Sign in to use this feature.

Years

Between: -

Subjects

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Journals

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Article Types

Countries / Regions

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Search Results (15,342)

Search Parameters:
Keywords = climate factor

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
27 pages, 11653 KB  
Article
Climate Change and Historical Food-Related Architecture Abandonment: Evidence from Italian Case Studies
by Roberta Varriale and Roberta Ciaravino
Heritage 2025, 8(10), 423; https://doi.org/10.3390/heritage8100423 (registering DOI) - 5 Oct 2025
Abstract
Climatic factors have always played a key role in the construction of food-related architecture: mitigation of outdoor temperatures or winds, adoption of raining waters in the productive processes, etc. However, sometimes, climate change has impacted the profitability of those structures and eventually caused [...] Read more.
Climatic factors have always played a key role in the construction of food-related architecture: mitigation of outdoor temperatures or winds, adoption of raining waters in the productive processes, etc. However, sometimes, climate change has impacted the profitability of those structures and eventually caused their abandonment. Today, historical food-related architectures are significant elements of local rural heritage, and they are also tangible symbols of all the values connected to the corresponding typical food productions. When the cultural value of rural cultural assets and the historical management of climatic factors coexist, this potential can be investigated, and the results can ultimately be included in the corresponding enhancement processes. To exploit this potential, the paper introduces the theoretical concept of food-related architecture as climatic indicators, with reference to the changes in the climate that have occurred during their construction, as well as their abandonment. According to the thesis of the research, the adoption of the concept of climatic indicators can implement the value of selected minor cultural assets, support sustainable rural regeneration plans and integrate missing historical climate series and data. In the Materials and Methods section, two theoretical charts have been introduced, and the pyramid of the Mediterranean diet was analyzed to allow for the selection of some food-related architectures to test the theoretical approach developed. Then, three Italian case studies have been analyzed: the concept of climate indicators was tested, and some potential focus points of actions connected to this aspect were elucidated. The case studies are the Pietragalla wine district in the Basilicata Region, the Apulian rock-cut oil mills and Mills’s Valley in the Campania Region. Full article
(This article belongs to the Special Issue Sustainability for Heritage)
Show Figures

Figure 1

17 pages, 9701 KB  
Article
Research on Optimal Design of Rural Residence Envelope of EPS Module Based on Phase Change Heat Storage
by Kunpeng Wang, Chuan Chen, Liyao Kong and Qianmiao Yang
Buildings 2025, 15(19), 3589; https://doi.org/10.3390/buildings15193589 (registering DOI) - 5 Oct 2025
Abstract
EPS module buildings are prefabricated, low-rise systems with high thermal insulation that are widely used in rural self-built houses in northern China, yet their indoor thermal environments often suffer from instability. This study experimentally verified the effectiveness of microcapsule phase change mortar (PCM [...] Read more.
EPS module buildings are prefabricated, low-rise systems with high thermal insulation that are widely used in rural self-built houses in northern China, yet their indoor thermal environments often suffer from instability. This study experimentally verified the effectiveness of microcapsule phase change mortar (PCM plaster) in improving winter indoor temperatures of EPS module houses. In addition, based on simulation data from 350 design combinations across five representative cold-climate cities and four envelope design variables, the study provides quantitative design guidance for EPS module walls and PCM plaster in rural houses, offering a practical approach to improve indoor thermal stability that has not been previously reported. The main findings are as follows: (1) The thermal transmittance of EPS module walls is the dominant factor influencing indoor thermal performance. For climate adaptability, Type II walls are recommended for severely cold regions, while Type I walls are suitable for cold regions. The application of PCM plaster is not recommended in solar-rich cold regions such as Lhasa due to limited effectiveness. (2) Optimal PCM plaster parameters exist, with the phase change temperature recommended to be 2–4 °C higher than the average indoor operative temperature during the heating period. Specifically, 18 °C is optimal for Type I walls in Yinchuan, Beijing, and Dalian, while 15 °C is more appropriate for Type II walls in Shenyang and Harbin. The corresponding optimal thicknesses are 20 mm for Harbin, Shenyang, and Dalian; 30 mm for Yinchuan; and 40 mm for Beijing, achieving a balance between indoor temperature improvement and construction cost. (3) Operative temperature and discomfort hours are introduced to assess indoor thermal stability, especially in buildings with interior PCM plaster. Full article
(This article belongs to the Section Architectural Design, Urban Science, and Real Estate)
Show Figures

Figure 1

25 pages, 2760 KB  
Article
Impact of Pre- and Post-Emergence Herbicides on Controlling Predominant Weeds at Late-Rainy Season Sugarcane Plantations in Northeastern Thailand
by Sujittra Gongka, Nakorn Jongrungklang, Patcharin Songsri, Sompong Chankaew, Tidarat Monkham and Santimaitree Gonkhamdee
Agronomy 2025, 15(10), 2341; https://doi.org/10.3390/agronomy15102341 (registering DOI) - 5 Oct 2025
Abstract
Weeds are a primary factor affecting sugarcane production and productivity in Thailand. During the late-rainy season, when cultivation is carried out under rainfed conditions, weed competition becomes increasingly severe, prompting farmers to perform secondary weed control using post-emergence herbicides. Therefore, to guide farmers [...] Read more.
Weeds are a primary factor affecting sugarcane production and productivity in Thailand. During the late-rainy season, when cultivation is carried out under rainfed conditions, weed competition becomes increasingly severe, prompting farmers to perform secondary weed control using post-emergence herbicides. Therefore, to guide farmers on the appropriate use of herbicides for effective weed management and long-term control during the critical period of sugarcane growth, this study evaluates the effectiveness of pre- and post-emergence herbicides. Conducted in Northeast Thailand using a randomized complete block design (RCBD) with four replications, the experiment revealed that several pre-emergence herbicides, namely pendimethalin + imazapic (825 + 75 g a.i. ha−1), indaziflam (62.5 g a.i. ha−1), and sulfentrazone (875 g a.i. ha−1), and a combination of indaziflam + sulfentrazone (46.88 + 750 g a.i. ha−1) were applied one day after sugarcane planting, demonstrating high weed control efficacy. These treatments significantly reduced the summed dominance ratio (SDR) of both total weed (41.65–78.54%) and dominant weeds (70.13–86.04%), including Digitaria ciliaris (Retz.) Koel., Dactyloctenium aegyptium (L.), Brachiaria distachya (L.) Stapf, and Cyperus rotundus, compared with the no-weeding treatment. In summary, effective weed management in sugarcane fields under late-rainy season can be achieved through the application of pendimethalin + imazapic at 825 + 75 g a.i. ha−1, which produced the highest sugarcane yield (a 139.00% increasing compared with no weeding) and net profit (a 79.75% increasing compared with hand weeding) in loamy sand soil conditions, where D. ciliaris, D. aegyptium, and C. rotundus were dominant weeds. Similarly, indaziflam at 62.5 g a.i. ha−1 yielded the best results (a 71.68% increasing compared with no weeding) and net profit (a 121.04% increasing compared with no weeding) in sandy loam soil, where B. distachya was the only dominant weed. This weed management strategy is potentially transferable to sugarcane production systems in other regions that share comparable soil properties, climatic conditions, and dominant weed species. Full article
(This article belongs to the Special Issue Ecology and Management of Weeds in Different Situations)
Show Figures

Figure 1

40 pages, 4433 KB  
Article
Economic Convergence Analyses in Perspective: A Bibliometric Mapping and Its Strategic Implications (1982–2025)
by Geisel García-Vidal, Néstor Alberto Loredo-Carballo, Reyner Pérez-Campdesuñer and Gelmar García-Vidal
Economies 2025, 13(10), 289; https://doi.org/10.3390/economies13100289 (registering DOI) - 4 Oct 2025
Abstract
This study presents a bibliometric and thematic analysis of economic convergence analysis from 1982 to 2025, based on a corpus of 2924 Scopus-indexed articles. Using VOSviewer and the bibliometrix R package, this research maps the field’s intellectual structure, identifying five main thematic clusters: [...] Read more.
This study presents a bibliometric and thematic analysis of economic convergence analysis from 1982 to 2025, based on a corpus of 2924 Scopus-indexed articles. Using VOSviewer and the bibliometrix R package, this research maps the field’s intellectual structure, identifying five main thematic clusters: (1) formal statistical models, (2) institutional-contextual approaches, (3) theoretical–statistical foundations, (4) nonlinear historical dynamics, and (5) normative and policy assessments. These reflect a shift from descriptive to explanatory and prescriptive frameworks, with growing integration of sustainability, spatial analysis, and institutional factors. The most productive journals include Journal of Econometrics (121 articles), Applied Economics (117), and Journal of Cleaner Production (81), while seminal contributions by Quah, Im et al., and Levin et al. anchor the co-citation network. International collaboration is significant, with 25.99% of publications involving cross-country co-authorship, particularly in European and North American networks. The field has grown at a compound annual rate of 14.4%, accelerating after 2000 and peaking in 2022–2024, indicating sustained academic interest. These findings highlight the maturation of convergence analysis as a multidisciplinary domain. Practically, this study underscores the value of composite indicators and spatial econometric models for monitoring regional, environmental, and technological convergence—offering policymakers tools for inclusive growth, climate resilience, and innovation strategies. Moreover, the emergence of clusters around sustainability and digital transformation reveals fertile ground for future research at the intersection of transitions in energy, digital, and institutional domains and sustainable development (a broader sense of structural change). Full article
(This article belongs to the Special Issue Regional Economic Development: Policies, Strategies and Prospects)
Show Figures

Figure 1

14 pages, 5038 KB  
Article
The Diversity Pattern of Two Endangered Dung Beetles in China Under the Influence of Climate Change
by Nina Zhang, Yijie Tong, Lulu Li, Ming Lai, Xinpu Wang and Ming Bai
Diversity 2025, 17(10), 696; https://doi.org/10.3390/d17100696 (registering DOI) - 4 Oct 2025
Abstract
Comprehending the effects of climate change on the range of endangered species is essential for formulating successful conservation strategies. This research examines two nationally protected dung beetle species (Heliocopris dominus and Heliocopris bucephalus) in China to forecast their probable habitat range [...] Read more.
Comprehending the effects of climate change on the range of endangered species is essential for formulating successful conservation strategies. This research examines two nationally protected dung beetle species (Heliocopris dominus and Heliocopris bucephalus) in China to forecast their probable habitat range under present and future climate scenarios. Employing MaxEnt modeling with validated occurrence records and environmental variables, we discerned critical factors affecting their distribution and anticipated changes in habitat suitability. Results reveal that isothermality, temperature seasonality, maximum temperature of the warmest month, and annual precipitation are the principal environmental drivers. Presently, appropriate habitats are primarily located in southern Yunnan and Hainan, with future forecasts indicating a northward extension into additional areas. These findings offer critical insights for choosing conservation zones for these vulnerable species amid shifting climate conditions. Full article
(This article belongs to the Special Issue Diversity and Taxonomy of Scarabaeoidea)
Show Figures

Figure 1

29 pages, 2554 KB  
Review
Toxic Alexandrium Treatment in Western Australia: Investigating the Efficacy of Modified Nano Clay
by Cherono Sheilah Kwambai, Houda Ennaceri, Alan J. Lymbery, Damian W. Laird, Jeff Cosgrove and Navid Reza Moheimani
Toxins 2025, 17(10), 495; https://doi.org/10.3390/toxins17100495 (registering DOI) - 4 Oct 2025
Abstract
Alexandrium spp. blooms produce a range of toxins, including spirolides, goniodomins, and paralytic shellfish toxins (PSTs). Of these, PSTs are the most impactful due to their high affinity for voltage-gated sodium ion channels in nerve cell membranes. This interaction can cause neurological effects [...] Read more.
Alexandrium spp. blooms produce a range of toxins, including spirolides, goniodomins, and paralytic shellfish toxins (PSTs). Of these, PSTs are the most impactful due to their high affinity for voltage-gated sodium ion channels in nerve cell membranes. This interaction can cause neurological effects such as paralysis and, in severe cases, may lead to death. Given the implications of Alexandrium blooms on public health, all mitigation, prevention, and treatment strategies aim to reduce their socioeconomic impacts. However, monitoring harmful algal blooms remains difficult due to confounding influences such as pollution, climate change, and the inherent variability of environmental conditions. These factors can complicate early detection and management efforts, especially as the intensity and frequency of blooms continue to rise, further exacerbating their socioeconomic consequences. This review offers insights into several management approaches to prevent and control Alexandrium blooms, focusing on modified nano-clays as a promising emergency mitigation measure for low-density toxic algal blooms, especially in areas predominantly used for recreational fishing. However, it is recommended that treatment be coupled with monitoring to alleviate reliance on treatment alone. Full article
Show Figures

Figure 1

23 pages, 2985 KB  
Review
Analysis of the Durability of Thermal Insulation Properties in Inverted Foundation Slab Systems of Single-Family Buildings in Poland
by Barbara Francke, Dorota Kula and Eugeniusz Koda
Buildings 2025, 15(19), 3579; https://doi.org/10.3390/buildings15193579 (registering DOI) - 4 Oct 2025
Abstract
This manuscript is aimed at analyzing how operating factors may affect the durability of thermal insulation in building partitions located underground. It examines the durability of inverted insulation systems where thermal insulation is installed above the waterproofing layer and used in residential foundation [...] Read more.
This manuscript is aimed at analyzing how operating factors may affect the durability of thermal insulation in building partitions located underground. It examines the durability of inverted insulation systems where thermal insulation is installed above the waterproofing layer and used in residential foundation slabs. The article demonstrates that, despite their popularity due to cost efficiency, the long-term success of these systems depends on thorough investigations of thermal isolation, especially considering different climate conditions. The analysis was based on an extensive literature review (2016–2024), supplemented with laboratory test results on extruded (XPS) and expanded (EPS) polystyrene boards. Additional tests examined the water penetration mechanism into insulation layers that are in direct contact with groundwater, revealing that cyclic freezing and thawing significantly increase moisture levels. The findings highlight the need for updated region-specific guidelines for the underground insulation in Central and Eastern Europe. Full article
(This article belongs to the Section Building Structures)
Show Figures

Figure 1

27 pages, 2297 KB  
Article
Artificial Intelligence Adoption in Non-Chemical Agriculture: An Integrated Mechanism for Sustainable Practices
by Arokiaraj A. Amalan and I. Arul Aram
Sustainability 2025, 17(19), 8865; https://doi.org/10.3390/su17198865 (registering DOI) - 4 Oct 2025
Abstract
Artificial Intelligence (AI) holds significant potential to enhance sustainable non-chemical agricultural methods (NCAM) by optimising resource management, automating precision farming practices, and strengthening climate resilience. However, its widespread adoption among farmers’ remains limited due to socio-economic, infrastructural, and justice-related challenges. This study investigates [...] Read more.
Artificial Intelligence (AI) holds significant potential to enhance sustainable non-chemical agricultural methods (NCAM) by optimising resource management, automating precision farming practices, and strengthening climate resilience. However, its widespread adoption among farmers’ remains limited due to socio-economic, infrastructural, and justice-related challenges. This study investigates AI adoption among NCAM farmers using an Integrated Mechanism for Sustainable Practices (IMSP) conceptual framework which combines the Technology Acceptance Model (TAM) with a justice-centred approach. A mixed-methods design was employed, incorporating Fuzzy-Set Qualitative Comparative Analysis (fsQCA) of AI adoption pathways based on survey data, alongside critical discourse analysis of thematic farmers narrative through a justice-centred lens. The study was conducted in Tamil Nadu between 30 September and 25 October 2024. Using purposive sampling, 57 NCAM farmers were organised into three focus groups: marginal farmers, active NCAM practitioners, and farmers from 18 districts interested in agricultural technologies and AI. This enabled an in-depth exploration of practices, adoption, and perceptions. The findings indicates that while factors such as labour shortages, mobile technology use, and cost efficiencies are necessary for AI adoption, they are insufficient without supportive extension services and inclusive communication strategies. The study refines the TAM framework by embedding economic, cultural, and political justice considerations, thereby offering a more holistic understanding of technology acceptance in sustainable agriculture. By bridging discourse analysis and fsQCA, this research underscores the need for justice-centred AI solutions tailored to diverse farming contexts. The study contributes to advancing sustainable agriculture, digital inclusion, and resilience, thereby supporting the United Nations’ Sustainable Development Goals (SDGs). Full article
Show Figures

Figure 1

23 pages, 2788 KB  
Article
Green Cores as Architectural and Environmental Anchors: A Performance-Based Framework for Residential Refurbishment in Novi Sad, Serbia
by Marko Mihajlovic, Jelena Atanackovic Jelicic and Milan Rapaic
Sustainability 2025, 17(19), 8864; https://doi.org/10.3390/su17198864 - 3 Oct 2025
Abstract
This research investigates the integration of green cores as central biophilic elements in residential architecture, proposing a climate-responsive design methodology grounded in architectural optimization. The study begins with the full-scale refurbishment of a compact urban apartment, wherein interior partitions, fenestration and material systems [...] Read more.
This research investigates the integration of green cores as central biophilic elements in residential architecture, proposing a climate-responsive design methodology grounded in architectural optimization. The study begins with the full-scale refurbishment of a compact urban apartment, wherein interior partitions, fenestration and material systems were reconfigured to embed vegetated zones within the architectural core. Light exposure, ventilation potential and spatial coherence were maximized through data-driven design strategies and structural modifications. Integrated planting modules equipped with PAR-specific LED systems ensure sustained vegetation growth, while embedded environmental infrastructure supports automated irrigation and continuous microclimate monitoring. This plant-centered spatial model is evaluated using quantifiable performance metrics, establishing a replicable framework for optimized indoor ecosystems. Photosynthetically active radiation (PAR)-specific LED systems and embedded environmental infrastructure were incorporated to maintain vegetation viability and enable microclimate regulation. A programmable irrigation system linked to environmental sensors allows automated resource management, ensuring efficient plant sustenance. The configuration is assessed using measurable indicators such as daylight factor, solar exposure, passive thermal behavior and similar elements. Additionally, a post-occupancy expert assessment was conducted with several architects evaluating different aspects confirming the architectural and spatial improvements achieved through the refurbishment. This study not only demonstrates a viable architectural prototype but also opens future avenues for the development of metabolically active buildings, integration with decentralized energy and water systems, and the computational optimization of living infrastructure across varying climatic zones. Full article
(This article belongs to the Special Issue Advances in Ecosystem Services and Urban Sustainability, 2nd Edition)
Show Figures

Figure 1

25 pages, 6201 KB  
Article
Modeling the Habitat Suitability and Range Shift of Daphniphyllum macropodum in China Under Climate Change Using an Optimized MaxEnt Model
by Yangzhou Xiang, Suhang Li, Qiong Yang, Jiaojiao Liu, Ying Liu, Ling Zhao, Hua Lin, Yang Luo, Jun Ren, Xuqiang Luo and Hua Wang
Biology 2025, 14(10), 1360; https://doi.org/10.3390/biology14101360 - 3 Oct 2025
Abstract
Climate change continues to threaten global biodiversity, making it essential to assess how keystone species may shift their distributions and to use these findings to inform conservation planning. This study evaluated the current and future habitat suitability of D. macropodum, an important [...] Read more.
Climate change continues to threaten global biodiversity, making it essential to assess how keystone species may shift their distributions and to use these findings to inform conservation planning. This study evaluated the current and future habitat suitability of D. macropodum, an important tree species within subtropical evergreen broad-leaved forests in China, using 354 occurrence records and a suite of environmental variables. A parameter-optimized MaxEnt model (calibrated with ENMeval; RM = 4, FC = QHPT) was applied to simulate the species’ present distribution and projected changes under three climate scenarios (SSP126, SSP245, SSP585). The main factors influencing distribution were determined to be moisture and temperature seasonality, with the precipitation of the coldest quarter (Bio19, 36.3%), the mean diurnal range (Bio2, 37.5%), and the precipitation of the warmest quarter (Bio18, 14.2%) jointly contributing 88.0% of the total influence. The model projections indicated a 40.1% reduction in the total number of suitable habitats under high-emission scenarios (SSP585) by the 2090s, including a loss of over 80% of highly suitable areas. Centroid movements also diverged across the scenarios: a southwestern shift under SSP126 and SSP245 contrasted with a southeastern shift under SSP585, with each accompanied by significant habitat fragmentation. Key climate refugia were identified primarily in central Taiwan Province and the mountainous zones of Zhejiang and Fujian Provinces, which should be prioritized for conservation activities. These insights offer a foundational understanding for the conservation of D. macropodum and other ecologically similar subtropical evergreen species. However, direct extrapolation to other taxa should be made cautiously, as specific responses may vary based on differing ecological tolerances and dispersal capacities. Further research is needed to test the generalizability of these patterns across diverse plant functional types. Full article
(This article belongs to the Section Conservation Biology and Biodiversity)
Show Figures

Figure 1

15 pages, 1190 KB  
Article
Tropical Weathering Effects on Neat Gasoline: An Analytical Study of Volatile Organic Profiles
by Khairul Osman, Naadiah Ahmad Mazlani, Gina Francesca Gabriel, Noor Hazfalinda Hamzah, Rogayah Abu Hassan, Dzulkiflee Ismail and Wan Nur Syuhaila Mat Desa
Chemosensors 2025, 13(10), 363; https://doi.org/10.3390/chemosensors13100363 - 3 Oct 2025
Abstract
Gasoline is the most common ignitable liquid used to initiate fires, making its detection and identification in fire debris crucial for determining incendiary origins. Fire debris is typically collected after extinguishment and safety clearance, often resulting in gasoline weathering, especially when delayed. Most [...] Read more.
Gasoline is the most common ignitable liquid used to initiate fires, making its detection and identification in fire debris crucial for determining incendiary origins. Fire debris is typically collected after extinguishment and safety clearance, often resulting in gasoline weathering, especially when delayed. Most research on gasoline weathering has been conducted in controlled laboratory settings in temperate climates. However, the effects of tropical conditions on the rate of gasoline weathering and the resulting chemical composition of volatiles remain largely unexplored. Understanding how tropical environmental factors alter gasoline weathering is essential for accurate fire debris interpretation in such regions. This study investigates how tropical climates impact gasoline weathering indoors and outdoors. Weathered samples were prepared by volume reduction method, gradually evaporating gasoline from 10% to 95%. Indoor samples were exposed to room temperature, while outdoor samples were left in open space under natural tropical conditions. Gas Chromatography/Mass Spectrometry (GC-MS) analysis revealed chromatographic shifts in heavier compounds (C3–C4 alkylbenzenes) compared to lighter ones like toluene as weathering progressed. Correlation between indoor and outdoor samples was high (>0.970) at 10–50% weathering but declined (<0.600) at 90–95%, indicating differing patterns. All target compounds remained detectable across all samples. Full article
(This article belongs to the Section Analytical Methods, Instrumentation and Miniaturization)
Show Figures

Graphical abstract

24 pages, 8041 KB  
Article
Stable Water Isotopes and Machine Learning Approaches to Investigate Seawater Intrusion in the Magra River Estuary (Italy)
by Marco Sabattini, Francesco Ronchetti, Gianpiero Brozzo and Diego Arosio
Hydrology 2025, 12(10), 262; https://doi.org/10.3390/hydrology12100262 - 3 Oct 2025
Abstract
Seawater intrusion into coastal river systems poses increasing challenges for freshwater availability and estuarine ecosystem integrity, especially under evolving climatic and anthropogenic pressures. This study presents a multidisciplinary investigation of marine intrusion dynamics within the Magra River estuary (Northwest Italy), integrating field monitoring, [...] Read more.
Seawater intrusion into coastal river systems poses increasing challenges for freshwater availability and estuarine ecosystem integrity, especially under evolving climatic and anthropogenic pressures. This study presents a multidisciplinary investigation of marine intrusion dynamics within the Magra River estuary (Northwest Italy), integrating field monitoring, isotopic tracing (δ18O; δD), and multivariate statistical modeling. Over an 18-month period, 11 fixed stations were monitored across six seasonal campaigns, yielding a comprehensive dataset of water electrical conductivity (EC) and stable isotope measurements from fresh water to salty water. EC and oxygen isotopic ratios displayed strong spatial and temporal coherence (R2 = 0.99), confirming their combined effectiveness in identifying intrusion patterns. The mass-balance model based on δ18O revealed that marine water fractions exceeded 50% in the lower estuary for up to eight months annually, reaching as far as 8.5 km inland during dry periods. Complementary δD measurements provided additional insight into water origin and fractionation processes, revealing a slight excess relative to the local meteoric water line (LMWL), indicative of evaporative enrichment during anomalously warm periods. Multivariate regression models (PLS, Ridge, LASSO, and Elastic Net) identified river discharge as the primary limiting factor of intrusion, while wind intensity emerged as a key promoting variable, particularly when aligned with the valley axis. Tidal effects were marginal under standard conditions, except during anomalous events such as tidal surges. The results demonstrate that marine intrusion is governed by complex and interacting environmental drivers. Combined isotopic and machine learning approaches can offer high-resolution insights for environmental monitoring, early-warning systems, and adaptive resource management under climate-change scenarios. Full article
32 pages, 2827 KB  
Article
Understanding Post-COVID-19 Household Vehicle Ownership Dynamics Through Explainable Machine Learning
by Mahbub Hassan, Saikat Sarkar Shraban, Ferdoushi Ahmed, Mohammad Bin Amin and Zoltán Nagy
Future Transp. 2025, 5(4), 136; https://doi.org/10.3390/futuretransp5040136 - 2 Oct 2025
Abstract
Understanding household vehicle ownership dynamics in the post-COVID-19 era is critical for designing equitable, resilient, and sustainable transportation policies. This study employs an interpretable machine learning framework to model household vehicle ownership using data from the 2022 National Household Travel Survey (NHTS)—the first [...] Read more.
Understanding household vehicle ownership dynamics in the post-COVID-19 era is critical for designing equitable, resilient, and sustainable transportation policies. This study employs an interpretable machine learning framework to model household vehicle ownership using data from the 2022 National Household Travel Survey (NHTS)—the first nationally representative U.S. dataset collected after the onset of the pandemic. A binary classification task distinguishes between single- and multi-vehicle households, applying an ensemble of algorithms, including Random Forest, XGBoost, Support Vector Machines (SVM), and Naïve Bayes. The Random Forest model achieved the highest predictive accuracy (86.9%). To address the interpretability limitations of conventional machine learning approaches, SHapley Additive exPlanations (SHAP) were applied to extract global feature importance and directionality. Results indicate that the number of drivers, household income, and vehicle age are the most influential predictors of multi-vehicle ownership, while contextual factors such as housing tenure, urbanicity, and household lifecycle stage also exert substantial influence highlighting the spatial and demographic heterogeneity in ownership behavior. Policy implications include the design of equity-sensitive strategies such as targeted mobility subsidies, vehicle scrappage incentives, and rural transit innovations. By integrating explainable artificial intelligence into national-scale transportation modeling, this research bridges the gap between predictive accuracy and interpretability, contributing to adaptive mobility strategies aligned with the United Nations Sustainable Development Goals (SDGs), particularly SDG 11 (Sustainable Cities), SDG 10 (Reduced Inequalities), and SDG 13 (Climate Action). Full article
Show Figures

Figure 1

16 pages, 1031 KB  
Article
Analysis of Marginal Expansion in Existing Pressurised Water Installations: Analytical Formulation and Practical Application
by Alfonso Arrieta-Pastrana, Oscar E. Coronado-Hernández and Manuel Saba
Sci 2025, 7(4), 140; https://doi.org/10.3390/sci7040140 - 2 Oct 2025
Abstract
Water supply networks in both developed and developing major cities worldwide were constructed many years ago. Currently, these systems face numerous challenges, including population growth, climate change, emerging technologies, and the policies implemented by local governments. Such factors can impact the design life [...] Read more.
Water supply networks in both developed and developing major cities worldwide were constructed many years ago. Currently, these systems face numerous challenges, including population growth, climate change, emerging technologies, and the policies implemented by local governments. Such factors can impact the design life of water infrastructure, leading to service pressure deficiencies. Consequently, water infrastructure must be reinforced to ensure an adequate and reliable service. This research presents the development of an analytical formulation for hydraulic installations with a pumping station, enabling the calculation of requirements for a new parallel pipeline within an existing water system without altering the current pipe resistance class. To implement the proposed solution, it is essential to maintain the initial pump head by adjusting the impeller size. A construction cost assessment is also undertaken to identify the most cost-effective reinforcement strategy, acknowledging that pipe costs vary significantly with diameter and material, and are proportional to the square of the diameter. The proposed methodology is applied to a 30 km pipeline with a 10% increase in demand, showing that a new parallel pipe of the same diameter as the existing hydraulic installation must be installed to minimise construction costs. A multi-parametric analysis was conducted employing machine learning presets with 309 dataset points. Full article
18 pages, 4698 KB  
Article
Exploring Potential Distribution and Environmental Preferences of Three Species of Dicranomyia (Diptera: Limoniidae: Limoniinae) Across the Western Palaearctic Realm Using Maxent
by Pasquale Ciliberti, Pavel Starkevich and Sigitas Podenas
Insects 2025, 16(10), 1022; https://doi.org/10.3390/insects16101022 - 2 Oct 2025
Abstract
Species distribution models were built for three short-palped crane fly species of the genus Dicranomyia: Dicranomyia affinis, Dicranomyia chorea, and Dicranomyia mitis. The main objective of this study was to assess potential habitat suitability in undersampled regions and explore [...] Read more.
Species distribution models were built for three short-palped crane fly species of the genus Dicranomyia: Dicranomyia affinis, Dicranomyia chorea, and Dicranomyia mitis. The main objective of this study was to assess potential habitat suitability in undersampled regions and explore differences in environmental space. Dicranomyia affinis was historically considered a variety of Dicranomyia mitis due to their morphological similarity. In contrast, Dicranomyia chorea is a widespread species. The biology and ecology of these species remain poorly understood. Models were developed using Maxent, a widely used tool. Our results indicate that Dicranomyia affinis and Dicranomyia chorea share highly similar predicted habitat suitability, with high suitability across the Mediterranean, Central, and Northern Europe, moderate suitability in Eastern Europe, and low suitability in Central Asia. In contrast, Dicranomyia mitis is predicted to have greater habitat suitability in Eastern Europe and Scandinavia, with lower suitability in Mediterranean regions. Analysis of variable importance revealed possible ecological differences between the species. While climatic factors primarily influenced the models for Dicranomyia affinis and Dicranomyia chorea, Dicranomyia mitis was more strongly influenced by the variable pH. These findings may provide insights into potential distributions in undersampled areas and improve our understanding of the species’ ecology. Full article
(This article belongs to the Section Insect Ecology, Diversity and Conservation)
Show Figures

Figure 1

Back to TopTop