
Synergistic Effects of Lignin Fiber and Sodium Sulfate on Mechanical Properties and Micro-Structure of Cement-Stabilized Soil
by Liang Wang, Binbin Na and Wenhua Chen
Materials 2025, 18(17), 3929; https://doi.org/10.3390/ma18173929 - 22 Aug 2025
Viewed by 145
Abstract
This study aims to develop environmentally friendly soil-stabilization materials by investigating the synergistic enhancement mechanism of industrial by-product lignin fibers (LFs) and sodium sulfate (Na2SO4) on the mechanical and micro-structural properties of cement-stabilized soil. A systematic evaluation was conducted [...] Read more.
This study aims to develop environmentally friendly soil-stabilization materials by investigating the synergistic enhancement mechanism of industrial by-product lignin fibers (LFs) and sodium sulfate (Na2SO4) on the mechanical and micro-structural properties of cement-stabilized soil. A systematic evaluation was conducted through unconfined compressive strength (UCS), splitting tensile strength, and capillary water absorption tests, supplemented by microscopic analyses including XRD and SEM. The results indicate that the optimal synergistic effect occurs at 1.0% LF and 0.10% Na2SO4, which increases UCS and splitting tensile strength by 9.23% and 18.37%, respectively, compared to cement-stabilized soil. Meanwhile, early strength development is accelerated. Microscopically, LF physically bridges soil particles, forming aggregates, reducing porosity, and enhancing cohesion. Chemically, Na2SO4 acts as an activator, accelerating cement hydration and stimulating pozzolanic reactions to form calcium aluminosilicate hydrate and gypsum, which fill pores and densify the matrix. The synergistic mechanism lies in Na2SO4 enhancing the interaction between the LFs and clay minerals through ion exchange, facilitating the formation of a stable spatial network structure that inhibits particle sliding and crack propagation. This technology offers substantial sustainability benefits by utilizing paper-making waste LF and low-cost Na2SO4 to improve soil strength, toughness, and impermeability. Full article
(This article belongs to the Section Construction and Building Materials)
Show Figures

Figure 1

8 pages, 2781 KB  
Data Descriptor
Experimental Dataset of Greenhouse Gas Emissions from Laboratory Biocover Experiment
by Kristaps Siltumens, Inga Grinfelde and Juris Burlakovs
Data 2025, 10(8), 134; https://doi.org/10.3390/data10080134 - 21 Aug 2025
Viewed by 139
Abstract
The dataset presented in this manuscript consists of three distinct sets of data collected during a laboratory experiment aimed at quantifying the emissions of greenhouse gases (GHGs), specifically methane (CH4), carbon dioxide (CO2), and nitrous oxide (N2O). [...] Read more.
The dataset presented in this manuscript consists of three distinct sets of data collected during a laboratory experiment aimed at quantifying the emissions of greenhouse gases (GHGs), specifically methane (CH4), carbon dioxide (CO2), and nitrous oxide (N2O). The experiment was conducted in three phases, each initiated at different times. The first phase began on 6 June 2022, using a biocover composed of 60% fine-fraction waste, 20% clay soil, and 20% stabilized compost. The second phase commenced on 26 August 2022, with two biocover variants: one composed of 50% fine-fraction waste and 50% clay soil, and the other consisting of 40% fine-fraction waste, 40% clay soil, and 20% shredded paper. The final phase started on 27 October 2022, introducing two biocovers: one containing 25% dried algae, 25% fine-fraction waste, 25% gravel (0–20 mm), and 25% ash, and the other composed of 40% fine-fraction waste, 40% dried algae, and 20% chernozem. Emission assessments were conducted three weeks after the biocover installation to allow for settling and stabilization, followed by weekly measurements two to three days before irrigation with 250 mL of water to simulate field conditions. GHG emission quantification was carried out using the Cavity Ring-Down Spectroscopy gas measurement device, Picarro G2508. This dataset offers substantial scientific value for advancing biocover technologies aimed at reducing GHG emissions in landfill environments, particularly for mitigating methane emissions. In addition to initial experimental use, the dataset offers a wide range of possibilities for reuse, including modeling landfill gas emissions, validating gas flow measurement methods, developing machine learning models, and performing meta-analyses. Its detailed structure facilitates multi-faceted environmental research and supports optimization of landfill management. Full article
Show Figures

Figure 1

13 pages, 7481 KB  
Article
Influence of Hydration on Shale Reservoirs: A Case Study of Gulong Shale Oil
by Feifei Fang, Ke Xu, Yu Zhang, Yu Wang, Zhimin Xu, Sijie He, Hui Huang, Hailong Wang, Weixiang Jin and Yue Gong
Minerals 2025, 15(8), 878; https://doi.org/10.3390/min15080878 - 21 Aug 2025
Viewed by 207
Abstract
In the process of the exploration and development of shale oil, the influence of hydration on shale reservoirs is complex, as it can not only improve porosity and permeability, but also lead to reservoir instability. At present, there is a lack of systematic [...] Read more.
In the process of the exploration and development of shale oil, the influence of hydration on shale reservoirs is complex, as it can not only improve porosity and permeability, but also lead to reservoir instability. At present, there is a lack of systematic understanding of the influence of hydration on the physical and chemical properties of shale oil reservoirs. Therefore, in this study, taking the Gulong shale oil reservoir in Songliao Basin as the research object, X-ray diffraction mineral composition analysis, electron microscope scanning, and micro-CT scanning were used to study the micro–macro-changes in shale caused by hydration, and the effects of different fracturing fluids on hydration were evaluated. The results show the following: (1) Hydration increases the porosity and permeability of Gulong shale through clay dispersion and dissolution pore formation, though these transient effects may compromise long-term reservoir stability due to pore-throat clogging. (2) Prolonged hydration significantly enhanced pore structure complexity, with tortuosity increasing by 64.7% (from 2.19 to 3.60) and the fractal dimension rising by 7.5% (from 1.99 to 2.14) with hydration time, and the proportion of larger pores (50–100 μm) increased significantly. (3) Hydration leads to crack propagation and new cracks, and the intersection of cracks reduces the core strength, which may eventually lead to macroscopic damage. (4) The influence of different fracturing fluids on the hydration reaction is obviously different. The higher the concentration, the stronger the hydration effect. Distilled water helps to increase porosity and permeability, but long-term effects may affect reservoir stability. The results of this paper reveal the changes in micro- and macro-characteristics of shale oil reservoirs under hydration, which is of great significance for analyzing the mechanism of hydration and provides theoretical support for improving shale oil recovery. Full article
Show Figures

Figure 1

17 pages, 2566 KB  
Article
Synergistic Epichlorohydrin-Crosslinked Carboxymethyl Xylan for Enhanced Thermal Stability and Filtration Control in Water-Based Drilling Fluids
by Yutong Li, Fan Zhang, Bo Wang, Jiaming Liu, Yu Wang, Zhengli Shi, Leyao Du, Kaiwen Wang, Wangyuan Zhang, Zonglun Wang and Liangbin Dou
Gels 2025, 11(8), 666; https://doi.org/10.3390/gels11080666 - 20 Aug 2025
Viewed by 123
Abstract
Polymers derived from renewable polysaccharides offer promising avenues for the development of high-temperature, environmentally friendly drilling fluids. However, their industrial application remains limited by inadequate thermal stability and poor colloidal compatibility in complex mud systems. In this study, we report the rational design [...] Read more.
Polymers derived from renewable polysaccharides offer promising avenues for the development of high-temperature, environmentally friendly drilling fluids. However, their industrial application remains limited by inadequate thermal stability and poor colloidal compatibility in complex mud systems. In this study, we report the rational design and synthesis of epichlorohydrin-crosslinked carboxymethyl xylan (ECX), developed through a synergistic strategy combining covalent crosslinking with hydrophilic functionalization. When incorporated into water-based drilling fluid base slurries, ECX facilitates the formation of a robust gel suspension. Comprehensive structural analyses (FT-IR, XRD, TGA/DSC) reveal that dual carboxymethylation and ether crosslinking impart a 10 °C increase in glass transition temperature and a 15% boost in crystallinity, forming a rigid–flexible three-dimensional network. ECX-modified drilling fluids demonstrate excellent colloidal stability, as evidenced by an enhancement in zeta potential from −25 mV to −52 mV, which significantly improves dispersion and interparticle electrostatic repulsion. In practical formulation (1.0 wt%), ECX achieves a 620% rise in yield point and a 71.6% reduction in fluid loss at room temperature, maintaining 70% of rheological performance and 57.5% of filtration control following dynamic aging at 150 °C. Tribological tests show friction reduction up to 68.2%, efficiently retained after thermal treatment. SEM analysis further confirms the formation of dense and uniform polymer–clay composite filter cakes, elucidating the mechanism behind its high-temperature resilience and effective sealing performance. Furthermore, ECX demonstrates high biodegradability (BOD5/COD = 21.3%) and low aquatic toxicity (EC50 = 14 mg/L), aligning with sustainable development goals. This work elucidates the correlation between molecular engineering, gel microstructure, and macroscopic function, underscoring the great potential of eco-friendly polysaccharide-based crosslinked polymers for industrial gel-based fluid design in harsh environments. Full article
(This article belongs to the Section Gel Chemistry and Physics)
Show Figures

Graphical abstract

21 pages, 3739 KB  
Article
Occurrence State and Extraction of Lithium from Jinyinshan Clay-Type Lithium Deposit, Southern Hubei: Novel Blank Roasting–Acid Leaching Processes
by Hao Zhang, Peng Li, Wensheng Zhang, Jiankang Li, Zhenyu Chen, Jin Yin, Yong Fang, Shuang Liu, Jian Kang and Dan Zhu
Appl. Sci. 2025, 15(16), 9100; https://doi.org/10.3390/app15169100 - 18 Aug 2025
Viewed by 285
Abstract
Addressing the technological bottlenecks in the efficient utilization of clay-type Li deposits in China, this study systematically investigates Li occurrence states and develops clean extraction processes using the Jinyinshan clay-type Li deposit in southern Hubei as a case study. The research aims to [...] Read more.
Addressing the technological bottlenecks in the efficient utilization of clay-type Li deposits in China, this study systematically investigates Li occurrence states and develops clean extraction processes using the Jinyinshan clay-type Li deposit in southern Hubei as a case study. The research aims to provide technical guidance for subsequent geological exploration and development of such deposits. Analytical techniques, including AMICS, EPMA, and LA-ICP-MS, reveal that Li primarily occurs in structurally bound forms within cookeite (82.55% of total Li), illite (6.65%), and rectorite (5.20%), with mineral particle sizes concentrated in fine-grained fractions (<45 μm). Leveraging process mineralogical insights, two industrially adaptable blank roasting–acid leaching processes were innovatively developed. Process I employs a full flow of blank roasting–hydrochloric acid leaching–Li-Al separation–Ca/Mg removal–concentration for Li precipitation–three-stage counter-current washing. Optimizing roasting temperature (600 °C), hydrochloric acid concentration (18 wt%), and leaching parameters achieved a 92.37% Li leaching rate. Multi-step purification yielded lithium carbonate with >99% Li2CO3 purity and an overall Li recovery of 73.89%. Process II follows blank roasting–sulfuric acid leaching–Al removal via alum precipitation–Al/Fe removal–freeze crystallization for sodium sulfate removal–Ca/Mg removal–concentration for Li precipitation–three-stage counter-current washing. Parameter optimization and freezing impurity removal achieved an 89.11% Li leaching rate, producing lithium carbonate with >98.85% Li2CO3 content alongside by-products like crude sodium chloride and ammonium alum. Both processes enable resource utilization of Al-rich residues, with the hydrochloric acid-based method excelling in stability and the sulfuric acid-based approach offering superior by-product valorization potential. This low-energy, high-yield clean extraction system provides critical theoretical and technical foundations for scaling clay-type Li deposit utilization, advancing green Li extraction and industrial chain development. Full article
(This article belongs to the Special Issue Recent Advances in Geochemistry)
Show Figures

Figure 1

17 pages, 4228 KB  
Article
Deflection-Controlled Design Method for Mono-Bucket Foundations in Clay: Numerical Investigation and Engineering Implications
by Xiangming Ge, Gao Peng, Zhenqiang Jiang, Weijiang Chu, Ben He, Ruilong Shi, Can Wang and Qingxiang Meng
Designs 2025, 9(4), 97; https://doi.org/10.3390/designs9040097 - 18 Aug 2025
Viewed by 214
Abstract
This study introduces an innovative deflection-controlled design method (DCM) for evaluating the bearing capacity of offshore mono-bucket foundations (MBFs) in clay, integrating advanced numerical simulations using FLAC3D with the modified cam clay (MCC) soil model. Departing from conventional ultimate bearing capacity approaches, the [...] Read more.
This study introduces an innovative deflection-controlled design method (DCM) for evaluating the bearing capacity of offshore mono-bucket foundations (MBFs) in clay, integrating advanced numerical simulations using FLAC3D with the modified cam clay (MCC) soil model. Departing from conventional ultimate bearing capacity approaches, the proposed method prioritizes serviceability limits by constraining foundation deflections to ensure optimal structural performance and turbine efficiency. A systematic investigation revealed that the MBF performance is predominantly governed by eccentricity ratios and soil–structure interaction, with vertical loads exhibiting a minimal impact in a serviceability limit state. Key findings include the following: (1) the rotation center (RC) stabilizes at approximately 0.8 times the skirt length (L) under loading; (2) thin, deep MBFs (aspect ratio > 1.0) exhibit up to a 30% higher bearing capacity compared to wide, shallow configurations; (3) increasing eccentricity ratios (ε = 0.31–1.54) enhance the moment capacity but reduce the allowable horizontal force by 15–20%; (4) compressive vertical loads (υ = −0.30) slightly reduce the normalized bending moments (ω) by 5–10% at low eccentricities (ε < 0.5). The numerical framework was rigorously validated against centrifuge test data, demonstrating high accuracy (error < 3%) in predicting foundation behavior. By bridging geotechnical mechanics with practical engineering requirements, this study provides a robust and efficient design framework for MBFs, offering significant improvements in reliability and cost-effectiveness for offshore wind turbine applications. The proposed DCM successfully guided the design of an MBF in southeastern China, demonstrating its efficacy for use with homogeneous clay. Full article
(This article belongs to the Topic Resilient Civil Infrastructure, 2nd Edition)
Show Figures

Figure 1

18 pages, 1883 KB  
Article
Research on Hole-Cleaning Technology Coupled with Prevention and Removal of Cuttings Bed
by Dong Yang, Xin Song, Yingjian Xie, Jianli Liu, Hu Han, Qiao Deng and Hao Geng
Processes 2025, 13(8), 2604; https://doi.org/10.3390/pr13082604 - 18 Aug 2025
Viewed by 322
Abstract
To address the critical challenges of severe fragmentation in cuttings, persistent cuttings bed accumulation, and abrupt friction torque increases during horizontal well drilling of Jurassic continental shale oil formations in J Block, Sichuan Basin—rooted in the unique high clay content that induces colloidal [...] Read more.
To address the critical challenges of severe fragmentation in cuttings, persistent cuttings bed accumulation, and abrupt friction torque increases during horizontal well drilling of Jurassic continental shale oil formations in J Block, Sichuan Basin—rooted in the unique high clay content that induces colloidal stability of fine cuttings and resistance to conventional cleaning—this study innovatively proposes a coupled prevention–removal hole-cleaning technology. The core methodology integrates three synergistic components: (1) orthogonal numerical simulations to optimize drilling parameters, reducing the cuttings input rate by 43.48% through “hydraulic carrying + mechanical agitation” synergy; (2) a modified Moore model with horizontal section correction factors to quantify slip velocity of cuttings, lowering the prediction error from ±20% to ±5%; and (3) a helical groove cutting removal sub with 60 m optimal spacing, enhancing local turbulence intensity by 42% to disrupt residual cuttings bed. Field validation in Well J110-8-1H demonstrated remarkable improvements: a 50% reduction in sliding friction, a 25% decrease in rotational torque, and 40% shortening of the drilling cycle. This integrated technology fills the gap in addressing the “fragmentation–colloidal stability” dilemma in shale with high clay contents, providing a quantifiable solution for safe and efficient drilling in similar continental formations. Full article
(This article belongs to the Section Energy Systems)
Show Figures

Figure 1

21 pages, 5547 KB  
Article
Study of Performance and Engineering Application of D-RJP Jet Grouting Technology in Anchorage Foundation Reinforcement for Deep Suspension Bridge Excavations
by Xiaoliang Zhu, Wenqing Zhao, Sheng Fang, Junchen Zhao, Guoliang Dai, Zhiwei Chen and Wenbo Zhu
Appl. Sci. 2025, 15(16), 8985; https://doi.org/10.3390/app15168985 - 14 Aug 2025
Viewed by 252
Abstract
To address the critical challenge of ensuring bottom water-inrush stability during the excavation of ultra-deep foundation pits for riverside suspension-bridge anchorages under complex geological conditions involving high-pressure confined groundwater, we investigate the application of D-RJP high-pressure rotary jet grouting pile technology for ground [...] Read more.
To address the critical challenge of ensuring bottom water-inrush stability during the excavation of ultra-deep foundation pits for riverside suspension-bridge anchorages under complex geological conditions involving high-pressure confined groundwater, we investigate the application of D-RJP high-pressure rotary jet grouting pile technology for ground improvement. Its effectiveness is systematically validated through a case study of the South Anchorage Foundation Pit for the North Channel Bridge of the Zhangjinggao Yangtze River Bridge. The D-RJP method led to the successful construction of a composite foundation within the soft soil that satisfies the permeability coefficient, interface friction coefficient, bearing capacity, and shear strength requirements, significantly improving the geotechnical performance of the anchorage foundation. A series of field experiments were conducted to optimize the critical construction parameters, including the lifting speed, water–cement ratio, and stroke spacing. Core sampling and laboratory testing revealed the grout columns to have good structural integrity. The unconfined compressive strength of the high-pressure jet grout columns reached 5.45 MPa in silty clay layers and 8.21 MPa in silty sand layers. The average permeability coefficient ranged from 1.67 × 10−7 to 2.52 × 10−7 cm/s. The average density of the columns was 1.66 g/cm3 in the silty clay layer and 2.08 g/cm3 in the silty sand layer. The cement content in the return slurry varied between 18% and 27%, with no significant soil squeezing effect observed. The foundation interface friction coefficient ranged from 0.44 to 0.52. After excavation, the composite foundation formed by D-RJP columns was subjected to static load and direct shear testing. The results showed a characteristic bearing capacity value of 1200 kPa, the internal friction angle exceeded 24.23°, and the cohesion exceeded 180 kPa. This study successfully verifies the feasibility of applying D-RJP technology to construct high-performance artificial composite foundations in complex strata characterized by deep soft soils and high-pressure confined groundwater, providing valuable technical references and practical insights for similar ultra-deep foundation pit projects involving suspension bridge anchorages. Full article
Show Figures

Figure 1

19 pages, 6352 KB  
Article
Laboratory Investigation of Miscible CO2-Induced Enhanced Oil Recovery from the East-Southern Pre-Caspian Region
by Ainur B. Niyazbayeva, Rinat B. Merbayev, Yernazar R. Samenov, Assel T. Zholdybayeva, Ashirgul A. Kozhagulova and Ainash D. Shabdirova
Processes 2025, 13(8), 2566; https://doi.org/10.3390/pr13082566 - 14 Aug 2025
Viewed by 279
Abstract
Enhanced oil recovery (EOR) techniques are essential for maximizing hydrocarbon extraction from mature reservoirs. CO2 injection (CO2-EOR) is a promising technology that improves oil recovery while contributing to greenhouse gas reduction. This study investigates the potential of miscible CO2 [...] Read more.
Enhanced oil recovery (EOR) techniques are essential for maximizing hydrocarbon extraction from mature reservoirs. CO2 injection (CO2-EOR) is a promising technology that improves oil recovery while contributing to greenhouse gas reduction. This study investigates the potential of miscible CO2-enhanced oil recovery (CO2-EOR) in the MakXX oilfield of southeastern Kazakhstan. The aim is to assess oil displacement efficiency and its impact on key rock properties, including porosity, permeability, and mineral composition, under reservoir conditions. Core flooding experiments were conducted at 13 MPa and 42 °C using high-precision equipment to replicate reservoir conditions. The core was analyzed before and after CO2 injection using SEM, EDS, and XRD. The results revealed a 54% oil recovery efficiency, accompanied by a 19% decrease in permeability and 8% reduction in porosity due to mineral precipitation and clay transformation. These findings provide insight into the performance and limitations of CO2-EOR and support its application in similar lithology. To confirm and upscale laboratory observations, numerical simulation was conducted using a compositional model. The results demonstrated improved oil recovery, pressure stabilization, and enhanced sweep efficiency under CO2 injection, supporting the scalability and field applicability of the proposed EOR approach. Full article
Show Figures

Figure 1

16 pages, 9124 KB  
Article
Enhancing the Compressibility of Seasonally Frozen Subgrade Clay Subjected to Freeze-Thaw Cycles Using Lignin Fibers
by Yi Tao, Zhibin Li and Siyuan Xu
Sustainability 2025, 17(16), 7303; https://doi.org/10.3390/su17167303 - 13 Aug 2025
Viewed by 339
Abstract
Repeated freeze-thaw cycles in seasonally frozen regions significantly degrade the mechanical properties of clay, posing serious challenges to geotechnical infrastructure stability. This study investigates the compressibility behavior of lignin fiber-reinforced clay under freeze-thaw conditions through one-dimensional consolidation tests and microstructural analysis. Clay specimens [...] Read more.
Repeated freeze-thaw cycles in seasonally frozen regions significantly degrade the mechanical properties of clay, posing serious challenges to geotechnical infrastructure stability. This study investigates the compressibility behavior of lignin fiber-reinforced clay under freeze-thaw conditions through one-dimensional consolidation tests and microstructural analysis. Clay specimens containing 0.0%, 0.5%, 1.0%, 1.5%, and 2.0% lignin fibers by mass were subjected to 0, 1, 4, and 10 freeze-thaw cycles to simulate typical seasonal variations. The results indicate that reinforcement with lignin fibers markedly enhances the soil’s resistance to freeze-thaw-induced degradation. Specifically, in unreinforced clay, 10 freeze-thaw cycles reduced the pre-consolidation pressure from 139 kPa to 97 kPa. With 2.0% lignin fiber, the pressure increased to 186 kPa under unfrozen conditions and remained at 120 kPa after 10 cycles. SEM and MIP analyses revealed that lignin fibers form interconnected networks that inhibit the formation and expansion of strip pores and constrained pore coarsening caused by freeze-thaw action, effectively stabilizing the soil structure. A model incorporating both fiber content and freeze-thaw cycle effects was proposed to predict compression behavior, and the model accurately captured the experimental compression curves across all test conditions. This study provides a theoretical and experimental basis for the application of natural fiber-reinforced clay in cold-region geotechnical engineering, offering a sustainable and effective alternative to traditional stabilization methods. Full article
(This article belongs to the Special Issue Soil Stabilization and Geotechnical Engineering Sustainability)
Show Figures

Figure 1

19 pages, 6619 KB  
Article
Characterization of Slurry Sedimentation and Microstructure in Immersed Tube Tunnel Trenches: A Case Study of the Tanzhou Waterway Dredging Strategy
by Shuangwu Yu, Jingze Zhu, Gang Li, Dan Chang, Qingfei Huang and Xingbang Lu
Eng 2025, 6(8), 200; https://doi.org/10.3390/eng6080200 - 13 Aug 2025
Viewed by 340
Abstract
This study investigates sedimentation dynamics and microstructural evolution of silty clay and mucky sediments from the immersed tube tunnel trench of the Shunde Tanzhou Waterway. Experiments examined different initial unit weights (11.5–12.6 kN/m3) and heights (10–60 cm) through sedimentation tests (N [...] Read more.
This study investigates sedimentation dynamics and microstructural evolution of silty clay and mucky sediments from the immersed tube tunnel trench of the Shunde Tanzhou Waterway. Experiments examined different initial unit weights (11.5–12.6 kN/m3) and heights (10–60 cm) through sedimentation tests (N = 30, representing five heights × three unit weights × two soil types) and scanning electron microscopy (SEM) imaging. Results identified two sedimentation patterns: consolidation (inverse “S” curve) and hindered (three-stage) types. Key findings reveal that silty clay exhibits height-dependent transition between patterns (critical height = 30 cm at γ = 12.6 kN/m3). Mucky soil demonstrates stable hindered settlement across conditions (rate = 0.09 ± 0.01 cm/min at γ = 12.0 kN/m3). Moisture distribution analysis reveals that unstable structures in low-unit-weight slurries exhibit slow drainage and steady moisture content changes. Microstructural analysis uncovered height-dependent porosity increases and pore complexity in mucky soils, alongside reduced honeycomb-like cavities and enhanced particle aggregation in silty clay under lower unit weights. These results provide novel insights into the interplay between initial slurry conditions and sedimentation behavior, offering a theoretical foundation for optimizing dredging strategies and ensuring long-term sediment stability in immersed tube tunnel projects. Full article
(This article belongs to the Section Chemical, Civil and Environmental Engineering)
Show Figures

Figure 1

21 pages, 1841 KB  
Article
Yield Stability of Soybean Variety Morkhor 60 in Integrated Rotation Systems of Northeastern Thailand
by Adisak Taiyawong, Tidarat Monkham, Jirawat Sanitchon, Sukanlaya Choenkwan, Sittipong Srisawangwong, Jamnan Khodphuwiang, Suntit Reewarabundit and Sompong Chankaew
Plants 2025, 14(16), 2503; https://doi.org/10.3390/plants14162503 - 12 Aug 2025
Viewed by 333
Abstract
Soybean (Glycine max (L.) Merrill) is globally valued for protein, oil, and biofuel applications. Thailand imports 99.8% of its soybean consumption due to declining cultivation areas. Northeastern Thailand presents substantial potential for expanding soybean production through integrated seed rotation systems in post-sugarcane [...] Read more.
Soybean (Glycine max (L.) Merrill) is globally valued for protein, oil, and biofuel applications. Thailand imports 99.8% of its soybean consumption due to declining cultivation areas. Northeastern Thailand presents substantial potential for expanding soybean production through integrated seed rotation systems in post-sugarcane (upland) and post-rice (lowland) environments. This study evaluated the newly developed ‘Morkhor 60’ soybean variety compared to three commercial varieties (SJ 5, 223*Lh-85, and CM 60) across thirteen diverse environments in Northeastern Thailand during 2022–2023. Field experiments employed a randomized complete block design with four replications per site. The ‘Morkhor 60’ demonstrated favorable yield stability and competitive performance across most environments. The variety showed broad adaptability across soil types (sandy loam to clay) and seasonal conditions (rainy and dry seasons) with minimal genotype-by-environment interactions. Chemical analysis revealed favorable protein content (39.63%) and oil content (14.66%). These findings support the cultivation of ‘Morkhor 60’ in integrated seed rotation systems, offering a viable strategy to reduce national soybean seed shortages while enhancing domestic production and agricultural sustainability. Full article
Show Figures

Figure 1

28 pages, 2543 KB  
Article
Chemical Fractions of Soil Organic Matter and Their Interactions with Cu, Zn, and Mn in Vineyards in Southern Brazil
by Guilherme Wilbert Ferreira, Samya Uchoa Bordallo, Lucas Dupont Giumbelli, Zayne Valéria Santos Duarte, Gustavo Brunetto, George Wellington Bastos de Melo, Deborah Pinheiro Dick, Tadeu Luis Tiecher, Tales Tiecher and Cledimar Rogério Lourenzi
Agronomy 2025, 15(8), 1937; https://doi.org/10.3390/agronomy15081937 - 12 Aug 2025
Viewed by 333
Abstract
This study aimed to evaluate the impact of vineyard cultivation time and the use of metal-based fungicides on the chemical fractions of soil organic matter (SOM) as well as their interactions with Cu, Zn, and Mn in vineyard soils from Southern Brazil with [...] Read more.
This study aimed to evaluate the impact of vineyard cultivation time and the use of metal-based fungicides on the chemical fractions of soil organic matter (SOM) as well as their interactions with Cu, Zn, and Mn in vineyard soils from Southern Brazil with varying histories of fungicide application. Soil samples were collected in 2017 from vineyards aged 35, 37, and 39 years in the Serra Gaúcha region and 13, 19, and 36 years in the Campanha Gaúcha. In each region, samples were also collected from a non-anthropized reference area. In the oldest vineyards, sampling was conducted both within and between the rows of planting. Chemical fractionation of SOM was performed: non-humic substances (nHSs), particulate organic matter (POM), fulvic acid (FA), humic acid (HA), and humin (Hu). Fourier-transform infrared (FTIR) spectra were obtained for the HA, from which the aromaticity index (AI) and relative intensities (RIs) were calculated. In each SOM fraction, total organic carbon and the concentrations of Cu, Zn, and Mn were determined. Changes in land use alter the forms and distribution of soil organic carbon (SOC) and, consequently, of metals. Elemental and spectroscopic analyses of HS revealed that HA in the reference areas (forest and native grassland) was more aliphatic and had higher concentrations of polysaccharides, indicating fractions with a lower degree of stabilization. However, in vineyard areas, HA exhibited greater humification and aromaticity. Increasing cultivation time gradually increased soil carbon content, indicating that viticultural agroecosystems can sequester carbon in the soil over time, reaching levels similar to those observed in the reference areas. When comparing vineyard areas alone, with row collections and inter-row collections, we observed an increase in SOC levels in areas managed with cover crops, demonstrating the importance of conservation management in these areas. When evaluating the distribution of metals in these soils, we could observe the high affinity of Cu for the functional groups of SOM, with FA and HA responsible for the complexation of these elements in the soil. For Zn and Mn, the greatest accumulations were observed in the Hu fraction due to their greater affinity for soil clay minerals. This shows that soil organic matter is a key component in the complexation of metals in soils, reducing their availability and potential toxicity to cultivated plants. Full article
(This article belongs to the Special Issue Soil Organic Matter and Tillage)
Show Figures

Figure 1

23 pages, 3759 KB  
Article
Intra-Aggregate Pore Network Stability Following Wetting-Drying Cycles in a Subtropical Oxisol Under Contrasting Managements
by Everton de Andrade, Talita R. Ferreira, José V. Gaspareto and Luiz F. Pires
Agriculture 2025, 15(16), 1725; https://doi.org/10.3390/agriculture15161725 - 11 Aug 2025
Viewed by 298
Abstract
One type of pore fundamental to water dynamics is the intra-aggregate pore, which holds water vital for plant and root system development, mainly in finer-textured soils such as clays. The distribution of intra-aggregate pores also influences the redistribution of water. Thus, it is [...] Read more.
One type of pore fundamental to water dynamics is the intra-aggregate pore, which holds water vital for plant and root system development, mainly in finer-textured soils such as clays. The distribution of intra-aggregate pores also influences the redistribution of water. Thus, it is important to study the dynamics of the intra-aggregate pore network under processes such as wetting and drying cycles (WDC). Changes in these pore types can play essential roles in organic matter protection, water movement, microbial activity, and aggregate stability. To date, there are few studies analyzing the impact of WDC on intra-aggregate pore dynamics. This study aims to provide results in this regard, analyzing changes in the pore architecture of a subtropical Oxisol under no-tillage (NT), conventional tillage (CT), and forest (F) after WDC application. Three-dimensional X-Ray microtomography images of soil aggregate samples (2–4 mm) subjected to 0 and 12 WDC were analyzed. The results showed that WDC did not affect (p > 0.05) the imaged porosity, number of pores, fractal dimension, tortuosity, and pore connectivity for the different soil management types. To analyze the permeability and hydraulic conductivity of the soil pore system, the most voluminous pore (MVP) was examined. No differences were observed in the imaged porosity, fraction of aggregate occupied by the MVP, connectivity, tortuosity, hydraulic radius, permeability, and hydraulic conductivity between 0 and 12 WDC for the MVP. Comparing soil management types after 12 WDCs, for example, F samples became more porous than CT and NT samples. In contrast, the pore system of NT had a lower fractal dimension and was more tortuous than that of CT and F samples. Our results show that for highly weathered soils such as the Brazilian Oxisol studied, the intra-aggregate pore network proved resistant to changes with WDC, regardless of the type of management adopted. Full article
(This article belongs to the Section Agricultural Soils)
Show Figures

Figure 1

18 pages, 4008 KB  
Article
Numerical Study of the Negative Skin Friction (NSF) of Large-Diameter Rock-Socketed Monopiles for Offshore Wind Turbines Incorporating Lateral Loading Effects
by Yuanyuan Ren, Zhiwei Chen and Wenbo Zhu
J. Mar. Sci. Eng. 2025, 13(8), 1530; https://doi.org/10.3390/jmse13081530 - 9 Aug 2025
Viewed by 325
Abstract
Large-diameter rock-socketed monopiles supporting offshore wind turbines in soft clay strata face significant geotechnical risks from negative skin friction (NFS) induced by construction surcharges. While the effects of NFS on axial drag loads are documented, the critical interaction between horizontal pile loading and [...] Read more.
Large-diameter rock-socketed monopiles supporting offshore wind turbines in soft clay strata face significant geotechnical risks from negative skin friction (NFS) induced by construction surcharges. While the effects of NFS on axial drag loads are documented, the critical interaction between horizontal pile loading and NFS development remains poorly understood. This research bridges this gap using a rigorously validated 3D finite element model that simulates the complex coupling of vertical substructure loads (5 MN), horizontal loading, and surcharge-induced consolidation. The model’s accuracy was confirmed through comprehensive verification against field data for both NFS evolution under surcharge and horizontal load–displacement behavior. The initial analysis under representative conditions (10 MN horizontal load, 100 kPa surcharge, 3600 days consolidation) revealed that horizontal loading fundamentally distorts NFS distribution in the upper pile segment (0 to −24 m), transforming smooth profiles into distinct dual-peak morphologies while increasing the maximum NFS magnitude by 57% (from −45.4 kPa to −71.5 kPa) and relocating its position 21 m upward. This redistribution was mechanistically linked to horizontal soil displacement patterns. Crucially, the NFS neutral plane remained invariant at the clay–rock interface (−39 m), demonstrating complete independence from horizontal loading effects. A systematic parametric study evaluated key operational factors: (1) consolidation time progressively increased NFS magnitude throughout the clay layer, evolving from near-linear to dual-peaked distributions in the upper clay (0 to −18 m); NFS stabilized in the upper clay after 720 days while continuing to increase in the lower clay (−18 to −39 m) due to downward surcharge transfer, accompanied by neutral plane deepening (from −36.5 m to −39.5 m) and 84% maximum axial force escalation (12.5 MN to 23 MN); (2) horizontal load magnitude amplified upper clay NFS peaks at −3.2 m and −9.3 m, with the shallow peak magnitude increasing linearly with load intensity, though it neither altered lower clay NFS nor neutral plane position; (3) surcharge magnitude increased overall NFS, but upper clay NFS (0 to −18 m) stabilized beyond 100 kPa, while lower clay NFS continued rising with higher surcharges, and the neutral plane descended progressively (from −38 m to −39.5 m). These findings demonstrate that horizontal loading critically exacerbates peak NFS values and redistributes friction in upper pile segments without influencing the neutral plane, whereas surcharge magnitude and consolidation time govern neutral plane depth, total NFS magnitude, and maximum drag load. This research delivers essential theoretical insights and practical guidelines for predicting NFS-induced drag loads and ensuring the long-term safety of offshore wind foundations in soft clays under complex multi-directional loading scenarios. Full article
(This article belongs to the Section Ocean Engineering)
Show Figures

Figure 1

Back to TopTop