Sign in to use this feature.

Years

Between: -

Subjects

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Journals

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Article Types

Countries / Regions

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Search Results (376)

Search Parameters:
Keywords = cold crystallization

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
15 pages, 2036 KB  
Article
Effect of Degradation During Multiple Primary Mechanical Recycling Processes on the Physical Properties and Biodegradation of Commercial PLA-Based Water Bottles
by Cristina Muñoz-Shugulí, Diana Morán, Eliezer Velásquez, José Manuel López-Vilariño and Carol López-de-Dicastillo
Polymers 2025, 17(18), 2542; https://doi.org/10.3390/polym17182542 - 20 Sep 2025
Viewed by 298
Abstract
For sustainable development aligned with circular economy principles, the recycling of biopolymers such as polylactic acid (PLA) is of growing interest. In this study, the effect of primary recycling through repeated mechanical reprocessing was investigated. PLA water bottle preforms were subjected to six [...] Read more.
For sustainable development aligned with circular economy principles, the recycling of biopolymers such as polylactic acid (PLA) is of growing interest. In this study, the effect of primary recycling through repeated mechanical reprocessing was investigated. PLA water bottle preforms were subjected to six consecutive extrusion cycles, and changes in its molecular structure and physical properties were evaluated. Structural analysis revealed a progressive degradation, evidenced by a great reduction in the molar mass and increase in the melt flow index, attributed both to the chain scission derived from the thermal degradation and shear stresses of the extrusion process, and hydrolysis at the ester linkage of the polymer. Recycled samples exhibited a darkening of the color and a continuous decrease in thermal stability. After six reprocessing cycles, PLA crystallinity increased from 6.9 to 39.5%, the cold crystallization process disappeared, and molecular weight reduced by up to 40%. Barrier properties were highly affected after reprocessing and by the increase in relative humidity. Biodegradation tests revealed that crystallinity affected considerably the biodegradation rate of PLA. Although the molecular weight was considerably reduced during reprocessing, the biodegradation was slowed down. These findings provide insights into the limitations and potential of mechanically recycled PLA for future material applications. Full article
Show Figures

Figure 1

17 pages, 7136 KB  
Article
Study of Thermoplastic Starch/Poly (Butylene Succinate) Blends: The Effect of Reactive Compatibilizers
by Ke Gong, Yuanyuan Chen, Yinshi Lu, Zijian Zhao, Alexandre Portela, Han Xu, Mengli Hu, Handai Liu and Maurice N. Collins
Macromol 2025, 5(3), 42; https://doi.org/10.3390/macromol5030042 - 11 Sep 2025
Viewed by 325
Abstract
Compatibilizers that enhance sustainability and improve the miscibility of polymer blend components have garnered significant attention. This study investigates the difference between the synthetic chain extender Joncryl® ADR 4468 and the natural epoxidized linseed oil (ELO) Merginat 8510100 as compatibilizers for thermoplastic [...] Read more.
Compatibilizers that enhance sustainability and improve the miscibility of polymer blend components have garnered significant attention. This study investigates the difference between the synthetic chain extender Joncryl® ADR 4468 and the natural epoxidized linseed oil (ELO) Merginat 8510100 as compatibilizers for thermoplastic starch/poly (butylene succinate) (TPS/PBS) blends. Blends containing 40% TPS and 60% PBS were prepared with 1, 3, and 5 phr of each compatibilizer, along with a reference with no additives. The properties of these blends were evaluated using tensile testing, differential scanning calorimetry (DSC), Fourier transform infrared spectroscopy (FTIR), rheology, and scanning electron microscopy (SEM). The findings indicate that while Joncryl® ADR 4468 significantly improved tensile strength, it also resulted in a brittle fracture. In contrast, ELO batches exhibited greater ductility, albeit with lower tensile strength. These differences are attributed to the chain extension and minor cross-linking effects of Joncryl® ADR 4468, compared to the increased chain mobility arising from ELO’s plasticizing and compatibilizing actions. Supporting evidence for these observations includes increased cold crystallization temperature (Tcc) and melting temperature (Tm), greater storage modulus along with higher complex viscosity, strengthened interfacial adhesion, and fewer morphological defects in Joncryl® ADR 4468 blends. These results highlight the importance of selecting an appropriate compatibilizer based on specific application requirements. Overall, this study addresses the knowledge gap regarding the loadings of Joncryl® ADR 4468 and ELO in TPS/PBS blends and provides a basis for further optimization strategies, such as the incorporation of binary compatibilizers, alternative grafting-based compatibilizers, and twin-screw blending modifications. Full article
(This article belongs to the Special Issue Advances in Starch and Lignocellulosic-Based Materials)
Show Figures

Figure 1

33 pages, 4786 KB  
Article
The Influence of Lignin Derivatives on the Thermal Properties and Flammability of PLA+PET Blends
by Tomasz M. Majka, Rana Al Nakib, Yusuf Z. Menceloglu and Krzysztof Pielichowski
Materials 2025, 18(17), 4181; https://doi.org/10.3390/ma18174181 - 5 Sep 2025
Viewed by 731
Abstract
This paper presents a detailed analysis of the thermal and flammability properties of polylactide- (PLA) and poly(ethylene terephthalate)- (PET) based polymer blends with biofillers, such as calcium lignosulfonate (CLS), lignosulfonamide (SA) and lignosulfonate modified with tannic acid (BMT) and gallic acid (BMG). Calorimetric [...] Read more.
This paper presents a detailed analysis of the thermal and flammability properties of polylactide- (PLA) and poly(ethylene terephthalate)- (PET) based polymer blends with biofillers, such as calcium lignosulfonate (CLS), lignosulfonamide (SA) and lignosulfonate modified with tannic acid (BMT) and gallic acid (BMG). Calorimetric studies revealed the presence of two glass transitions, one cold crystallization temperature, and two melting points, confirming the partial immiscibility of the PLA and PET phases. The additives had different effects on the temperatures and ranges of phase transformations—BMT restricted PLA chain mobility, while CLS acted as a nucleating agent that promoted crystallization. Thermogravimetric analyses (TGA) analyses showed that the additives significantly affected the thermal stability under oxidizing conditions, some (e.g., BMG) lowered the onset degradation temperature, while the others (BMT, SA) increased the residual char content. The additives also altered combustion behavior; particularly BMG that most effectively reduced flammability, promoted char formation, and extended combustion time. CLS reduced PET flammability more effectively than PLA, especially at higher PET content (e.g., 65% reduction in PET for 2:1/CLS). SA inhibited only PLA combustion, with strong effects at higher PLA content (up to 76% reduction for 2:1/SA). BMT mainly reduced PET flammability (48% reduction in 1:1/BMT), while BMG inhibited PET more strongly at lower PET content (76% reduction for 2:1/BMG). The effect of each additive also depended on the PLA:PET ratio in the blend. FTIR analysis of the char residues revealed functional groups associated with decomposition products of carboxylic acids and aromatic esters. Ultimately, only blends containing BMT and BMG met the requirements for flammability class FV-1, while SA met FV-2 classification. BMG was the most effective additive, offering enhanced thermal stability, ignition delay, and durable char formation, making it a promising bio- based flame retardant for sustainable polyester materials. Full article
Show Figures

Figure 1

16 pages, 2790 KB  
Article
Mechanism Insights in Freeze–Thaw Process Impacting Cold Denaturation of Gluten Proteins During Frozen Storage
by Yang Li, Yilin Sun, Shuya Chen, Mingfei Li, Xiaowei Zhang and Yujie Lu
Foods 2025, 14(17), 3103; https://doi.org/10.3390/foods14173103 - 5 Sep 2025
Viewed by 622
Abstract
Cold denaturation of gluten proteins during prolonged frozen storage or repeated freeze–thaw cycles can severely affect the quality of frozen cereal products. While both processes have been studied individually, their combined effects and underlying mechanisms remain unclear. This study systematically evaluated the hydration [...] Read more.
Cold denaturation of gluten proteins during prolonged frozen storage or repeated freeze–thaw cycles can severely affect the quality of frozen cereal products. While both processes have been studied individually, their combined effects and underlying mechanisms remain unclear. This study systematically evaluated the hydration properties and conformational changes in gluten proteins stored at −73 °C and −23 °C, with or without freeze–thaw cycling. Compared to continuous storage, freeze–thaw cycles reduced water-holding capacity by 9.1–12.2% and increased oil-holding capacity by 5.3–10.3%, indicating aggravated structural damage. Ultra-low temperature storage (−73 °C) suppressed ice crystal growth, preserved hydration, and limited hydrophobic residue exposure. Spectroscopic analyses revealed a temperature-dependent shift from α-helices to β-sheets and β-turns, which was accelerated by freeze–thaw cycles. Enhanced hydrophobic interactions and tryptophan exposure further indicated destabilization. Molecular dynamics simulations showed that increased hydrogen bonding between proteins and water contributed to unfolding at low temperatures, while temperature fluctuations intensified denaturation through repeated hydrogen bond breakage and reformation. These results underscore the critical role of thermal instability in cold denaturation and offer mechanistic insights for improving cryoprotection strategies in frozen food systems. Full article
(This article belongs to the Section Grain)
Show Figures

Figure 1

21 pages, 4351 KB  
Article
Sustainable PLA Composites Filled with Poaceae Fibers: Thermal, Structural, and Mechanical Properties
by Natalia Kubiak, Bogna Sztorch, Magdalena Kustosz, Miłosz Frydrych, Daria Pakuła, Marek Jałbrzykowski, Tobias Hartmann, Camilo Zopp, Lothar Kroll and Robert E. Przekop
Materials 2025, 18(17), 3952; https://doi.org/10.3390/ma18173952 - 23 Aug 2025
Viewed by 840
Abstract
The present study investigates the manufacturing and characterization of poly(lactic acid) (PLA)-based composites with raw and treated Poaceae, with loadings of 5, 10, and 20% wt. Before composite fabrication, the lignocellulosic fillers were analyzed using Fourier transform infrared spectroscopy (FTIR), thermogravimetric analysis (TGA), [...] Read more.
The present study investigates the manufacturing and characterization of poly(lactic acid) (PLA)-based composites with raw and treated Poaceae, with loadings of 5, 10, and 20% wt. Before composite fabrication, the lignocellulosic fillers were analyzed using Fourier transform infrared spectroscopy (FTIR), thermogravimetric analysis (TGA), and microscopy to assess their chemical composition, thermal stability, and morphological features. Composites were prepared by melting PLA in a molten state with fillers, followed by injection molding. Comprehensive characterization of the obtained composites included microscopic analysis, melt flow index (MFI) testing, and differential scanning calorimetry (DSC), as well as mechanical tests (tensile and bending tests, impact test). The addition of Poaceae fibers to the PLA matrix significantly affected the mechanical and rheological properties of the composites. Incorporating 5% of cooked or alkalized fibers increased the flexural strength by 57% and 54%, respectively, compared to neat PLA. The modulus of elasticity for the composite with 20% alkalized fibers increased by as much as 35%. The fibers acted as nucleating agents, reducing the cold crystallization temperature (Tcc) by up to 15.6 °C, while alkaline residues contributed to an increased melt flow index (MFI). The conducted research provides a valuable basis and insights into the design of sustainable bio-based composites. Full article
(This article belongs to the Special Issue Mechanical Properties and Modeling of Structural Composites)
Show Figures

Figure 1

19 pages, 11203 KB  
Article
In Situ TEM Observation of Electric Field-Directed Self-Assembly of PbS and PbSe Nanoparticles
by Iryna Zelenina, Harald Böttner, Marcus Schmidt, Yuri Grin and Paul Simon
Nanomaterials 2025, 15(16), 1275; https://doi.org/10.3390/nano15161275 - 18 Aug 2025
Viewed by 608
Abstract
Nano-sized particles of semiconducting lead sulfide and selenide and their 2D thin layers show high potential in applications, such as field-effect transistors, photodetectors, solar cells, and thermoelectric devices. The generation of PbS and PbSe nanobars and nanocubes is evoked by in situ electron [...] Read more.
Nano-sized particles of semiconducting lead sulfide and selenide and their 2D thin layers show high potential in applications, such as field-effect transistors, photodetectors, solar cells, and thermoelectric devices. The generation of PbS and PbSe nanobars and nanocubes is evoked by in situ electron beam treatment, leading to the formation of thin, extended 2D nanolayers. The initial single crystals are decomposed via sublimation of PbS and PbSe in terms of molecular and atomic fragments, which finally condense on the cold substrate to form nanostructures. The fragments in the gas phase were proven using mass spectrometry. In the case of PbS, Pb+ and PbS+ species could were detected, whereas PbSe disintegrated into Pb+, Se2+, and PbSe+. The threshold current that initiates fragmentation increases from PbTe via PbSe up to PbS, which is in line with the increasing crystal formation energies. The uniform orientation of independently formed nanoparticles on the macroscopic scale can be explained by an external electric field acting on emerging dipolar nanospecies. The external dipole field originates from the sputtered mother crystal, where the electron flux is initiated; thus, a current arises between the crystal’s hot and cold ends. On the contrary, in small single crystals, due to the lack of sufficient charge carriers, only local material excavation is detected instead of extended depletion and subsequent nanoparticle deposition. This fragmentation process may represent a new preparation route that provides lead chalcogenide nanofilms that are free of contamination or surfactant participation, which are typical drawbacks associated with the application of wet chemical methods. Full article
Show Figures

Figure 1

17 pages, 5080 KB  
Article
Effect of External Constraints on Deformation Behavior of Aluminum Single Crystals Cold-Rolled to High Reduction: Crystal Plasticity FEM Study and Experimental Verification
by Hui Wang, Junyao Dong, Shunjie Yao, Shuqi Liu, Letian Cao and Xi Huang
Metals 2025, 15(8), 885; https://doi.org/10.3390/met15080885 - 7 Aug 2025
Viewed by 405
Abstract
In this study, aluminum single crystals with a {1 0 0} <0 0 1> (Cube) orientation were rolled under two conditions: with external constraints imposed by an external aluminum frame (3DRC) and without external constraints (3DR). The crystal plasticity finite element method (CPFEM) [...] Read more.
In this study, aluminum single crystals with a {1 0 0} <0 0 1> (Cube) orientation were rolled under two conditions: with external constraints imposed by an external aluminum frame (3DRC) and without external constraints (3DR). The crystal plasticity finite element method (CPFEM) was used to simulate texture evolution, and the results corresponded well with experimental observations. The minor discrepancies observed were primarily attributed to the idealized conditions in the simulation. The results demonstrate that in the 3DR model, crystal orientations predominantly rotate around the transverse direction (TD), with non-TD rotations playing a secondary role. In contrast, the 3DRC model exhibits similar rotation patterns to 3DR at lower reductions, but at higher reductions, non-TD rotations become comparable to TD rotations. This difference results in more concentrated orientations in 3DR and more dispersed orientations in 3DRC. Additionally, analysis reveals that external constraints cause deformation behavior to deviate from the plane strain condition rather than move closer to it. The presence of external constraints alters stress and strain states, modifying the activation of slip systems and crystal rotations, leading to significant variations in slip activity, shear strain, and crystal rotation along TD. Full article
Show Figures

Figure 1

28 pages, 15025 KB  
Article
Freezing Fog Microphysics and Visibility Based on CFACT Feb 19 Case
by Onur Durmus, Ismail Gultepe, Orhan Sen, Zhaoxia Pu, Eric R. Pardyjak, Sebastian W. Hoch, Alexei Perelet, Anna G. Hallar, Gerardo Carrillo-Cardenas and Simla Durmus
Remote Sens. 2025, 17(15), 2728; https://doi.org/10.3390/rs17152728 - 7 Aug 2025
Viewed by 472
Abstract
The objective of this study is to analyze microphysical parameters affecting visibility parameterizations of a freezing fog case that occurred on 19 February 2022, during the Cold Fog Amongst Complex Terrain (CFACT) project conducted in a high-elevation alpine valley in Utah, USA. Observations [...] Read more.
The objective of this study is to analyze microphysical parameters affecting visibility parameterizations of a freezing fog case that occurred on 19 February 2022, during the Cold Fog Amongst Complex Terrain (CFACT) project conducted in a high-elevation alpine valley in Utah, USA. Observations are collected using visibility, droplet spectra, ice crystal spectra, and aerosol spectral instruments, as well as in-situ meteorological instruments. Particle phase is determined from relative humidity with respect to water (RHw) as well as ground cloud imaging probe (GCIP), ceilometer (CL61) depolarization ratio, and icing accumulation on the platforms. Results showed that freezing droplet density can affect visibility (Vis) up to 100 m during Vis less than 1 km. In addition, increasing volume can lead to up to a 2 μm increase in droplet radius due to a change in the chemical composition of aerosols from Sodium Chloride (NaCl) to Ammonium Nitrate (NH4NO3). Overall, comparisons suggested that Vis parameterizations are highly variable, and freezing fog conditions resulted in lower Vis values compared to warm fog microphysical parameterizations. Furthermore, riming of freezing fog conditions can lead to more than 50% uncertainty in Vis. It is concluded that changing aerosol composition and freezing fog droplet density and riming can play a major role in Vis simulations. Full article
Show Figures

Figure 1

20 pages, 3741 KB  
Article
Use of Amino Acids and Organic Waste Extracts to Improve the Quality of Liquid Nitrogen–Calcium–Magnesium Fertilizers
by Eglė Didžiulytė and Rasa Šlinkšienė
Sustainability 2025, 17(15), 7081; https://doi.org/10.3390/su17157081 - 5 Aug 2025
Viewed by 667
Abstract
Agriculture is one of the most important sectors of the global economy, but it increasingly faces sustainability challenges in meeting rising food demands. The intensive use of mineral fertilizers not only improves yields, but also causes negative environmental impacts such as increasing greenhouse [...] Read more.
Agriculture is one of the most important sectors of the global economy, but it increasingly faces sustainability challenges in meeting rising food demands. The intensive use of mineral fertilizers not only improves yields, but also causes negative environmental impacts such as increasing greenhouse gas emissions, water eutrophication, and soil degradation. To develop more sustainable solutions, the focus is on organic fertilizers, which are produced using waste and biostimulants such as amino acids. The aim of this study was to develop and characterize liquid nitrogen–calcium–magnesium fertilizers produced by decomposing dolomite with nitric acid followed by further processing and to enrich them with a powdered amino acid concentrate Naturamin-WSP and liquid extracts from digestate, a by-product of biogas production. Nutrient-rich extracts were obtained using water and potassium hydroxide solutions, with the latter proving more effective by yielding a higher organic carbon content (4495 ± 0.52 mg/L) and humic substances, which can improve soil structure. The produced fertilizers demonstrated favourable physical properties, including appropriate viscosity and density, as well as low crystallization temperatures (eutectic points from –3 to –34 °C), which are essential for storage and application in cold climates. These properties were achieved by adjusting the content of nitrogenous compounds and bioactive extracts. The results of the study show that liquid fertilizers enriched with organic matter can be an effective and more environmentally friendly alternative to mineral fertilizers, contributing to the development of the circular economy and sustainable agriculture. Full article
Show Figures

Figure 1

15 pages, 3303 KB  
Article
Effect of Ozone on Nonwoven Polylactide/Natural Rubber Fibers
by Yulia V. Tertyshnaya, Svetlana G. Karpova and Maria V. Podzorova
Polymers 2025, 17(15), 2102; https://doi.org/10.3390/polym17152102 - 31 Jul 2025
Viewed by 471
Abstract
Ozone is a powerful destructive agent in the oxidative process of polymer composites. The destructive ability of ozone depends primarily on its concentration, duration of exposure, the type of polymer, and its matrix structure. In this work, nonwoven PLA/NR fibers with natural rubber [...] Read more.
Ozone is a powerful destructive agent in the oxidative process of polymer composites. The destructive ability of ozone depends primarily on its concentration, duration of exposure, the type of polymer, and its matrix structure. In this work, nonwoven PLA/NR fibers with natural rubber contents of 5, 10, and 15 wt.% were obtained, which were then subjected to ozone oxidation for 800 min. The effect of ozone treatment was estimated using various methods of physicochemical analysis. The visual effect was manifested in the form of a change in the color of PLA/NR fibers. The method of differential scanning calorimetry revealed a change in the thermophysical characteristics. The glass transition and cold crystallization temperatures of polylactide shifted toward lower temperatures, and the degree of crystallinity increased. It was found that in PLA/NR fiber samples, the degradation process predominates over the crosslinking process, as an increase in the melt flow rate by 1.5–1.6 times and a decrease in the correlation time determined by the electron paramagnetic resonance method were observed. The IR Fourier method recorded a change in the chemical structure during ozone oxidation. The intensity of the ether bond bands changed, and new bands appeared at 1640 and 1537 cm−1, which corresponded to the formation of –C=C– bonds. Full article
(This article belongs to the Special Issue Natural Degradation of Polymers)
Show Figures

Graphical abstract

19 pages, 4649 KB  
Article
Cavitation Erosion Performance of the INCONEL 625 Superalloy Heat-Treated via Stress-Relief Annealing
by Robert Parmanche, Olimpiu Karancsi, Ion Mitelea, Ilare Bordeașu, Corneliu Marius Crăciunescu and Ion Dragoș Uțu
Appl. Sci. 2025, 15(15), 8193; https://doi.org/10.3390/app15158193 - 23 Jul 2025
Viewed by 384
Abstract
Cavitation-induced degradation of metallic materials presents a significant challenge for engineers and users of equipment operating with high-velocity fluids. For any metallic material, the mechanical strength and ductility characteristics are controlled by the mobility of dislocations and their interaction with other defects in [...] Read more.
Cavitation-induced degradation of metallic materials presents a significant challenge for engineers and users of equipment operating with high-velocity fluids. For any metallic material, the mechanical strength and ductility characteristics are controlled by the mobility of dislocations and their interaction with other defects in the crystal lattice (such as dissolved foreign atoms, grain boundaries, phase separation surfaces, etc.). The increase in mechanical properties, and consequently the resistance to cavitation erosion, is possible through the application of heat treatments and cold plastic deformation processes. These factors induce a series of hardening mechanisms that create structural barriers limiting the mobility of dislocations. Cavitation tests involve exposing a specimen to repeated short-duration erosion cycles, followed by mass loss measurements and surface morphology examinations using optical microscopy and scanning electron microscopy (SEM). The results obtained allow for a detailed study of the actual wear processes affecting the tested material and provide a solid foundation for understanding the degradation mechanism. The tested material is the Ni-based alloy INCONEL 625, subjected to stress-relief annealing heat treatment. Experiments were conducted using an ultrasonic vibratory device operating at a frequency of 20 kHz and an amplitude of 50 µm. Microstructural analyses showed that slip bands formed due to shock wave impacts serve as preferential sites for fatigue failure of the material. Material removal occurs along these slip bands, and microjets result in pits with sizes of several micrometers. Full article
Show Figures

Figure 1

17 pages, 3640 KB  
Article
Sustainable Development of PLA-Based Biocomposites Reinforced with Pineapple Core Powder: Extrusion and 3D Printing for Thermal and Mechanical Performance
by Kawita Chattrakul, Anothai Pholsuwan, Athapon Simpraditpan, Ekkachai Martwong and Wichain Chailad
Polymers 2025, 17(13), 1792; https://doi.org/10.3390/polym17131792 - 27 Jun 2025
Viewed by 755
Abstract
This study developed sustainable biocomposites composed of polylactic acid (PLA) and surface-treated pineapple core powder (PACP), fabricated via extrusion and fused deposition modelling (FDM). PACP loadings of 1–3 vol% were combined after chemical modification with NaOH and silane to improve interfacial bonding. Particle [...] Read more.
This study developed sustainable biocomposites composed of polylactic acid (PLA) and surface-treated pineapple core powder (PACP), fabricated via extrusion and fused deposition modelling (FDM). PACP loadings of 1–3 vol% were combined after chemical modification with NaOH and silane to improve interfacial bonding. Particle morphology showed increased porosity and surface roughness following treatment. The melt flow index (MFI) increased from 31.56 to 35.59 g/10 min at 2 vol% PACP, showing improved flowability. Differential scanning calorimetry (DSC) showed the emergence of cold crystallization (Tcc ~121 °C) and an increase in crystallinity from 35.7% (neat PLA) to 47.3% (2 vol% PACP). Thermogravimetric analysis showed only slight decreases in T5 and Tmax, showing the thermal stability. The mechanical testing of extruded filaments showed increased modulus (1463 to 1518 MPa) but a decrease in tensile strength and elongation. For the 3D-printed samples, elongation at break increased slightly at 1–2 vol% PACP, likely because of the improvement in interlayer fusion. Though, at 3 vol% PACP, the mechanical properties declined, consistent with filler agglomeration observed in SEM. Overall, 2 vol% PACP offered the optimal balance between printability, crystallinity, and mechanical performance. These results reveal the possibility of PACP as a value-added biowaste filler for eco-friendly PLA composites suitable for extrusion and 3D printing applications. Full article
(This article belongs to the Special Issue Sustainable Biopolymers and Bioproducts from Bioresources)
Show Figures

Figure 1

9 pages, 516 KB  
Short Note
4,4-Dichloro-1,3-dithietane-2-one
by Tracy R. Thompson, William W. Brennessel, Erik S. Goebel, Matthew J. Turcotte and George Barany
Molbank 2025, 2025(2), M2021; https://doi.org/10.3390/M2021 - 13 Jun 2025
Viewed by 940
Abstract
The title compound, 4,4-dichloro-1,3-dithietane-2-one, was encountered when opening a commercial capped amber bottle labeled “thiophosgene” that had been stored in a cold room (4 °C) for decades without any special precautions. Treating it as an unknown, the structure was established by single crystal [...] Read more.
The title compound, 4,4-dichloro-1,3-dithietane-2-one, was encountered when opening a commercial capped amber bottle labeled “thiophosgene” that had been stored in a cold room (4 °C) for decades without any special precautions. Treating it as an unknown, the structure was established by single crystal X-ray analysis, and confirmed by 13C NMR, FTIR, melting behavior, and elemental analysis; its behavior under several mass spectrometric conditions was also examined. The dithietane appears to be a spontaneously formed cyclodimer of thiophosgene in which exactly one (not zero, not both) of the dichloromethylene moieties has been hydrolyzed to a carbonyl function. The relative long-term stability of the hydrolyzed dimer, along with a pathway back to thiophosgene, suggests that it might serve as a storage vehicle for toxic thiophosgene. Furthermore, as noted elsewhere, the title compound reacts with nucleophiles under mild aqueous conditions, suggesting that it may be a useful probe in chemical biology. Full article
(This article belongs to the Collection Molecules from Side Reactions)
Show Figures

Figure 1

18 pages, 4167 KB  
Article
Effect of Processing on the Morphology and Structure of PLGA/PVA Fibers Produced by Coaxial Electrospinning
by Thalles Rafael Silva Rêgo, Anna Lecticia Martinez Martinez Toledo and Marcos Lopes Dias
Processes 2025, 13(6), 1837; https://doi.org/10.3390/pr13061837 - 10 Jun 2025
Viewed by 883
Abstract
The electrospinning technique can produce multifunctional polymeric devices by forming solid fibers from polymer solutions under a high-voltage electric field. Variations such as concentric needles yield core/shell fibers. This study evaluates the effects of applied voltage (12.5–20 kV) and tip-to-collector distance (12.5–20 cm) [...] Read more.
The electrospinning technique can produce multifunctional polymeric devices by forming solid fibers from polymer solutions under a high-voltage electric field. Variations such as concentric needles yield core/shell fibers. This study evaluates the effects of applied voltage (12.5–20 kV) and tip-to-collector distance (12.5–20 cm) on the morphology and thermochemical behavior of PLGA/PVA fibers made by coaxial electrospinning compared with casting-produced membranes and monolithic fibers. Optimal coaxial fibers (597 ± 90 nm diameter) were produced at 15 cm/12.5 kV, exhibiting a well-defined core/shell structure (PVA core: ~100 nm; PLGA shell: ~50 nm) confirmed by laser scanning confocal (core solution labeled with fluorescein) and TEM. FTIR and TGA demonstrated nearly complete solvent removal in electrospun samples versus ~10% solvent retention in cast films. XRD analysis indicated that cast films (PLGAff) exhibited minimal crystallinity (Xc ≈ 0.1%), while electrospun PLGA (PLGAe) showed cold crystallization and higher crystallinity (Tcc ≈ 90.6 °C; Xc ≈ 2.45%). DSC detected two different Tg (≈43.2 °C and 52.8 °C) in the coaxial fibers, confirming distinct polymer domains with interfacial interactions. These results establish precise processing/structure relationships for defect-free coaxial fibers and provide fundamental design principles for hybrid systems in controlled drug delivery and tissue engineering applications. Full article
(This article belongs to the Special Issue Polymer Nanocomposites for Smart Applications)
Show Figures

Figure 1

16 pages, 4556 KB  
Article
In Situ Following Oriented Crystallization of Pre-Stretched Poly(ethylene 2,5-Furandicarboxylate) Under Post Heating
by Jianguo Zhao, Mengcheng Yang, Binhang Wu, Hang Li and Yiguo Li
Polymers 2025, 17(11), 1508; https://doi.org/10.3390/polym17111508 - 28 May 2025
Viewed by 669
Abstract
Post-processing plays a vital role in the determination of the final structures and properties of oriented materials. As a sustainable candidate of oil-based poly(ethylene terephthalate), biobased poly(ethylene 2,5-furandicarboxylate) (PEF) reflects great promise in green fiber, film, and packaging applications, but it undergoes poor [...] Read more.
Post-processing plays a vital role in the determination of the final structures and properties of oriented materials. As a sustainable candidate of oil-based poly(ethylene terephthalate), biobased poly(ethylene 2,5-furandicarboxylate) (PEF) reflects great promise in green fiber, film, and packaging applications, but it undergoes poor stress-induced crystallization (SIC) under tensile deformation, necessitating a post-processing technique to improve its crystallinity and stability. Here, the structural evolution of pre-stretched PEF under post heating after uniaxial deformation was monitored by online synchrotron X-ray diffraction/scattering, differential scanning calorimetry, and ex situ infrared spectroscopy. The results delineate the significantly enhanced crystallization of pre-deformed PEF that happened far below its cold crystallization temperature. Through the isochronous analyses of the temperature-dependent evolution of mechanical response, the mesophase, crystal structure, orientation factor, chain conformation, and interchain ═C−H···O═C hydrogen bonding, the molecular mechanisms of microstructural transition and oriented crystallization of pre-drawn PEF under post heating were clarified. This research can enhance the understanding of PEF crystallization in an oriented state and provide guidelines on the structural design and technical control for processing high-performance PEF-based materials. Full article
Show Figures

Figure 1

Back to TopTop