Sign in to use this feature.

Years

Between: -

Subjects

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Journals

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Article Types

Countries / Regions

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Search Results (5,586)

Search Parameters:
Keywords = climate change policies

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
916 KB  
Article
Two-Way Carbon Options Game Model of Construction Supply Chain with Cap-And-Trade
by Wen Jiang, Zhaoyi Tong, Yifan Yuan, Qingqing Yang, Jiangyan Wu and Ruixiang Li
Sustainability 2025, 17(17), 8089; https://doi.org/10.3390/su17178089 (registering DOI) - 8 Sep 2025
Abstract
As one of the main sources of global greenhouse gas emissions, the low-carbon transformation and emission reduction in the construction industry are inevitable requirements for addressing climate change. Under cap-and-trade regulations, Carbon emission rights have become a key production factor. However, the price [...] Read more.
As one of the main sources of global greenhouse gas emissions, the low-carbon transformation and emission reduction in the construction industry are inevitable requirements for addressing climate change. Under cap-and-trade regulations, Carbon emission rights have become a key production factor. However, the price of carbon emission rights is highly random. Taking the EU carbon market in 2024 as an example, the carbon price fluctuated by more than 35%, soaring from 65 euros per ton to 80 euros per ton and then falling back. Such sharp fluctuations not only increase the cost uncertainty of enterprises but also complicate the investment decisions for emission reduction. Therefore, enterprises can enhance the flexibility of carbon emission rights trading decisions through option strategies, helping them hedge against the risks of carbon price fluctuations, and at the same time improve market liquidity and risk management capabilities. Against this background, based on the carbon cap-and-trade policy, this paper introduces the two-way option strategy into the construction supply chain game model composed of general contractors and subcontractors, and studies to obtain the optimal carbon reduction volume, carbon option purchase volume, maximum expected profit of general contractors, subcontractors and profit distribution ratio. This study shows that two-way options play a crucial role in optimizing supply decision-making and emission reduction strategies. Under the decentralized model, emission reduction responsibilities are often shifted to subcontractors by the general contractor, resulting in a decline in overall mitigation effectiveness. Furthermore, appropriately lowering the carbon emission benchmark can strengthen enterprises’ incentives for emission reduction and significantly enhance the profitability of the supply chain. The study further suggests that general contractors should enhance their competitiveness by developing environmentally friendly technologies and improving their ability to reduce emissions on their own. Meanwhile, subcontractors need to actively participate in the collaborative efforts through revenue-sharing contracts. This study reveals the strategic value of two-way carbon options in construction supply chain carbon trading and provides theoretical support for the formulation of carbon market policies, contributing to the low-carbon transition of the construction supply chain. Full article
(This article belongs to the Special Issue Application of Data-Driven in Sustainable Logistics and Supply Chain)
Show Figures

Figure 1

19093 KB  
Review
Exposure of Agroforestry Workers to Airborne Particulate Matter and Implications Under Climate Change: A Review
by Daniela Scutaru, Daniele Pochi, Massimo Cecchini and Marcello Biocca
AgriEngineering 2025, 7(9), 293; https://doi.org/10.3390/agriengineering7090293 (registering DOI) - 8 Sep 2025
Abstract
Climate change significantly intensifies agroforestry workers’ exposure to atmospheric particulate matter (PM), raising occupational health concerns. This review, based on the analysis of 174 technical and scientific sources including articles, standards and guidelines published between 1974 and 2025, systematically analyses the main sources [...] Read more.
Climate change significantly intensifies agroforestry workers’ exposure to atmospheric particulate matter (PM), raising occupational health concerns. This review, based on the analysis of 174 technical and scientific sources including articles, standards and guidelines published between 1974 and 2025, systematically analyses the main sources of PM in agricultural and forestry activities (including tillage, pesticide use, harvesting, sowing of treated seeds and mechanized wood processing) and focuses on the substantial contribution of agricultural and forestry machinery to PM emissions, both quantitatively and qualitatively. It highlights how changing climatic conditions, such as increased drought, wind and temperature, amplify PM generation and dispersion. The associated health risks, especially respiratory, dermatological and reproductive, are exacerbated by the presence of toxicants (such as heavy metals, volatile organic compounds and pesticide residues toxic for reproduction) in PM. Despite existing regulatory frameworks, significant gaps remain regarding PM exposure limits in the agroforestry sector. Emerging technologies, such as environmental sensors, AI-based predictive models and drone-assisted monitoring, are proposed for real-time risk detection and mitigation. A multidisciplinary and proactive approach integrating innovation, policies and occupational safety is essential to safeguard workers’ health in the context of increasing climate stress. Full article
(This article belongs to the Section Agricultural Mechanization and Machinery)
27 pages, 3704 KB  
Review
Radionuclide Tracing in Global Soil Erosion Studies: A Bibliometric and Systematic Review
by Yinhong Huang, Yong Yuan, Yang Xue, Jinjin Guo, Wen Zeng, Yajuan Chen and Kun Chen
Water 2025, 17(17), 2652; https://doi.org/10.3390/w17172652 (registering DOI) - 8 Sep 2025
Abstract
Radionuclide tracer technology, as a state-of-the-art tool for quantifying and monitoring soil erosion processes, has attracted much attention in global sustainable land management research in recent years. However, existing studies are fragmented in methodological applications, lack systematic knowledge integration and interdisciplinary perspectives, and [...] Read more.
Radionuclide tracer technology, as a state-of-the-art tool for quantifying and monitoring soil erosion processes, has attracted much attention in global sustainable land management research in recent years. However, existing studies are fragmented in methodological applications, lack systematic knowledge integration and interdisciplinary perspectives, and lack global research trends and dynamic evolution of key themes. This study integrates Bibliometrix, VOSviewer, and CiteSpace to conduct bibliometric and knowledge mapping analysis of 1692 documents (2000–2023) in the Web of Science Core Collection, focusing on the overall developmental trends, thematic evolution, and progress of convergence and innovation. The main findings of the study are as follows: (1) China, the United States, and the United Kingdom are in a “three-legged race” at the national level, with China focusing on technological application innovation, the United States on theoretical breakthroughs, and the United Kingdom contributing significantly to methodological research; (2) “soil erosion” and “137Cs” continue to be the core themes, while “climate change” and “human impact” on soil erosion and its reflection in radionuclide tracing became the focus of attention; and (3) multi-scale radionuclide tracing (watershed, slope), multi-method synergy (radionuclide tracing combined with RS, GIS, AI), and the integration of advanced measurement and control technologies (PGS, ARS) have become cutting-edge trends in soil erosion monitoring and control. This study provides three prospective research directions—the construction of a global soil erosion database, the policy transformation mechanism of the SDG interface, and the iterative optimization of multi-radionuclide tracer technology, which will provide scientific guidance for the realization of the sustainable management of soil erosion and the goal of zero growth of land degradation globally. Full article
(This article belongs to the Special Issue Soil Erosion and Soil and Water Conservation, 2nd Edition)
Show Figures

Figure 1

31 pages, 1715 KB  
Review
Advancing Electric Mobility in Andean Countries: A Systematic Review and Case Study of Ecuador
by Luis Maita Jaramillo and Diego Díaz-Sinche
Sustainability 2025, 17(17), 8075; https://doi.org/10.3390/su17178075 (registering DOI) - 8 Sep 2025
Abstract
Electric mobility is emerging as a crucial solution to reduce dependence on fossil fuels and mitigate environmental impact. In Ecuador, the transportation sector significantly contributes to CO2 emissions. However, the transition to electric vehicles faces several challenges, including high initial costs, insufficient [...] Read more.
Electric mobility is emerging as a crucial solution to reduce dependence on fossil fuels and mitigate environmental impact. In Ecuador, the transportation sector significantly contributes to CO2 emissions. However, the transition to electric vehicles faces several challenges, including high initial costs, insufficient charging infrastructure, and limited battery range. This highlights the need for effective public policies and local economic incentives. This study provides a comprehensive analysis of the current state of electric mobility in Andean regions, with a particular focus on Ecuador. It employs a systematic literature review (SLR) adapted from Kitchenham’s methodology, incorporating a multicriteria hierarchical analysis to rank journals according to their relevance. The goal is to assess the growth, implementation, and limitations of electric mobility in Andean countries. Three key research questions are addressed: (i) What are the benefits associated with the transition to electric transportation in Andean countries, with a special focus on Ecuador? (ii) What are the current challenges in transitioning to electric mobility? (iii) What recent public policies are promoting electric transportation? The analysis reveals that the transition to electric mobility could significantly reduce greenhouse gas (GHG) emissions. However, it faces notable challenges due to the insufficient demand for studies in electromobility plans and methodologies for defining charging points. The SLR includes a review of over 90 articles published in high-impact journals over the past six years, providing a solid foundation for decision-making in the current landscape and suggesting strategies to overcome the obstacles faced by government institutions. Finally, the study presents the reality of an installed charging infrastructure in Ecuador and the development of electric mobility in the region. Full article
(This article belongs to the Section Sustainable Transportation)
Show Figures

Figure 1

26 pages, 3297 KB  
Article
Exploring the Urban Heat Island Effect: A Bibliometric and Topic Modeling Analysis
by Murat Kilinc, Can Aydin, Gizem Erdogan Aydin and Damla Balci
Sustainability 2025, 17(17), 8072; https://doi.org/10.3390/su17178072 (registering DOI) - 8 Sep 2025
Abstract
The urban heat island (UHI) effect, intensified by urbanisation and climate change, leads to increased urban temperatures and poses a serious environmental challenge. Understanding its causes, impacts, and mitigation strategies is essential for sustainable urban planning. The aim of this study is to [...] Read more.
The urban heat island (UHI) effect, intensified by urbanisation and climate change, leads to increased urban temperatures and poses a serious environmental challenge. Understanding its causes, impacts, and mitigation strategies is essential for sustainable urban planning. The aim of this study is to systematically analyse how the Urban Heat Island (UHI) effect has been addressed in the scientific literature, to identify key research themes and their temporal evolution, and to critically highlight knowledge gaps in order to provide guidance for future research and urban planning policies. Using BERTopic, an advanced natural language processing (NLP) tool, the study extracts dominant themes from a large corpus of academic literature and tracks their evolution over time. A total of 9061 research articles from the Web of Science database were collected, pre-processed, and analysed. BERTopic clustered semantically related topics and revealed their temporal dynamics, offering insights into emerging and declining research areas. The results show that pavement materials and urban vegetation are among the most studied themes, highlighting the importance of surface materials and green infrastructure in mitigating UHI. In line with this aim, the study identifies a rising interest in urban cooling strategies, particularly reflective surfaces and ventilation corridors. Consistent with its aim, the study provides a comprehensive overview of UHI literature, critically identifies existing gaps, and proposes clear directions for future research. It provides supports for urban planners, policymakers, and researchers in developing data-driven strategies to mitigate UHI impacts and strengthen enhance urban climate resilience. Full article
(This article belongs to the Section Air, Climate Change and Sustainability)
Show Figures

Figure 1

20 pages, 3220 KB  
Article
Reconstruction of Cultivated Land Dynamics in the Yellow River Delta Basin Since 1855
by Lin Lou, Yu Ye and Yuting Liu
Land 2025, 14(9), 1826; https://doi.org/10.3390/land14091826 - 7 Sep 2025
Abstract
The Yellow River Delta region is not only a concentrated area of human activities in coastal zones, but also a zone strongly influenced by regional environmental changes, where land cover changes are significantly affected by natural factors. Current historical LUCC datasets overlook the [...] Read more.
The Yellow River Delta region is not only a concentrated area of human activities in coastal zones, but also a zone strongly influenced by regional environmental changes, where land cover changes are significantly affected by natural factors. Current historical LUCC datasets overlook the importance of partitioning to obtain accurate information on the potential maximum distribution range, which may lead to uncertainties in climate and environmental predictions. This study aims to reconstruct historical cropland changes in the Yellow River Delta via a region-adapted allocation model, supporting improved LUCC data accuracy and related research. Based on historical river course, settlement, and cropland survey data, this study identifies natural factors using historical settlement density through correlation analysis. Subsequently, a reclamation suitability model conforming to regional characteristics was constructed, and it obtains the cropland changes in the Yellow River Delta Basin at a spatial resolution of 0.5′ × 0.5′ over five time periods since 1855. The research indicates the following: (1) Through the method of analyzing the correlation between historical settlement density and natural factors, it is found that elevation (−), soil pH (+), soil organic carbon density (−), and NDVI (+) are the primary natural factors influencing the distribution of farmland in the Yellow River Delta. (2) The amount of farmland in the Yellow River Delta increased initially and then decreased after 1885; the average reclamation rate increased from 5.65%, peaked at 23.46% in the early 20th century, and then fell back to 7.68%. Spatially, the reclamation area expanded from scattered local areas along the Yellow River towards the sea, with a distinct coastal distribution. (3) Evaluation through absolute difference analysis shows that, compared with the HYDE 3.2 data, our reconstruction reflects the impacts of coastal changes, river distribution, and regional policy history on the allocation results. Based on the findings of this study, relevant issues can be improved from two aspects: first, by correlating settlement density with natural factors to identify key regional natural factors, which can then be applied to the update of LUCC data in small spatial units and similar regions to enhance data accuracy; second, by referring to the historical laws of cropland reclamation and suitability conditions, to optimize the current land planning of the Yellow River Delta and balance cropland utilization with ecological protection. Full article
(This article belongs to the Special Issue Modeling Spatio-Temporal Dynamics of Land Development)
Show Figures

Figure 1

26 pages, 3804 KB  
Article
Spatio-Temporal Patterns and Regional Differences in Carbon Emission Intensity of Land Uses in China
by Ming Zhang, Changhong Cai, Jun Guan, Jing Cheng, Changqing Chen, Yani Lai and Xiangsheng Chen
Sustainability 2025, 17(17), 8048; https://doi.org/10.3390/su17178048 (registering DOI) - 7 Sep 2025
Abstract
In recent years, the frequent occurrence of extreme weather events has prompted increased global attention to greenhouse gas emissions. This study analyzes the spatio-temporal evolution of carbon emission intensity (CEI) across land use types in China’s 30 provinces from 2009 to 2022. Based [...] Read more.
In recent years, the frequent occurrence of extreme weather events has prompted increased global attention to greenhouse gas emissions. This study analyzes the spatio-temporal evolution of carbon emission intensity (CEI) across land use types in China’s 30 provinces from 2009 to 2022. Based on the data from China Rural Statistical Yearbook, China City Statistical Yearbook, China Energy Statistical Yearbook, China Natural Resources Statistical Yearbook, and China Statistical Yearbook, this study aims to reveal the spatio-temporal differentiation patterns of CEI, analyze the decoupling status between development mode and carbon emissions, and establish a three-dimensional collaborative emission reduction framework. Firstly, employing the carbon emission factor method, provincial carbon emissions, sinks, and net emissions are calculated, with intensity levels derived from gross domestic product (GDP). Secondly, spatio-temporal trends and inter-provincial disparities are analyzed using the decoupling index. The spatial effects among the provinces are investigated based on Moran’s I index. The results show that while the overall CEI has declined since 2009, significant regional disparities persist, with the southern provinces showing lower carbon emission intensities compared to the northern and western regions. The spatial analysis reveals a strong aggregation effect, with provinces clustering into high-high (HH) and low-low (LL) regions regarding CEI. This study concludes with policy recommendations for emission reduction and climate change mitigation, emphasizing industrial structure adjustment, enhanced regional coordination, and optimized land use planning. Full article
(This article belongs to the Section Sustainable Urban and Rural Development)
Show Figures

Figure 1

26 pages, 26889 KB  
Article
Spatio-Temporal Changes in Mangroves in Sri Lanka: Landsat Analysis from 1987 to 2022
by Darshana Athukorala, Yuji Murayama, Siri Karunaratne, Rangani Wijenayake, Takehiro Morimoto, S. L. J. Fernando and N. S. K. Herath
Land 2025, 14(9), 1820; https://doi.org/10.3390/land14091820 - 6 Sep 2025
Abstract
Mangroves in Sri Lanka provide critical ecosystem services, yet they have undergone significant changes due to anthropogenic and natural drivers. This study presents the first national-scale assessment of mangrove dynamics in Sri Lanka using remote sensing techniques. A total of 4670 Landsat images [...] Read more.
Mangroves in Sri Lanka provide critical ecosystem services, yet they have undergone significant changes due to anthropogenic and natural drivers. This study presents the first national-scale assessment of mangrove dynamics in Sri Lanka using remote sensing techniques. A total of 4670 Landsat images from Landsat 5, 7, 8, and 9 were selected to detect mangrove distribution, changes in extent, and structure and stability patterns from 1987 to 2022. A Random Forest classification model was applied to elucidate the spatial changes in mangrove distribution in Sri Lanka. Using national-scale data enhanced mapping accuracy by incorporating region-specific spectral and ecological characteristics. The average overall accuracy of the maps was over 96.29%. The total extent of mangroves in 2022 was 16,615 ha, representing 0.25% of the total land of Sri Lanka. The results further indicate that, at the national scale, mangrove extent increased from 1989 to 2022, with a net gain of 1988 ha (13.6%), suggesting a sustained and continuous recovery of mangroves. Provincial-wise assessments reveal that the Eastern and Northern Provinces showed the largest mangrove extents in Sri Lanka. In contrast, the Colombo, Gampaha, and Kalutara districts in the Western Province showed persistent declines. The top mangrove spatial structure and stability districts were Jaffna, Trincomalee, and Gampaha, while the most degraded mangrove districts were Batticaloa, Colombo, and Kalutara. This study offers critical insights into sustainable mangrove management, policy implementation, and climate resilience strategies in Sri Lanka. Full article
Show Figures

Figure 1

22 pages, 479 KB  
Article
Managerial Climate Attention and Systemic Risk of New Energy Vehicle Firms: Evidence from China
by Xiaotong Zhang
Sustainability 2025, 17(17), 8042; https://doi.org/10.3390/su17178042 (registering DOI) - 6 Sep 2025
Viewed by 66
Abstract
In the context of the global climate transition, managerial climate attention is influencing the risk posture of new energy vehicle firms as a key non-economic cognitive factor. This paper investigates the mechanism of managerial climate attention (MCA) on the systemic risk of firms [...] Read more.
In the context of the global climate transition, managerial climate attention is influencing the risk posture of new energy vehicle firms as a key non-economic cognitive factor. This paper investigates the mechanism of managerial climate attention (MCA) on the systemic risk of firms using panel data from 111 listed NEV firms in China from 2013 to 2022. The results show that first, the systemic risk of NEV firms is significantly reduced as managerial climate attention increases. Second, the negative influence of MCA on the systemic risk of NEV firms is more significant among state-owned enterprises, firms in non-first-tier cities and in the machinery, equipment and computer communication sub-sectors. Third, MCA negatively affects the systemic risk of NEV firms by increasing market competition, environmental performance and investor sentiment. The difference-in-differences analysis based on the Paris Agreement shows that the systemic risk of the treatment group enterprises increased significantly after policy implementation, confirming the link between climate-related policies and risk. The management of NEV firms should be concerned about climate change, thus providing practical implications for financial stability and sustainable economic development. Full article
Show Figures

Figure 1

15 pages, 1151 KB  
Article
The Role of Urban Tree Areas for Biodiversity Conservation in Degraded Urban Landscapes
by Sonja Jovanović, Vesna Janković-Milić, Jelena J. Stanković and Marina Stanojević
Land 2025, 14(9), 1815; https://doi.org/10.3390/land14091815 - 6 Sep 2025
Viewed by 321
Abstract
Urban tree diversity plays a crucial role in enhancing the resilience of cities by contributing to ecosystem services such as mitigating the effects of land degradation, combating urban heat islands, improving air quality, and fostering biodiversity habitats. A diverse tree population enhances resilience [...] Read more.
Urban tree diversity plays a crucial role in enhancing the resilience of cities by contributing to ecosystem services such as mitigating the effects of land degradation, combating urban heat islands, improving air quality, and fostering biodiversity habitats. A diverse tree population enhances resilience to vulnerabilities related to climatic stress, disease, and habitat loss by promoting stability, adaptability, and efficiency within the ecosystem. Little is known about urban tree diversity in Serbia; therefore, this study examines the diversity of tree species in the City of Niš, Serbia, to assess its implications for urban resilience and biodiversity preservation in the context of land-use change. Using the Shannon Diversity Index, we quantify species richness and evenness across both central and suburban zones of the city. The results are benchmarked against similar indices in five other European cities to assess how patterns of urban tree distribution vary under different urbanisation pressures. The study reveals that tree diversity is markedly lower in the city centre than in peripheral areas, highlighting spatial inequalities in green infrastructure that may accelerate biodiversity loss due to compact urban development. These findings demonstrate how urban expansion and infrastructure density contribute to ecological fragmentation, potentially leading to long-term effects on ecosystem services. This study emphasises the strategic importance of integrating greenery diversity into urban and landscape planning, particularly in rapidly growing urban centres in Southeastern Europe. This research contributes to the existing body of literature, providing a deeper understanding of the interdependencies between urban tree diversity, land degradation, and biodiversity loss, offering data-driven insights. This enables urban planners, landscape architects, and policy advisors to make informed decisions about street tree diversity and green city infrastructure, contributing to the development of sustainable cities. Full article
Show Figures

Figure 1

21 pages, 1689 KB  
Review
Reconsidering the Soil–Water–Crops–Energy (SWCE) Nexus Under Climate Complexity—A Critical Review
by Nektarios N. Kourgialas
Agriculture 2025, 15(17), 1891; https://doi.org/10.3390/agriculture15171891 - 5 Sep 2025
Viewed by 135
Abstract
Nowadays, sustainable agriculture is emerging as a critical framework within which food production, environmental protection and resilience to climate change must go hand in hand. At the core of this framework are the linkages between soil, water, crops, and energy (SWCE). As pressures [...] Read more.
Nowadays, sustainable agriculture is emerging as a critical framework within which food production, environmental protection and resilience to climate change must go hand in hand. At the core of this framework are the linkages between soil, water, crops, and energy (SWCE). As pressures from climate change, population growth and agricultural land degradation intensify, environmental management strategies are called upon to become more interdisciplinary, targeted and cost-effective. This review article synthesizes recent scientific findings shaping the contemporary understanding of hydro-environmental agriculture and critically examines the conceptual foundation of the SWCE nexus under climate complexity. In addition to reviewing methodological approaches, it highlights both successful global practice examples—such as integrated solar-powered irrigation and conservation-oriented soil–water management systems—and failed or problematic implementations where institutional fragmentation, unsustainable groundwater use, or energy trade-offs undermined outcomes. By analyzing these contrasting experiences, the article identifies key limiting factors and enabling conditions for scaling up nexus-based solutions. Finally, it provides recommendations for future research, integration, and policy-making, emphasizing the importance of adaptive governance, participatory approaches, and cross-sectoral collaboration to enhance the sustainability and resilience of agriculture. Full article
Show Figures

Graphical abstract

15 pages, 543 KB  
Article
Agricultural Cooperatives: Roadblocks to Achieving Sustainability
by Myrto Paraschou, Panagiota Sergaki, Nikos Kalogeras, Stefanos A. Nastis and Christos Staboulis
Sustainability 2025, 17(17), 8012; https://doi.org/10.3390/su17178012 - 5 Sep 2025
Viewed by 249
Abstract
Agricultural cooperatives are essential in mitigating climate change and food insecurity through the promotion of sustainable agricultural practices and the conservation of biodiversity. However, weaknesses in governance, economic restrictions, market pressures, and regulatory obstacles frequently hinder their efficacy. This study investigates the main [...] Read more.
Agricultural cooperatives are essential in mitigating climate change and food insecurity through the promotion of sustainable agricultural practices and the conservation of biodiversity. However, weaknesses in governance, economic restrictions, market pressures, and regulatory obstacles frequently hinder their efficacy. This study investigates the main factors leading to cooperative failures through qualitative analysis of twenty-three (23) expert interviews. Research demonstrates that strong governance, efficient communication, financial stability, and supportive policies are crucial for the viability of cooperatives. Leadership issues, bureaucratic inefficiencies, and market competition were seen as significant roadblocks. It is essential to tackle these difficulties via governance adjustments, economic resilience approaches, and policy advocacy to strengthen the role of cooperatives in climate change mitigation and food security. Full article
Show Figures

Figure 1

13 pages, 1352 KB  
Entry
Urban Effects of Climate Change on Elderly Population and the Need for Implementing Urban Policies
by Letizia Cremonini and Teodoro Georgiadis
Encyclopedia 2025, 5(3), 140; https://doi.org/10.3390/encyclopedia5030140 - 5 Sep 2025
Viewed by 302
Definition
The intensified exposure to high temperature in urban areas, resulting from the combination of heat waves and the urban heat island (UHI) effect, necessitates a deeper understanding of the climate–health relationship. This knowledge directly influences the strategies employed by policy makers and urban [...] Read more.
The intensified exposure to high temperature in urban areas, resulting from the combination of heat waves and the urban heat island (UHI) effect, necessitates a deeper understanding of the climate–health relationship. This knowledge directly influences the strategies employed by policy makers and urban planners in their efforts to regenerate cities and protect their population. Nature-based solutions and the widely accepted 15 min city model, characterized by a polycentric structure, should drive the implementation of effective adaptation policies, especially given the persistent delay in mitigation efforts. However, it is less clear whether current or future policies are adequately structured to broadly address the complex forms of social vulnerability. A prime example of this complexity is the demographic shift observed since the mid-20th century, characterized by a relative increase in the elderly population, and a shrinking youth demographic. While extensive literature addresses the physiological impacts of heat wave on human health, evidence regarding the neuro-psychological and cognitive implications for elderly individuals, who frequently suffer from chronic diseases, remains less comprehensive and more fragmented. The purpose of this concise review is to emphasize that crucial findings on the climate–health relationship, particularly concerning the elderly, have often been developed within disciplinary silos. The lack of comprehensive interdisciplinary integration coupled with an incomplete understanding of the full spectrum of vulnerabilities (encompassing both physiological and cognitive) may lead to urban policies that are egalitarian in principle but fail to achieve true equity in practice. This review aims to bridge this gap by highlighting the need for a more integrated approach to urban policy and regeneration. Full article
(This article belongs to the Section Social Sciences)
Show Figures

Figure 1

21 pages, 925 KB  
Article
Complementarity and Substitution Effects of Investments in Renewable Energy and Global Economic Growth: Strategic Planning Opportunities for Development of Rural Areas
by Szczepan Figiel, Zbigniew Floriańczyk and Barbara Wieliczko
Energies 2025, 18(17), 4702; https://doi.org/10.3390/en18174702 - 4 Sep 2025
Viewed by 199
Abstract
Economic growth and societal well-being are highly dependent on the availability and efficient use of energy resources. This process evolves over time, along with changing developmental challenges, leading to an alteration of the world energy mix. The role of renewable energy sources in [...] Read more.
Economic growth and societal well-being are highly dependent on the availability and efficient use of energy resources. This process evolves over time, along with changing developmental challenges, leading to an alteration of the world energy mix. The role of renewable energy sources in addressing these challenges has been widely recognized, but mostly from the ecological and climate change perspectives. Not enough focus has been paid to economic growth effects, such as potential job creation and income increases related to this process, often taking place in rural areas due to the availability of space and raw materials. In this context, the first objective of this study is to analyze the complementarity and substitution effects of investments in renewables and their connectedness with global economic growth. The second is to discuss the importance of effective strategic planning in supporting the growth of rural areas by promoting the production of renewable energy, based on selected international examples, including the EU Vision for Agriculture and Food recently presented by the European Commission. Using various data sources and employing basic statistical tools, we found that investing in renewable energy contributes to global economic growth. We also show how different countries view the indispensable role of rural areas in this process differently in their strategic policy documents. Full article
(This article belongs to the Special Issue Recent Advances in Renewable Energy Economics and Policy)
Show Figures

Figure 1

27 pages, 5561 KB  
Review
Threats of Climate Change to Freshwater Ecosystems in Pakistan: eDNA Monitoring Will Be the Next-Generation Tool Used in Biodiversity, Conservation, and Management
by Ghazanfer Ali, Sidra Abbas, Satoshi Nagai, Norhafiza Mohd Arshad and Subha Bhassu
Biology 2025, 14(9), 1191; https://doi.org/10.3390/biology14091191 - 4 Sep 2025
Viewed by 1209
Abstract
Freshwater ecosystems are a significant entity that govern the livelihood of people and are an important source of food, employment, and recreation. However, climate change is impacting freshwater ecosystems by altering their natural habitats. The purpose of this review is to highlight the [...] Read more.
Freshwater ecosystems are a significant entity that govern the livelihood of people and are an important source of food, employment, and recreation. However, climate change is impacting freshwater ecosystems by altering their natural habitats. The purpose of this review is to highlight the vulnerability of freshwater fish to climate change. Climate change is invariably affecting natural ecosystems everywhere and in every part of the world, but these threats are more severe in Pakistan. Freshwater fish are important biotic drivers of freshwater ecosystems. Unfortunately, uncertain climate changes and anthropogenic activities have led to a decline in the diversity of these fishes. Rising temperatures, melting glaciers, changes in seasonal patterns, disturbances in the natural flow of rivers, pollution, and invasive species are major threats to native freshwater fish fauna, leading to a decline in fish diversity and population. Tor putitora, Glyptothorax kashmirensis, and Triplophysa kashmirensis are some of the species that are critically endangered in Pakistan due to these factors. In recent decades, insufficient attention has been paid to the freshwater ecosystem. This review of threats to the endemic fish species in this region is presented so that the government and policymakers can use this information as part of their management and conservation policy, thus safeguarding Pakistan’s fish industry. Environmental DNA (eDNA) biomonitoring is a new technique for assessing biodiversity and species distribution and can be useful for conserving biodiversity in this region. Another purpose of this review is to introduce this new conservation strategy to Pakistan. Full article
Show Figures

Figure 1

Back to TopTop