Sign in to use this feature.

Years

Between: -

Subjects

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Journals

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Article Types

Countries / Regions

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Search Results (706)

Search Parameters:
Keywords = co-milling

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
16 pages, 11359 KB  
Article
Fracture Resistance of 3-Unit Zirconia Fixed Dental Prostheses Differing in Wall Thickness Fabricated by Either 3D-Printing or Milling
by Stefan Rues, Jannis Crocoll, Sebastian Hetzler, Johannes Rossipal, Peter Rammelsberg and Andreas Zenthöfer
J. Funct. Biomater. 2025, 16(9), 330; https://doi.org/10.3390/jfb16090330 - 5 Sep 2025
Viewed by 179
Abstract
Background: To evaluate the fracture resistance of 3D-printed 3-unit fixed dental prostheses (FDPs) made from tetragonal zirconia polycrystal (3Y-TZP). Methods: Based on a maxillary typodont model with a missing first molar and neighboring teeth with full crown preparations, FDPs differing in wall thickness [...] Read more.
Background: To evaluate the fracture resistance of 3D-printed 3-unit fixed dental prostheses (FDPs) made from tetragonal zirconia polycrystal (3Y-TZP). Methods: Based on a maxillary typodont model with a missing first molar and neighboring teeth with full crown preparations, FDPs differing in wall thickness (d = 0.6 mm / d = 0.8 mm / d = 1.0 mm) were designed. For all test groups, 12 samples were fabricated from 3Y-TZP by either 3D-printing or milling. For 3D-printing, pontic designs were modified by basal slots to enable regular firing times. After luting on CoCr dies, samples underwent artificial aging. Loads tilted by 30° were applied on the mesio-buccal cusp of the pontic, and fracture resistance Fu was assessed. Welch ANOVA and Dunnett-T3 tests were used for statistical evaluation. Results: Significant differences in Fu were identified (Welch ANOVA, p < 0.001). For milled FDPs, fracture originated from connector areas, and Fu increased with increasing wall thickness (d = 0.6 mm: 1536 ± 131 N, d = 0.8 mm: 2226 ± 145 N, d = 1.0 mm: 2686 ± 127 N, significant differences but for the comparison d = 0.8 mm vs. d = 1.0 mm). For 3D-printed FDPs, the loaded cusp fractured, and Fu did not change with FDP wall thicknesses (p > 0.779, Fu = 1110 ± 26 N for all PZ FDPs). Milled FDPs showed significantly higher Fu when compared to 3D-printed FDPs with identical wall thickness. Conclusions: Although 3D-printed zirconia FDPs still show lower fracture resistance values than their milled counterparts, all tested FDP configurations clearly exceed the clinical reference thresholds and can therefore be recommended for clinical use. Full article
(This article belongs to the Section Dental Biomaterials)
Show Figures

Figure 1

19 pages, 2764 KB  
Article
Beyond Monoculture: A Comparative Analysis of Soil Properties and Grain Quality in Rice-Based Co-Culture Systems
by Yang Xu, Geye Ding, Weiwei Ma, Jiao Yuan, Jing Liu, Ziyu Xie, Junde Guo, Linzhi Ou, Huang Huang, Can Chen and Junhua Li
Biology 2025, 14(9), 1195; https://doi.org/10.3390/biology14091195 - 4 Sep 2025
Viewed by 151
Abstract
Rice-based co-culture systems offer sustainable agricultural benefits, yet stage-specific impacts on soil properties and grain quality remain underexplored. This study presented the first comprehensive assessment of the stage-specific effects under conventional tillage (CTL), rice-chicken (RC), rice-fish (RF), and rice-chicken-fish (RCF) systems on soil [...] Read more.
Rice-based co-culture systems offer sustainable agricultural benefits, yet stage-specific impacts on soil properties and grain quality remain underexplored. This study presented the first comprehensive assessment of the stage-specific effects under conventional tillage (CTL), rice-chicken (RC), rice-fish (RF), and rice-chicken-fish (RCF) systems on soil fertility, enzymatic activities, microbial communities, and grain quality. Our novel temporally explicit analysis revealed system- and stage-dependent modulation. RCF increased late-season organic matter by 10.4%, while RC consistently enhanced available potassium. Enzymatic activities exhibited distinct temporal shifts, with RF showing peak catalase activity at heading (0.47 mL g−1 30 min−1), RC maintaining consistently higher invertase activity, and both RF and RCF displaying delayed urease peaks at filling (0.38 mg g−1 24 h−1). Microbial communities were significantly restructured (ANOSIM, R2 = 0.694, p < 0.001), with increased network complexity in co-cultures, particularly in RCF (95 nodes, 153 edges). Grain quality improvements included higher milling recovery (2.6–5.3%) in RC and elevated protein content (16.6%) in RF and RCF, along with reduced chalkiness (20–30%) across all co-cultures. Integrative analysis established linkages between soil properties (e.g., pH, organic matter, invertase), microbial taxa (e.g., Nitrospira, Syntrophus), and grain quality attributes. These findings provide mechanistic insights into soil-plant-microbe interactions and support the implementation of stage-specific management strategies for sustainable rice production systems. Full article
(This article belongs to the Section Microbiology)
Show Figures

Graphical abstract

14 pages, 2971 KB  
Article
Co-Amorphous Andrographolide–Lysine with Unexpectedly Enhanced Solubility
by Haifeng Luo, Yuchen Zheng, Shizhao Ren, Wangchuan Xiao, Rongrong Xue, Wei Han and Fenghua Chen
Crystals 2025, 15(9), 752; https://doi.org/10.3390/cryst15090752 - 25 Aug 2025
Viewed by 424
Abstract
Andrographolide (ADG) is a typical poorly water-soluble drug, and a co-amorphous strategy was used here to improve its aqueous solubility. Co-amorphous systems of ADG and amino acids with a 1:1 molar ratio were screened via the neat ball milling method. L-lysine (Lys) and [...] Read more.
Andrographolide (ADG) is a typical poorly water-soluble drug, and a co-amorphous strategy was used here to improve its aqueous solubility. Co-amorphous systems of ADG and amino acids with a 1:1 molar ratio were screened via the neat ball milling method. L-lysine (Lys) and L-tryptophan (Trp) can be used as co-formers with ADG, forming a co-amorphous phase, which was confirmed by powder X-ray diffraction, IR and Raman spectroscopy. ADG-Trp showed poor solubility at 37 °C, which was close to that of raw ADG (0.08 mg·mL−1). ADG-Lys showed unexpectedly enhanced solubility, at 0.5 mg·mL−1 in the media of water and PBS (pH 7.4) and 0.3 mg·mL−1 in the medium of HCl buffer (pH 1.2) at 37 °C. ADG-Lys showed good storage stability for 5 months, but its thermal stability was poor and it could recrystallize at 100 °C. Compared with ADG-Trp, ADG-Lys has weaker hydrogen bonding interactions and stronger hydrophobic interactions related to ADG molecules, which might cause the unusual enhancement in solubility. To our knowledge, ADG-Lys prepared in this work shows the maximum ADG content (70 wt.%) and the highest ADG solubility among the reported ADG amorphous solid dispersions and co-amorphous systems. Full article
Show Figures

Figure 1

12 pages, 4602 KB  
Article
Structure–Activity Relationships in Ni-Al Mixed Oxides: The Critical Role of a Precursor Anion in the Oxidative Dehydrogenation of Ethane
by Qingzhu Meng, Dongxu Han, Dong Li, Yang Dong, Yanrong Wang, Lian Kong, Wanli Kang, Saule B. Aidarova and Zhen Zhao
Molecules 2025, 30(17), 3465; https://doi.org/10.3390/molecules30173465 - 22 Aug 2025
Viewed by 568
Abstract
The study employed a green, template-free ball milling method to construct a series of Ni-Al mixed oxide catalysts modulated by different nickel precursors (nitrate, acetate, carbonate, sulfate, and chlorate). Through multiscale characterization techniques (XRD, TEM, XPS, H2-TPR, etc.) and catalytic performance [...] Read more.
The study employed a green, template-free ball milling method to construct a series of Ni-Al mixed oxide catalysts modulated by different nickel precursors (nitrate, acetate, carbonate, sulfate, and chlorate). Through multiscale characterization techniques (XRD, TEM, XPS, H2-TPR, etc.) and catalytic performance evaluations, we systematically elucidated the regulatory mechanism of precursor types on the structure-performance relationship. The NiAlOx-CO32− catalyst derived from nickel carbonate exhibited a unique structure, an optimal Ni/Al ratio, and well-tuned active oxygen species, thereby demonstrating exceptional catalytic performance in the oxidative dehydrogenation of ethane (ODHE) at 475 °C with 53.2% ethane conversion, 72.6% ethylene selectivity, and maintained stability over 40 h of continuous operation. Beyond developing high-performance ODHE catalysts, this work establishes a “precursor chemistry–material structure–catalytic performance” relationship model, offering new insights for the rational design of efficient catalysts for light alkane conversion. Full article
Show Figures

Figure 1

15 pages, 7721 KB  
Article
Nutrient Profile, Energy Digestibility in Pigs, and In Vitro Degradation Characteristics of Wheat Flour Milling Co-Products
by Rajesh Jha, Prajwal R. Regmi, Li F. Wang, Andrew Pharazyn and Ruurd T. Zijlstra
Animals 2025, 15(16), 2460; https://doi.org/10.3390/ani15162460 - 21 Aug 2025
Viewed by 381
Abstract
Using wheat flour milling (WFM) co-products in pig diets may reduce feed cost. Still, energy digestibility is lower for WFM co-products than for feed grains. Inadequate information exists about their fermentation characteristics and the relationship between digestible energy (DE) value and chemical characteristics [...] Read more.
Using wheat flour milling (WFM) co-products in pig diets may reduce feed cost. Still, energy digestibility is lower for WFM co-products than for feed grains. Inadequate information exists about their fermentation characteristics and the relationship between digestible energy (DE) value and chemical characteristics or in vitro energy digestibility. The objectives were to (1) determine the chemical characteristics, in vitro and in vivo DE values, and energy digestibility of WFM co-products in growing pigs; (2) determine their in vitro microbial fermentation characteristics, and (3) establish relationships between in vivo DE value of WFM co-products and their chemical composition, fermentation characteristics, or in vitro digestibility values. Across Canada, 94 WFM co-products were sampled and characterized for their chemical composition and in vitro dry matter (DM) and energy digestibility using pepsin, pancreatin, and a multi-enzyme complex containing arabinase, β-glucanase, hemicellulase, xylanase, and cellulase. The in vivo energy, DM digestibility and DE value of 9 WFM co-products (2 shorts, 5 millrun, 1 middling, and 1 bran) were determined using a corn-based diet and 40 growing pigs in two periods to obtain 8 observations per diet. After in vitro digestion, the 9 WFM co-product samples were subjected to microbial fermentation using fresh fecal inoculum in a cumulative gas-production technique. The WFM co-products had a high content of crude fiber (up to 7.9% in shorts, 9.9% in millrun, 7.1% in middlings, and 12.0% in bran) and crude protein (CP; up to 27.8% in shorts, 20.0% in millrun, 22.1% in middlings, 15.9% in bran). The DE values ranged from 2.84 to 3.74 Mcal/kg DM among WFM co-products. Among chemical characteristics, neutral detergent fiber was the best predictor (R2 = 0.81) for in vivo DE value, followed by crude fiber (R2 = 0.78), and acid detergent fiber (R2 = 0.72). The in vitro DE values predicted (R2 = 0.80) in vivo DE values of 9 WFM co-products. Based on principal component analysis, total gas and short-chain fatty acid production varied among WFM co-products and was associated with the CP content of WFM co-products. In conclusion, WFM co-products contain high crude protein and have a high DE value for growing pigs but vary substantially in nutritional value. Full article
(This article belongs to the Section Animal Nutrition)
Show Figures

Figure 1

12 pages, 13126 KB  
Article
Wear Characteristics of WC-Co Cutting Tools Obtained by the U-FAST Method During Particleboard Milling
by Joanna Wachowicz, Zbigniew Bałaga and Piotr Podziewski
Materials 2025, 18(16), 3907; https://doi.org/10.3390/ma18163907 - 21 Aug 2025
Viewed by 476
Abstract
This article presents the wear characteristics of the working surface of WC-Co (Tungsten Carbide–Cobalt) tungsten carbide tools obtained using the innovative U-FAST (Upgraded Field-Assisted Sintering Technology) method for particleboard machining. Three groups of tools with a similar chemical composition but differing WC (Tungsten [...] Read more.
This article presents the wear characteristics of the working surface of WC-Co (Tungsten Carbide–Cobalt) tungsten carbide tools obtained using the innovative U-FAST (Upgraded Field-Assisted Sintering Technology) method for particleboard machining. Three groups of tools with a similar chemical composition but differing WC (Tungsten Carbide) grain sizes were tested. Milling tests were carried out on a CNC (Computer Numerical Control) machine tool with the following cutting parameters: spindle rotation at 15,000 rpm, a feed rate of 0.25 mm per tooth, and a feed rate of 3.75. The experimental results show that tools with submicron WC grit sizes of 0.4 µm and 0.8 µm have the longest tool life. Wear of the cutting edges occurred through the removal of the cobalt bond between the tungsten carbide grains, leading to fracture and mechanical removal of the grains from the cutting edge surface. The similarities in the relative wear characteristics of blades with submicron tungsten carbide grain sizes suggest that micro-abrasion and bond phase extrusion may be the main wear mechanisms under the experimental conditions. Nanometric WC grain size significantly influences tool wear through chipping and cracking. Full article
(This article belongs to the Section Manufacturing Processes and Systems)
Show Figures

Figure 1

22 pages, 11315 KB  
Article
Improvement of Cleaner Composting Production by Manganese Dioxide Nanozyme with Streptomyces rochei ZY-2: From the Humus Formation to Greenhouse Gas Emissions
by Guoxiang Liu, Lili Lin, Jing Zhang, Enhui Sun, Cheng Yong, Ling Chen, Hongying Huang, Hongmei Jin and Ping Qu
Catalysts 2025, 15(8), 774; https://doi.org/10.3390/catal15080774 - 14 Aug 2025
Viewed by 493
Abstract
This study innovatively integrates ball-milled manganese dioxide nanozyme (MDMP) with the Streptomyces rochei ZY-2 inoculant in aerobic rice straw composting. The ZY-2 inoculant efficiently degrades the three major components to generate humus precursors such as phenols and quinones, while the MnO2 nanozyme [...] Read more.
This study innovatively integrates ball-milled manganese dioxide nanozyme (MDMP) with the Streptomyces rochei ZY-2 inoculant in aerobic rice straw composting. The ZY-2 inoculant efficiently degrades the three major components to generate humus precursors such as phenols and quinones, while the MnO2 nanozyme accelerates precursor polymerization into stable humic acid (HA) via oxygen vacancy-mediated catalytic activity. Simultaneously, this combination regulates microbial communities to reduce greenhouse gas emissions. The results show that the co-treatment group (ZY-2+ MnO2 nanozyme) had an increased HA content by 30.8%, raised HA/FA ratio by 31.6%, and degradation rates of 30.75%, 31.39%, and 16.74% for cellulose, hemicellulose, and lignin, respectively. Additionally, cumulative emissions of CH4, N2O, and NH3 were significantly reduced by 35.22%, 28.23%, and 25.67% compared to the control, attributed to the MnO2 nanozyme’s inhibition of methanogens, enhanced nitrogen fixation, and ZY-2-driven microbial metabolic optimization. This study proposes a dual-effect strategy of “enhanced humification-synergistic greenhouse gas mitigation” for agricultural waste recycling, demonstrating significant practical value. Full article
Show Figures

Graphical abstract

21 pages, 3340 KB  
Article
Simulation and Experimental Investigation on the Performance of Co-, Bi-, and La-Doped AgSnO2 Contact Interface Models
by Yihong Lv, Jingqin Wang, Yuxuan Wang, Yancai Zhu and Ying Zhang
Coatings 2025, 15(8), 885; https://doi.org/10.3390/coatings15080885 - 29 Jul 2025
Viewed by 373
Abstract
The inferior electrical conductivity and elevated hardness of AgSnO2 electrical contact materials have impeded their development. To investigate the effects of Co, Bi, and La doping on the stability and electrical properties of AgSnO2, this study established interfacial models of [...] Read more.
The inferior electrical conductivity and elevated hardness of AgSnO2 electrical contact materials have impeded their development. To investigate the effects of Co, Bi, and La doping on the stability and electrical properties of AgSnO2, this study established interfacial models of doped AgSnO2 based on first-principles calculations initiated from the atomic structures of constituent materials, subsequently computing electronic structure parameters. The results indicate that doping effectively enhances the interfacial stability and bonding strength of AgSnO2 and thereby predicted improved electrical contact performance. Doped SnO2 powders were prepared experimentally using the sol–gel method, and AgSnO2 contacts were fabricated using high-energy ball milling and powder metallurgy. Testing of wettability and electrical contact properties revealed reductions in arc energy, arcing time, contact resistance, and welding force post-doping. Three-dimensional profilometry and scanning electron microscopy (SEM) were employed to characterize electrical contact surfaces, elucidating the arc erosion mechanism of AgSnO2 contact materials. Among the doped variants, La-doped electrical contact materials exhibited optimal performance (the lowest interfacial energy was 1.383 eV/Å2 and wetting angle was 75.6°). The mutual validation of experiments and simulations confirms the feasibility of the theoretical calculation method. This study provides a novel theoretical method for enhancing the performance of AgSnO2 electrical contact materials. Full article
Show Figures

Figure 1

21 pages, 1206 KB  
Article
Evaluation of Olive Mill Waste Compost as a Sustainable Alternative to Conventional Fertilizers in Wheat Cultivation
by Ana García-Rández, Silvia Sánchez Méndez, Luciano Orden, Francisco Javier Andreu-Rodríguez, Miguel Ángel Mira-Urios, José A. Sáez-Tovar, Encarnación Martínez-Sabater, María Ángeles Bustamante, María Dolores Pérez-Murcia and Raúl Moral
Agriculture 2025, 15(14), 1543; https://doi.org/10.3390/agriculture15141543 - 17 Jul 2025
Viewed by 644
Abstract
This study evaluates the agronomic and environmental performance of pelletized compost derived from olive mill waste as a sustainable alternative to mineral fertilizers for cultivating wheat (Triticum turgidum L.) under conventional tillage methods. A field experiment was conducted in semi-arid Spain, employing [...] Read more.
This study evaluates the agronomic and environmental performance of pelletized compost derived from olive mill waste as a sustainable alternative to mineral fertilizers for cultivating wheat (Triticum turgidum L.) under conventional tillage methods. A field experiment was conducted in semi-arid Spain, employing three fertilization strategies: inorganic (MAP + Urea), sewage sludge (SS), and organic compost pellets (OCP), each providing 150 kg N ha−1. The parameters analyzed included wheat yield, grain quality, soil properties, and greenhouse gas (GHG) emissions. Inorganic fertilization yielded the highest productivity and nutrient uptake. However, the OCP treatment reduced grain yield by only 15%, while improving soil microbial activity and enzymatic responses. The SS and OCP treatments showed increased CO2 and N2O emissions compared to the control and inorganic plots. However, the OCP treatment also acted as a CH4 sink. Nutrient use efficiency was greatest under mineral fertilization, though the OCP treatment outperformed the SS treatment. These results highlight the potential of OCP as a circular bio-based fertilizer that can enhance soil function and partially replace mineral inputs. Optimizing application timing is critical to aligning nutrient release with crop demand. Further long-term trials are necessary to evaluate their impact on the soil and improve environmental outcomes. Full article
Show Figures

Figure 1

26 pages, 5094 KB  
Article
Dynamic Life Cycle Assessment of Low-Carbon Transition in Asphalt Pavement Maintenance: A Multi-Scale Case Study Under China’s Dual-Carbon Target
by Luyao Zhang, Wei Tian, Bobin Wang and Xiaomin Dai
Sustainability 2025, 17(14), 6540; https://doi.org/10.3390/su17146540 - 17 Jul 2025
Viewed by 642
Abstract
Against the backdrop of China’s “dual-carbon” initiative, this study innovatively applies a process-based life cycle assessment (PLCA) methodology, meticulously tracking energy and carbon flows across material production, transportation, and maintenance processes. By comparing six asphalt pavement maintenance technologies in Xinjiang, the research reveals [...] Read more.
Against the backdrop of China’s “dual-carbon” initiative, this study innovatively applies a process-based life cycle assessment (PLCA) methodology, meticulously tracking energy and carbon flows across material production, transportation, and maintenance processes. By comparing six asphalt pavement maintenance technologies in Xinjiang, the research reveals that milling and resurfacing (MR) exhibits the highest energy consumption 250,809 MJ/103 m2) and carbon emissions (15,095.67 kg CO2/103 m2), while preventive techniques like hot asphalt grouting reduce emissions by up to 87%. The PLCA approach uncovers a critical insight: 40–60% of total emissions originate from the raw material production phase, with cement and asphalt identified as primary contributors. This granular analysis, unique in regional road maintenance research, challenges traditional assumptions and emphasizes the necessity of upstream intervention. By contrasting reactive and preventive strategies, the study validates that early-stage maintenance aligns seamlessly with circular economy principles. Tailored to a local arid climate and vast transportation network, the study concludes that prioritizing preventive maintenance, adopting low-carbon materials, and optimizing logistics can significantly decarbonize road infrastructure. These region-specific strategies, underpinned by the novel application of PLCA, not only provide actionable guidance for local policymakers but also offer a replicable framework for sustainable road development worldwide, bridging the gap between scientific research and practical decarbonization efforts. Full article
Show Figures

Figure 1

18 pages, 1790 KB  
Article
Development of Co-Amorphous Systems for Inhalation Therapy—Part 1: From Model Prediction to Clinical Success
by Eleonore Fröhlich, Aurora Bordoni, Nila Mohsenzada, Stefan Mitsche, Hartmuth Schröttner and Sarah Zellnitz-Neugebauer
Pharmaceutics 2025, 17(7), 922; https://doi.org/10.3390/pharmaceutics17070922 - 16 Jul 2025
Viewed by 576
Abstract
Background/Objectives: The integration of machine learning (ML) and artificial intelligence (AI) has revolutionized the pharmaceutical industry by improving drug discovery, development and manufacturing processes. Based on literature data, an ML model was developed by our group to predict the formation of binary [...] Read more.
Background/Objectives: The integration of machine learning (ML) and artificial intelligence (AI) has revolutionized the pharmaceutical industry by improving drug discovery, development and manufacturing processes. Based on literature data, an ML model was developed by our group to predict the formation of binary co-amorphous systems (COAMSs) for inhalation therapy. The model’s ability to develop a dry powder formulation with the necessary properties for a predicted co-amorphous combination was evaluated. Methods: An extended experimental validation of the ML model by co-milling and X-ray diffraction analysis for 18 API-API (active pharmaceutical ingredient) combinations is presented. Additionally, one COAMS of rifampicin (RIF) and ethambutol (ETH), two first-line tuberculosis (TB) drugs are developed further for inhalation therapy. Results: The ML model has shown an accuracy of 79% in predicting suitable combinations for 35 APIs used in inhalation therapy; experimental accuracy was demonstrated to be 72%. The study confirmed the successful development of stable COAMSs of RIF-ETH either via spray-drying or co-milling. In particular, the milled COAMSs showed better aerosolization properties (higher ED and FPF with lower standard deviation). Further, RIF-ETH COAMSs show much more reproducible results in terms of drug quantity dissolved over time. Conclusions: ML has been shown to be a suitable tool to predict COAMSs that can be developed for TB treatment by inhalation to save time and cost during the experimental screening phase. Full article
(This article belongs to the Special Issue New Platform for Tuberculosis Treatment)
Show Figures

Graphical abstract

11 pages, 960 KB  
Article
Influence of the Milling Cutter Drill on Implant Placement Accuracy in Partially Guided Surgery: An In Vitro Experimental Study
by Ana Raquel Ferreira, Catarina Mendes Fonseca, André Correia and Patrícia Fonseca
Appl. Sci. 2025, 15(14), 7826; https://doi.org/10.3390/app15147826 - 12 Jul 2025
Viewed by 384
Abstract
Partially guided implant surgery has emerged as a technique that enhances the precision of implant placement while maintaining surgical flexibility. This in vitro experimental study evaluated the influence of the milling cutter drill on the angular and linear deviations of implant placement in [...] Read more.
Partially guided implant surgery has emerged as a technique that enhances the precision of implant placement while maintaining surgical flexibility. This in vitro experimental study evaluated the influence of the milling cutter drill on the angular and linear deviations of implant placement in synthetic polyurethane bone models using a partially guided surgical protocol. Additionally, the effects of bone density and implant macrogeometry were assessed. A total of 120 Straumann® implants (BL, BLT, and BLX) were placed in polyurethane blocks simulating four bone densities (D1–D4). Implant positions were virtually planned with coDiagnostiX® (version 10.9) software and executed with or without the use of the milling cutter drill. Deviations between planned and final implant positions were measured at the neck and apex using the software’s “Treatment Evaluation” tool. The use of the milling cutter drill significantly reduced angular deviation (p = 0.007), while linear deviations showed no statistically significant differences. Bone density and implant macrogeometry did not significantly affect angular deviation but influenced linear and 3D deviations. Given that angular deviation may compromise prosthetic fit and biomechanical function, the observed reduction is of potential clinical relevance. These findings indicate that the milling cutter drill enhances angular accuracy in partially guided implant surgery and may improve outcomes in anatomically challenging cases. However, the results should be interpreted within the limitations of this in vitro model, including the absence of soft tissue simulation, intraoral constraints, and inter-operator variability. Full article
Show Figures

Figure 1

15 pages, 4232 KB  
Article
The Growth Kinetic and Ultra High Hardness of CoCrFeNiTi High–Entropy Alloy by Mechanical Alloying and Spark Plasma Sintering
by Tiejun Qu, Mingpu Liu, Chuanhua Yang, Xin Wang and Junfa Wang
Materials 2025, 18(14), 3242; https://doi.org/10.3390/ma18143242 - 9 Jul 2025
Viewed by 471
Abstract
In this paper, the impact of mechanical alloying (MA) and spark plasma sintering (SPS) on the phase evolution and mechanical properties development of CoCrFeNiTi high–entropy alloys (HEAs) was investigated. The microstructure and properties of the material were examined, using X-ray diffraction (XRD) for [...] Read more.
In this paper, the impact of mechanical alloying (MA) and spark plasma sintering (SPS) on the phase evolution and mechanical properties development of CoCrFeNiTi high–entropy alloys (HEAs) was investigated. The microstructure and properties of the material were examined, using X-ray diffraction (XRD) for phase identification, scanning electron microscopy (SEM) for surface morphology observation, transmission electron microscopy (TEM) for microstructural analysis, and hardness testing to evaluate mechanical performance. The milled powder exhibited nanocrystalline solid solution microstructure with grain sizes below 48 nm, composed of 83% face–centered cubic (FCC) and 17% body–centered cubic (BCC) phases. Mechanically, the bulk CoCrFeNiTi alloy exhibited exceptional strength attributes, as evidenced by a Vickers hardness value reaching 675 Hv, along with a compressive strength of 1894 MPa and a yield stress of 1238 MPa. These findings suggested that the synergistic effects of mechanical alloying and SPS processing can precisely control the phase stability, microstructure refinement, and property optimization in CoCrFeNiTi HEA, with particular promise for advanced structural applications. Full article
(This article belongs to the Special Issue Advances in Plasma and Laser Engineering (Second Edition))
Show Figures

Figure 1

15 pages, 1683 KB  
Review
Three-Dimensional Printing and CAD/CAM Milling in Prosthodontics: A Scoping Review of Key Metrics Towards Future Perspectives
by Catalina Cioloca Holban, Monica Tatarciuc, Anca Mihaela Vitalariu, Roxana-Ionela Vasluianu, Magda Antohe, Diana Antonela Diaconu, Ovidiu Stamatin and Ana Maria Dima
J. Clin. Med. 2025, 14(14), 4837; https://doi.org/10.3390/jcm14144837 - 8 Jul 2025
Viewed by 755
Abstract
Background/Objectives: Digital prosthodontics increasingly utilize both additive (3D printing) and subtractive Computer-Aided Design/Computer-Aided Manufacturing (CAD/CAM), yet comprehensive comparisons remain limited. This scoping review evaluates their relative performance across prosthodontic applications. Methods: Systematic searches (PubMed, Scopus, Web of Science, Embase, 2015–2025) identified [...] Read more.
Background/Objectives: Digital prosthodontics increasingly utilize both additive (3D printing) and subtractive Computer-Aided Design/Computer-Aided Manufacturing (CAD/CAM), yet comprehensive comparisons remain limited. This scoping review evaluates their relative performance across prosthodontic applications. Methods: Systematic searches (PubMed, Scopus, Web of Science, Embase, 2015–2025) identified 28 studies (27 in vitro, 1 retrospective). Data were extracted on accuracy, efficiency, materials, and outcomes. Results: CAD/CAM milling demonstrated superior accuracy for fixed prostheses, with marginal gaps for milled zirconia (123.89 ± 56.89 µm), comparable to optimized 3D-printed interim crowns (123.87 ± 67.42 µm, p = 0.760). For removable prostheses, milled denture bases achieved a trueness of 65 ± 6 µm, while SLA-printed dentures post-processed at 40 °C for 30 min showed the lowest root mean square error (RMSE) (30 min/40 °C group). Three-dimensional printing excelled in material efficiency (<5% waste vs. milling > 30–40%) and complex geometries, such as hollow-pontic fixed dental prostheses (FDPs) (2.0 mm wall thickness reduced gaps by 33%). Build orientation (45° for crowns, 30–45° for veneers) and post-processing protocols significantly influenced accuracy. Milled resins exhibited superior color stability (ΔE00: 1.2 ± 0.3 vs. 3D-printed: 4.5 ± 1.1, p < 0.05), while 3D-printed Co-Cr frameworks (SLM) showed marginal fits of 8.4 ± 3.2 µm, surpassing milling (130.3 ± 13.8 µm). Digital workflows reduced chairside time by 29% (154.31 ± 13.19 min vs. 218.00 ± 20.75 min). All methods met clinical thresholds (<120 µm gaps). Conclusions: Milling remains preferred for high-precision fixed prostheses, while 3D printing offers advantages in material efficiency, complex designs, and removable applications. Critical gaps include long-term clinical data and standardized protocols. Future research should prioritize hybrid workflows, advanced materials, and AI-driven optimization to bridge technical and clinical gaps. Full article
Show Figures

Figure 1

19 pages, 26828 KB  
Article
Synergistic Effects of Elevated CO2 and Enhanced Light Intensity on Growth Dynamics, Stomatal Phenomics, Leaf Anatomy, and Photosynthetic Performance in Tomato Seedlings
by Tonghua Pan, Wenya Zhang, Wentao Du, Bingyan Fu, Xiaoting Zhou, Kai Cao, Encai Bao, Yunlong Wang and Gaoqiang Lv
Horticulturae 2025, 11(7), 760; https://doi.org/10.3390/horticulturae11070760 - 1 Jul 2025
Viewed by 471
Abstract
Elevated [CO2] enhances light interception and carboxylation efficiency in plants. The combined effects of [CO2] and photosynthetic photon flux density (PPFD) on stomatal morphology, leaf anatomy, and photosynthetic capacity in tomato seedlings remain unclear. This study subjected tomato seedlings [...] Read more.
Elevated [CO2] enhances light interception and carboxylation efficiency in plants. The combined effects of [CO2] and photosynthetic photon flux density (PPFD) on stomatal morphology, leaf anatomy, and photosynthetic capacity in tomato seedlings remain unclear. This study subjected tomato seedlings (Solanum lycopersicum Mill. cv. Jingpeng No.1) to two [CO2] (ambient [a[CO2], 400 µmol·mol−1] and enriched [e[CO2], 800 µmol·mol−1]) and three PPFD levels (L; low[Ll: 200 µmol·m−2·s−1], moderate[Lm: 300 µmol·m−2·s−1], and high[Lh: 400 µmol·m−2·s−1]) to assess their interactive impacts. Results showed that e[CO2] and increased PPFD synergistically improved relative growth rate and net assimilation rate while reducing specific leaf area and leaf area ratio. Notably, e[CO2] decreased stomatal aperture (−13.81%) and density (−27.76%), whereas elevated PPFD promoted stomatal morphological adjustments. Additionally, Leaf thickness increased by 72.98% under e[CO2], with Lm and Lh enhancing this by 10.79% and 41.50% compared to Ll. Furthermore, photosynthetic performance under e[CO2] was further evidenced by improved chlorophyll fluorescence parameters (excluding non-photochemical quenching). While both e[CO2] and increased PPFD Photosynthetic performance under e[CO2] was further evidenced by improved chlorophyll fluorescence parameters (excluding non-photochemical quenching). Moreover, e[CO2]-Lh treatment maximized total dry mass and seedling health index. Correlation analysis indicated that synergistic optimization of stomatal traits and leaf structure under a combination of e[CO2] and increased PPFD enhanced light harvesting and CO2 diffusion, thereby promoting carbon assimilation. These findings highlight e[CO2]-Lh as an optimal strategy for tomato seedling growth, providing empirical guidance for precision CO2 fertilization and light management in controlled cultivation. Full article
(This article belongs to the Special Issue Latest Advances in Horticulture Production Equipment and Technology)
Show Figures

Figure 1

Back to TopTop