Sign in to use this feature.

Years

Between: -

Subjects

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Journals

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Article Types

Countries / Regions

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Search Results (1,502)

Search Parameters:
Keywords = coal combustion

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
16 pages, 1327 KiB  
Article
Prediction of Carbon Emission Reductions from Electric Vehicles Instead of Fuel Vehicles in Urban Transportation
by Hailong Jiang, Lichun Jia, Dongyu Su and Xiao Li
Processes 2025, 13(9), 2692; https://doi.org/10.3390/pr13092692 - 24 Aug 2025
Abstract
Advanced transportation, especially electric transportation, plays an increasingly significant role in the reduction of CO2 emissions in urban traffic. A life-cycle CO2 emission model in which traditional fossil fuels and electricity are considered is a key method to analyze the potential [...] Read more.
Advanced transportation, especially electric transportation, plays an increasingly significant role in the reduction of CO2 emissions in urban traffic. A life-cycle CO2 emission model in which traditional fossil fuels and electricity are considered is a key method to analyze the potential of transportation emission reduction. In this study, the life-cycle CO2 emissions of gasoline, diesel, natural gas, and electricity generated during the production, transportation, and consumption were modeled and calculated. The influence of coal power generation, coal combustion, seasonal energy consumption, and travel patterns on the CO2 emissions of electric vehicles was discussed. The analysis results show that the life-cycle CO2 emissions of automobile fuels in the process of combustion, processing, mining, and transportation are from the largest to the smallest. If the proportion of coal power generation is reduced to 50% by replacing gasoline vehicles with electric vehicles, emissions can be reduced by about 48.2%. At the same time, the scale of traffic in different months and in different periods of time of the day causes seasonal energy consumption fluctuations and regular fuel consumption variations of electric vehicles. The cyclical carbon reduction effect can be amplified if measures such as replacing fuel cars in spring and fall, and during peak hours, are used. Full article
Show Figures

Figure 1

39 pages, 2781 KiB  
Article
Evaluation of Technological Alternatives for the Energy Transition of Coal-Fired Power Plants, with a Multi-Criteria Approach
by Jessica Valeria Lugo, Norah Nadia Sánchez Torres, Renan Douglas Lopes da Silva Cavalcante, Taynara Geysa Silva do Lago, João Alves de Lima, Jorge Javier Gimenez Ledesma and Oswaldo Hideo Ando Junior
Energies 2025, 18(17), 4473; https://doi.org/10.3390/en18174473 - 22 Aug 2025
Abstract
This paper investigates technological pathways for the conversion of coal-fired power plants toward sustainable energy sources, using an integrated multi-criteria decision-making approach that combines Proknow-C, AHP, and PROMETHEE. Eight alternatives were identified: full conversion to natural gas, full conversion to biomass, coal and [...] Read more.
This paper investigates technological pathways for the conversion of coal-fired power plants toward sustainable energy sources, using an integrated multi-criteria decision-making approach that combines Proknow-C, AHP, and PROMETHEE. Eight alternatives were identified: full conversion to natural gas, full conversion to biomass, coal and natural gas hybridization, coal and biomass hybridization, electricity and hydrogen cogeneration, coal and solar energy hybridization, post-combustion carbon capture systems, and decommissioning with subsequent reuse. The analysis combined bibliographic data (26 scientific articles and 13 patents) with surveys from 14 energy experts, using Total Decision version 1.2.1041.0 and Visual PROMETHEE version 1.1.0.0 software tools. Based on six criteria (environmental, structural, technical, technological, economic, and social), the most viable option was full conversion to natural gas (ϕ = +0.0368), followed by coal and natural gas hybridization (ϕ = +0.0257), and coal and solar hybridization (ϕ = +0.0124). These alternatives emerged as the most balanced in terms of emissions reduction, infrastructure reuse, and cost efficiency. In contrast, decommissioning (ϕ = −0.0578) and carbon capture systems (ϕ = −0.0196) were less favorable. This study proposes a structured framework for strategic energy planning that supports a just energy transition and contributes to the United Nations Sustainable Development Goals (SDGs) 7 and 13, highlighting the need for public policies that enhance the competitiveness and scalability of sustainable alternatives. Full article
(This article belongs to the Special Issue Advanced Energy Conversion Technologies Based on Energy Physics)
Show Figures

Figure 1

28 pages, 3804 KiB  
Article
Sustainable Management of Bottom Ash and Municipal Sewage Sludge as a Source of Micronutrients for Biomass Production
by Jacek Antonkiewicz, Beata Kołodziej, Maja Bryk, Magdalena Kądziołka, Robert Pełka and Tilemachos Koliopoulos
Sustainability 2025, 17(16), 7493; https://doi.org/10.3390/su17167493 - 19 Aug 2025
Viewed by 212
Abstract
Sustainable waste management is one of the most serious global challenges today. Reusing waste materials can be an effective alternative to landfill, while recovering valuable nutrients. The purpose of this six-year field study was to investigate the potential of bottom ash from combustion [...] Read more.
Sustainable waste management is one of the most serious global challenges today. Reusing waste materials can be an effective alternative to landfill, while recovering valuable nutrients. The purpose of this six-year field study was to investigate the potential of bottom ash from combustion of bituminous coal or biomass and municipal sewage sludge, and different doses of the waste mixtures, as a micronutrient source for plants. Yield, concentration, concentration index, uptake and simplified balance of the micronutrients (manganese, iron, molybdenum, cobalt, aluminium) in plant biomass were measured. Results showed that the wastes differently affected the parameters studied, which generally increased via treatment as follows: coal ash, biomass ash < coal or biomass ash mixtures with sewage sludge < sewage sludge. Irrespective of treatment, micronutrient recovery rate followed the following trend: Mn > Mo > Fe > Co > Al, from 0.32–25.82% for Mn to 0.04–0.28% for Al. For individual elements, recovery depended on waste. For Mn, Fe and Al, the application of ash separately or in mixtures with sludge at higher doses reduced recovery (0.04–0.78%). For Mn, Fe, Al and Mo, the application of ash–sludge mixtures at lower doses increased recovery (0.11–5.82%), with the highest recoveries when sludge was used separately (0.28–25.82%). For Co, the separate application of sewage sludge and ash–sludge mixture at the lower dose increased recovery (2.41–2.52%), with the highest Co recovery following the separate application of coal ash (2.78%). Ash, sludge and their mixtures were a valuable source of micronutrients for plants. Ash–sludge mixtures improved micronutrient uptake compared to ash used separately. Application of these wastes as fertilisers aligns with the EU Action Plan on the Circular Economy and can contribute to achieving SDGs 2 and 12. Full article
(This article belongs to the Special Issue Organic Matter Degradation, Biomass Conversion and CO2 Reduction)
Show Figures

Figure 1

12 pages, 3032 KiB  
Article
Modeling of the Characteristics of Coal Burning in Boiler Plants of Thermal Power Plants
by Mirjana Ceranic, Nikola Davidovic, Marko Jaric, Slavko Djuric, Goran Kuzmic and Milan Milotic
Processes 2025, 13(8), 2618; https://doi.org/10.3390/pr13082618 - 18 Aug 2025
Viewed by 342
Abstract
This script discusses a qualitative analysis of the characteristics of coals burned in the combustion chambers of thermal power plants in Serbia. The study includes the following coal characteristics (mass fraction): moisture (W %) ash (A %), [...] Read more.
This script discusses a qualitative analysis of the characteristics of coals burned in the combustion chambers of thermal power plants in Serbia. The study includes the following coal characteristics (mass fraction): moisture (W %) ash (A %), combustible materials (Vg %) and lower heating power (Hd (kJ·kg1)). Based on the collected data, statistical modeling was conducted, which included the calculation of the mean value (X¯), standard deviation (S), and coefficient of variation (Cv) for each of the listed characteristics. The results indicate that all analyzed characteristics exhibit significant deviations from their mean values, as confirmed by the high values of the coefficient of variation (moisture 70.20%, ash 62.21%, combustible matter 43.33%, and lower heating value 44.10%). Large mass fraction deviations (W), (A), (Vg)  and Hd around the mean value may negatively impact the operation of boiler plants and electrostatic precipitators of thermal power plants in Serbia, where the considered coals are burned. Large oscillations of ash (62.21%) around the mean value (17.00%) suggests that it is not feasible to implement dry flue-gas desulfurization (FGD) processes, due to the additional amount of ash. Distribution testing confirmed that all examined parameters can be reasonably approximated by a normal distribution. Subsequent statistical modeling using Student’s t-test at a 0.05 significance level demonstrated strong agreement between the coal characteristics from Serbia and corresponding parameters of coals from Bosnia and Herzegovina and Montenegro. The obtained results enable reliable quality comparison of coals, particularly lignites, across different basins. These findings establish a solid foundation for further energy and technological valorization of these fuel resources. Full article
(This article belongs to the Section Energy Systems)
Show Figures

Figure 1

22 pages, 4532 KiB  
Article
Research on Deep Separation Technology of Multi–Source By–Products in Coking Coal
by Andile Khumalo, Chuanzhen Wang, Tao Tan and Md. Shakhaoath Khan
ChemEngineering 2025, 9(4), 92; https://doi.org/10.3390/chemengineering9040092 - 18 Aug 2025
Viewed by 294
Abstract
This study proposes considering the effective re–benefication of coal middlings and other such considered waste materials as a way to ensure that clean coal in coal by–products can be extracted and effectively utilized, saving costs and reducing coal waste. To quantify the clean–coal [...] Read more.
This study proposes considering the effective re–benefication of coal middlings and other such considered waste materials as a way to ensure that clean coal in coal by–products can be extracted and effectively utilized, saving costs and reducing coal waste. To quantify the clean–coal yield and ash reduction that can be achieved by re–beneficiating four typical by–product streams from the Guobei Coal Preparation Plant (6 Mt a−1) were used for the study. Coking–coal middlings, flotation tailings, and pressure–filter cakes from preparation plants still contain 30–60% combustible matter. Re–beneficiation techniques have been considered to recover this often-wasted coal, reduce waste rock disposal, and cut greenhouse–gas emissions per ton of clean coal produced. Representative samples (n = 4) were collected, sample size–classified as (fine coal particles ≤0.5 mm and coarse particles ≥) and subjected to (i) magnetite removal, (ii) laboratory froth flotation (diesel 507 g t−1, sec–octanol 103 g t−1), and (iii) fine and large particle density separation at 1.3–1.8 g cm−3 ZnCO3 media. Clean–coal yield and ash were measured for each stream and the coal’s particle liberation was examined by SEM. Crushing, grinding and liberation equipment and techniques that aid in the treatment of coal and the re–beneficiation of coal middlings and tailings. The key findings recorded during the experiment are as follows: Flotation of <0.5 mm fractions delivered 46.9–58.3% clean–coal yield at 10.3–17.0% ash. Density separation of 0.5–1.0 mm middlings peaked at 1.4–1.5 g cm−3, yielding 34.2% clean coal at 15–18.4% ash. Scanning Electron Microscope analysis confirmed partial liberation as results from re–grinding + second flotation which increased yield by a further 8–12%. A calculated theoretical examination of the preliminary cost–benefit analysis indicates ≈36 CNY t−1≈9 million CNY a−1 in saved disposal costs alone. savings in disposal and 0.25 Mt a−1 additional clean coal for the Guobei plant. The research presented in this paper highlights the current work by Anhui University of Science and technology in collaboration with Guobei coal preparation plant and the results therein achieved. Full article
Show Figures

Figure 1

18 pages, 8063 KiB  
Article
Concentration Characteristics, Source Analysis, and Health Risk Assessment of Water-Soluble Heavy Metals in PM2.5 During Winter in Taiyuan, China
by Qingyu Hu, Chao Zhang, Yang Chen, Nan Pei, Yufeng Zhao, Lijuan Sun, Jie Lan, Fengxian Liu, Ziyong Guo, Ling Mu, Jiancheng Wang and Xinhui Bi
Atmosphere 2025, 16(8), 980; https://doi.org/10.3390/atmos16080980 - 17 Aug 2025
Viewed by 443
Abstract
To address the research gap on water-soluble heavy metals (WSHMs) in Taiyuan, China, we conducted a winter campaign (18–29 January 2019) at an urban site to measure fifteen WSHMs (Zn, Fe, Mn, Ba, Cu, Se, As, Sb, Sn, Pb, Ni, V, Ti, Cd, [...] Read more.
To address the research gap on water-soluble heavy metals (WSHMs) in Taiyuan, China, we conducted a winter campaign (18–29 January 2019) at an urban site to measure fifteen WSHMs (Zn, Fe, Mn, Ba, Cu, Se, As, Sb, Sn, Pb, Ni, V, Ti, Cd, and Co). The mean concentration of total WSHMs (∑WSHMs) in PM2.5 was 209.17 ± 187.21 ng m−3. Notably, the mass concentrations of ∑WSHMs on heavy pollution days (291.01 ± 170.64 ng m−3) were 224.8% higher than those on mild pollution days (89.61 ± 55.36 ng m−3). Principal component analysis (PCA) was applied in combination with absolute principal component score–multiple linear regression (APCS-MLR) to analyze pollution sources and their contributions. The results showed that the main sources of pollution were coal combustion and vehicle emissions (42.50%), along with the metallurgical industry and natural dust (34.47%). The carcinogenic and non-carcinogenic risks of WSHMs were assessed for both adults and children based on the United States Environmental Protection Agency’s (U.S. EPA) assessment guidelines and the International Agency for Research on Cancer (IARC) database. Children faced higher non-carcinogenic risks (hazard index = 2.37) than adults (hazard index = 0.30), exceeding the safety threshold (hazard index = 1). The total carcinogenic risk reached 2.20 × 10−5, exceeding the threshold value (1 × 10−6) for carcinogenic risk. Water-soluble arsenic (As) dominated both carcinogenic and non-carcinogenic risks in winter and was the riskiest element. These findings provide an essential basis for controlling PM2.5-bound WSHMs in industrialized areas. Full article
(This article belongs to the Section Air Quality and Health)
Show Figures

Figure 1

19 pages, 7660 KiB  
Article
The Impact of Photochemical Loss on the Source Apportionment of Ambient Volatile Organic Compounds (VOCs) and Their Ozone Formation Potential in the Fenwei Plain, Northern China
by Yanan Tao, Qi Xiong, Yawei Dong, Jiayin Zhang, Lei Cao, Min Zhu, Qiaoqiao Wang and Jianwei Gu
Atmosphere 2025, 16(8), 970; https://doi.org/10.3390/atmos16080970 - 15 Aug 2025
Viewed by 505
Abstract
The Fenwei Plain (FWP), one of China’s most polluted regions, has experienced severe ozone (O3) pollution in recent years. Volatile organic compounds (VOCs), key O3 precursors, undergo significant photochemical degradation, yet their loss and the implications for source apportionment and [...] Read more.
The Fenwei Plain (FWP), one of China’s most polluted regions, has experienced severe ozone (O3) pollution in recent years. Volatile organic compounds (VOCs), key O3 precursors, undergo significant photochemical degradation, yet their loss and the implications for source apportionment and ozone formation potential (OFP) in this region remain unclear. This study conducted summertime VOC measurements in two industrial cities in the FWP, Hancheng (HC) and Xingping (XP), to quantify photochemical losses of VOCs and assessed their impact on source attribution and OFP with photochemical age-based parameterization methods. Significant VOC photochemical losses were observed, averaging 3.6 ppbv (7.1% of initial concentrations) in HC and 1.9 ppbv (5.6%) in XP, with alkenes experiencing the highest depletion (22–30%). Source apportionment based on both initial (corrected) and observed concentrations revealed that industrial sources (e.g., coking, coal washing, and rubber manufacturing) dominated ambient VOCs. Ignoring photochemical losses underestimated contributions from natural gas combustion and biogenic sources, while it overestimated the secondary source. OFP calculated with lost VOCs (OFPloss) reached 34 ppbv in HC and 15 ppbv in XP, representing 20% and 25% of OFP based on observed concentrations, respectively, with reactive alkenes accounting for over 90% of OFPloss. The results highlight the importance of accounting for VOC photochemical losses for accurate source identification and developing effective O3 control strategies in the FWP. Full article
(This article belongs to the Section Air Quality)
Show Figures

Figure 1

27 pages, 7152 KiB  
Review
Application of Large AI Models in Safety and Emergency Management of the Power Industry in China
by Wenxiang Guang, Yin Yuan, Shixin Huang, Fan Zhang, Jingyi Zhao and Fan Hu
Processes 2025, 13(8), 2569; https://doi.org/10.3390/pr13082569 - 14 Aug 2025
Viewed by 301
Abstract
Under the framework of the “dual-carbon” goals of China (“carbon peak” by 2030 and “carbon neutrality” by 2060), the escalating complexity of emerging power systems presents significant challenges to safety governance. Traditional management models are now confronting bottlenecks, notably in knowledge inheritance breakdown [...] Read more.
Under the framework of the “dual-carbon” goals of China (“carbon peak” by 2030 and “carbon neutrality” by 2060), the escalating complexity of emerging power systems presents significant challenges to safety governance. Traditional management models are now confronting bottlenecks, notably in knowledge inheritance breakdown and lagging risk prevention and control. This paper explores the application of large AI models in safety and emergency management in the power industry. Through core capabilities—such as natural language processing (NLP), knowledge reasoning, multimodal interaction, and auxiliary decision making—it achieves full-process optimization from data fusion to intelligent decision making. The study, anchored by 18 cases across five core scenarios, identifies three-dimensional challenges (including “soft”—dimension computing power, algorithm, and data bottlenecks; “hard”—dimension inspection equipment and wearable device constraints; and “risk”—dimension responsibility ambiguity, data bias accumulation, and model “hallucination” risks). It further outlines future directions for large-AI-model application innovation in power industry safety and management from a four-pronged outlook, covering technology, computing power, management, and macro-level perspectives. This work aims to provide theoretical and practical guidance for the industry’s shift from “passive response” to “intelligent proactive prevention”, leveraging quantified scenario-case analysis. Full article
Show Figures

Figure 1

14 pages, 1912 KiB  
Article
Seasonal Variations of Carbonaceous Aerosols of PM2.5 at a Coastal City in Northern China: A Case Study of Qinhuangdao
by Xian Li, Mengyang Wang, Jiajia Shao, Qiong Wu, Yutao Gao, Xiuyan Zhou and Wenhua Wang
Atmosphere 2025, 16(8), 960; https://doi.org/10.3390/atmos16080960 - 12 Aug 2025
Viewed by 213
Abstract
Carbonaceous aerosols exert significant impacts on human health and climate systems. This study investigates the seasonal variations of carbonaceous components in fine particulate matter (PM2.5) in Qinhuangdao, a coastal city in northern China, throughout 2023. The mass concentrations of organic carbon [...] Read more.
Carbonaceous aerosols exert significant impacts on human health and climate systems. This study investigates the seasonal variations of carbonaceous components in fine particulate matter (PM2.5) in Qinhuangdao, a coastal city in northern China, throughout 2023. The mass concentrations of organic carbon (OC) and elemental carbon (EC) averaged 9.44 ± 4.57 μg m−3 and 0.84 ± 0.33 μg m−3, contributing 26.49 ± 8.74% and 2.81 ± 1.56% to total PM2.5, respectively. OC exhibited a distinct seasonal trend: winter (12.02 μg m−3) > spring (11.96 μg m−3) > autumn (8.15 μg m−3) > summer (5.71 μg m−3), whereas EC followed winter (1.31 μg m−3) > autumn (0.73 μg m−3) > spring (0.70 μg m−3) > summer (0.63 μg m−3). Both OC and EC levels were elevated at night compared to daytime. Secondary organic carbon (SOC), estimated via the EC-tractor method, constituted 37.94 ± 14.26% of total OC. A positive correlation between SOC/OC ratios and PM2.5 concentrations suggests that SOC formation critically influences haze events. In autumn and winter, SOC formation was higher at night, likely driven by aqueous-phase reactions, whereas in summer SOC formation was more pronounced during the day, likely due to enhanced photochemical reactions. Source apportionment analysis revealed that gasoline and diesel vehicles were major contributors to carbonaceous aerosols, accounting for 27.35–29.06% and 14.97–31.83%, respectively. Coal combustion contributed less (10.51–21.55%), potentially due to strict regulations prohibiting raw coal use for domestic heating in surrounding regions. Additionally, fugitive dust was found to have a high contribution to carbonaceous aerosols during spring and summer. Full article
(This article belongs to the Section Air Quality and Health)
Show Figures

Figure 1

15 pages, 2038 KiB  
Article
Experimental and Mechanistic Study of Geometric Asymmetry Effects on Gas–Coal Dust Coupling Explosions in Turning Pipelines
by Shaoshuai Guo, Yuansheng Wang, Guoxun Jing and Yue Sun
Symmetry 2025, 17(8), 1301; https://doi.org/10.3390/sym17081301 - 12 Aug 2025
Viewed by 189
Abstract
The geometric symmetry of the pipeline constitutes a critical determinant in regulating the energy propagation dynamics during the explosion process. In the present study, a transparent plexiglass pipe experimental system incorporating a range of angles (30° to 150°) was meticulously constructed. Leveraging high-frequency [...] Read more.
The geometric symmetry of the pipeline constitutes a critical determinant in regulating the energy propagation dynamics during the explosion process. In the present study, a transparent plexiglass pipe experimental system incorporating a range of angles (30° to 150°) was meticulously constructed. Leveraging high-frequency pressure sensors in conjunction with high-speed camera technology, this investigation examines the influence of the pipe angle, which disrupts geometric symmetry, on the coupling explosion of gas and coal dust. The experimental findings illustrate that an increase in the pipeline turning angle significantly enhances the velocity of the explosion flame front (with the maximum velocity escalating from 97.92 m/s to 361.28 m/s) and concurrently reduces the total propagation time (from 71 ms to 56.5 ms). Moreover, there is a notable reduction in the duration of the explosion flame, decreasing from 240.5 ms to 64.17 ms at the coal dust deposition point. The peak overpressure of the shock wave exhibits a significant increase with the augmentation of the turning angle (rising from 7.07 kPa at 30° to 88.40 kPa at 150°). Furthermore, the overpressure in the fore section of the turning is amplified, attributable to the superimposition of reflected waves and turbulent effects. This study elucidates critical mechanisms including turbulence-enhanced combustion, secondary dust generation from coal dust, and energy dissipation resulting from abrupt alterations in pipeline geometry, thereby offering a theoretical framework for the prevention and effective emergency management of coal mine explosion disasters. Full article
(This article belongs to the Section Engineering and Materials)
Show Figures

Figure 1

19 pages, 1953 KiB  
Article
Coal Consumption Efficiency in the European Union—Trends and Challenges
by Aneta Masternak-Janus
Energies 2025, 18(16), 4273; https://doi.org/10.3390/en18164273 - 11 Aug 2025
Viewed by 248
Abstract
Coal plays a significant role in the economies of many countries and serves as an energy source for numerous societies. However, its combustion causes various environmental problems and contributes to climate change. This article examines the efficiency of coal consumption in 26 European [...] Read more.
Coal plays a significant role in the economies of many countries and serves as an energy source for numerous societies. However, its combustion causes various environmental problems and contributes to climate change. This article examines the efficiency of coal consumption in 26 European Union countries and its changes from 2014 to 2022. Data Envelopment Analysis (DEA) methodology was applied to measure the extent of overall technical, pure technical, and scale technical efficiency, based on data concerning three production factors (labour, fixed assets, and energy), with GDP as a desirable output and CO2 emissions as an undesirable output. The empirical findings revealed that Cyprus, Denmark, Luxembourg, and Poland were efficiency leaders throughout the entire study period. France, Germany, Italy, and the Netherlands managed energy and non-energy resources efficiently but were found inefficient in terms of operational scale. Countries that do not use their resources at optimal levels in the production of goods and services should provide greater technical and financial support to their production processes and improve the organisation and structure of labour. Full article
(This article belongs to the Special Issue Energy Consumption in the EU Countries: 4th Edition)
Show Figures

Figure 1

31 pages, 2529 KiB  
Article
Improving the Heat Transfer Efficiency of Economizers: A Comprehensive Strategy Based on Machine Learning and Quantile Ideas
by Nan Wang, Yuanhao Shi, Fangshu Cui, Jie Wen, Jianfang Jia and Bohui Wang
Energies 2025, 18(16), 4227; https://doi.org/10.3390/en18164227 - 8 Aug 2025
Viewed by 247
Abstract
Ash deposition on economizer heating surfaces degrades convective heat transfer efficiency and compromises boiler operational stability in coal-fired power plants. Conventional time-scheduled soot blowing strategies partially mitigate this issue but often cause excessive steam/energy consumption, conflicting with enterprise cost-saving and efficiency-enhancement goals. This [...] Read more.
Ash deposition on economizer heating surfaces degrades convective heat transfer efficiency and compromises boiler operational stability in coal-fired power plants. Conventional time-scheduled soot blowing strategies partially mitigate this issue but often cause excessive steam/energy consumption, conflicting with enterprise cost-saving and efficiency-enhancement goals. This study introduces an integrated framework combining real-time ash monitoring, dynamic process modeling, and predictive optimization to address these challenges. A modified soot blowing protocol was developed using combustion process parameters to quantify heating surface cleanliness via a cleanliness factor (CF) dataset. A comprehensive model of the attenuation of heat transfer efficiency was constructed by analyzing the full-cycle interaction between ash accumulation, blowing operations, and post-blowing refouling, incorporating steam consumption during blowing phases. An optimized subtraction-based mean value algorithm was applied to minimize the cumulative attenuation of heat transfer efficiency by determining optimal blowing initiation/cessation thresholds. Furthermore, a bidirectional gated recurrent unit network with quantile regression (BiGRU-QR) was implemented for probabilistic blowing time prediction, capturing data distribution characteristics and prediction uncertainties. Validation on a 300 MW supercritical boiler in Guizhou demonstrated a 3.96% energy efficiency improvement, providing a practical solution for sustainable coal-fired power generation operations. Full article
Show Figures

Figure 1

18 pages, 3886 KiB  
Article
Bio-Desilication of Coal Fly Ash and the Impacts on Critical Metal Recovery
by Shulan Shi, Ting Chen, Simeng Ren and Jinhe Pan
Metals 2025, 15(8), 891; https://doi.org/10.3390/met15080891 - 8 Aug 2025
Viewed by 291
Abstract
Critical metals such as rare earth elements (REEs) are primarily associated with silicates and aluminosilicates in coal fly ash, resulting in poor REE recovery. Silicate bacteria can decompose silicate minerals and release silicon, but their impact on REE extraction remains unclear. In this [...] Read more.
Critical metals such as rare earth elements (REEs) are primarily associated with silicates and aluminosilicates in coal fly ash, resulting in poor REE recovery. Silicate bacteria can decompose silicate minerals and release silicon, but their impact on REE extraction remains unclear. In this study, two coal fly ash samples with different origins and combustion methods were bioleached by Paenibacillus mucilaginosus, and the effects of bio-desilication on REE leaching were examined. First, the optimal bio-desilication conditions were determined as a pulp density of 1%, an initial pH of 7.0 and an initial cell concentration OD600 = 0.2. Compared to circulating fluidized bed (CFB) coal fly ash, silicon in pulverized coal furnace (PCF) coal fly ash was more difficult to dissolve by P. mucilaginosus. After bio-desilication, the acid leaching rate of REEs improved by 8–15% for CFB coal fly ash but only 4–5% for the PCF sample. Further investigation found that the surface turned rough and the specific surface area of coal fly ash increased after bio-desilication, which are conducive to REE extraction. Additionally, there was more quartz and mullite in PCF coal fly ash, which are more resistant to biological corrosion than amorphous silicate. The results demonstrate that bio-desilication can improve REE recovery, providing new perspectives for the low-cost green utilization of coal fly ash. Full article
Show Figures

Figure 1

23 pages, 3580 KiB  
Review
Computational Chemistry Insights into Pollutant Behavior During Coal Gangue Utilization
by Xinyue Wang, Xuan Niu, Xinge Zhang, Xuelu Ma and Kai Zhang
Sustainability 2025, 17(15), 7135; https://doi.org/10.3390/su17157135 - 6 Aug 2025
Viewed by 423
Abstract
Coal serves as the primary energy source for China, with production anticipated to reach 4.76 billion tons in 2024. However, the mining process generates a significant amount of gangue, with approximately 800 million tons produced in 2023 alone. Currently, China faces substantial gangue [...] Read more.
Coal serves as the primary energy source for China, with production anticipated to reach 4.76 billion tons in 2024. However, the mining process generates a significant amount of gangue, with approximately 800 million tons produced in 2023 alone. Currently, China faces substantial gangue stockpiles, characterized by a low comprehensive utilization rate that fails to meet the country’s ecological and environmental protection requirements. The environmental challenges posed by the treatment and disposal of gangue are becoming increasingly severe. This review employs bibliometric analysis and theoretical perspectives to examine the latest advancements in gangue utilization, specifically focusing on the application of computational chemistry to elucidate the structural features and interaction mechanisms of coal gangue, and to collate how these insights have been leveraged in the literature to inform its potential utilization routes. The aim is to promote the effective resource utilization of this material, and key topics discussed include evaluating the risks of spontaneous combustion associated with gangue, understanding the mechanisms governing heavy metal migration, and modifying coal byproducts to enhance both economic viability and environmental sustainability. The case studies presented in this article offer valuable insights into the gangue conversion process, contributing to the development of more efficient and eco-friendly methods. By proposing a theoretical framework, this review will support ongoing initiatives aimed at the sustainable management and utilization of coal gangue, emphasizing the critical need for continued research and development in this vital area. This review uniquely combines bibliometric analysis with computational chemistry to identify new trends and gaps in coal waste utilization, providing a roadmap for future research. Full article
Show Figures

Figure 1

22 pages, 3079 KiB  
Review
Progress in Caking Mechanism and Regulation Technologies of Weakly Caking Coal
by Zhaoyang Li, Shujun Zhu, Ziqu Ouyang, Zhiping Zhu and Qinggang Lyu
Energies 2025, 18(15), 4178; https://doi.org/10.3390/en18154178 - 6 Aug 2025
Viewed by 235
Abstract
Efficient and clean utilization remains a pivotal development focus within the coal industry. Nevertheless, the application of weakly caking coal results in energy loss due to the caking property, thereby leading to a waste of resources. This paper, therefore, concentrates on the caking [...] Read more.
Efficient and clean utilization remains a pivotal development focus within the coal industry. Nevertheless, the application of weakly caking coal results in energy loss due to the caking property, thereby leading to a waste of resources. This paper, therefore, concentrates on the caking property, offering insights into the relevant caking mechanism, evaluation indexes, and regulation technologies associated with it. The caking mechanism delineates the transformation process of coal into coke. During pyrolysis, the active component generates the plastic mass in which gas, liquid, and solid phases coexist. With an increase in temperature, the liquid phase is diminished gradually, causing the inert components to bond. Based on the caking mechanism, evaluation indexes such as that characteristic of char residue, the caking index, and the maximal thickness of the plastic layer are proposed. These indexes are used to distinguish the strength of the caking property. However, they frequently exhibit a poor differentiation ability and high subjectivity. Additionally, some technologies have been demonstrated to regulate the caking property. Technologies such as rapid heating treatment and hydrogenation modification increase the amount of plastic mass generated, thereby improving the caking property. Meanwhile, technologies such as mechanical breaking and pre-oxidation reduce the caking property by destroying agglomerates or consuming plastic mass. Full article
(This article belongs to the Special Issue Advanced Clean Coal Technology)
Show Figures

Figure 1

Back to TopTop