Sign in to use this feature.

Years

Between: -

Subjects

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Journals

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Article Types

Countries / Regions

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Search Results (389)

Search Parameters:
Keywords = cold stimulation

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
13 pages, 1724 KB  
Article
Laser Doppler Flowmetry and Continuous Tissue Oxygenation Monitoring: Best of Vitality Tests?
by Herman J. J. Roeykens, Rani D’haese, Wolfgang Jacquet, Roeland J. G. De Moor and Stefan Vandeweghe
Oral 2025, 5(4), 83; https://doi.org/10.3390/oral5040083 - 20 Oct 2025
Viewed by 139
Abstract
This study aimed to explore the added value and usage of laser Doppler flowmetry (LDF) in conjunction with continuous tissue (arterial) oxygen saturation (SO2) monitoring, electrical pulp testing (EPT), cold stimulation (CS) testing, and apical X-rays (RX). LDF data were evaluated [...] Read more.
This study aimed to explore the added value and usage of laser Doppler flowmetry (LDF) in conjunction with continuous tissue (arterial) oxygen saturation (SO2) monitoring, electrical pulp testing (EPT), cold stimulation (CS) testing, and apical X-rays (RX). LDF data were evaluated in relation to three different scenarios. LDF records of all four upper incisors from 30 randomly selected patients aged 21–40 were analysed in relation to the following scenarios: (a) simultaneous SO2 measurements using a pre-manufactured splint handled by an experienced LDF dentist, (b) EPT, and (c) CS. A total of 120 teeth were analysed, of which 11 were non-vital (7 denervated and 4 traumatised). Data assessment showed the following mean LDF values: vital teeth: 23.6 Perfusion Units (PU), SD 6.3 and SaO2 of 88.7%, SD 17.1. For non-vital teeth, the mean LDF value was 16.1 PU (SD 11.8) and the mean SO2 value was 70.8% (SD 31.9). The standard deviation was found to be twice as high for non-vital teeth as for vital teeth. No direct relationship was found between LDF and SO2 values at low SO2. For vitality discrimination, the ROC curves showed an area under the curve of 0.799 for LDF and 0.643 for SO2. EPT data assessment showed a mean value of 18.1 (SD 19.7) out of a possible score of 0–80. This was distributed as follows: seven non-vital teeth (80/80); 109 vital teeth; and four undecided teeth. This was compared to the LDF and SO2 results. The data assessment showed nine non-vital teeth, 108 vital teeth, and three undecided teeth in comparison to LDF and SO2 results. Conclusion: LDF and SO2 do not complement each other sufficiently in detecting non-vital teeth when the selection criteria are applied. While LDF clearly contributes, the vital or non-vital classification still depends on a combination of X-ray, sensitivity, and vitality tests. Full article
Show Figures

Graphical abstract

19 pages, 4812 KB  
Article
Uncoupling Protein 1 Promotes Nile Tilapia Resistance to Acute Cold Stress by Regulating Liver Metabolism
by Meiqing Li, Jirong Jia, Chenguang Liu, Ran Cai, Yang Yu, Xiaozheng Yu, Wei Feng, Caiyun Sun and Wensheng Li
Metabolites 2025, 15(10), 668; https://doi.org/10.3390/metabo15100668 - 13 Oct 2025
Viewed by 460
Abstract
Background: Low temperature stress is a major environmental challenge affecting the growth, metabolism, and survival of many aquaculture species, including Nile tilapia (Oreochromis niloticus). Understanding the molecular mechanisms underlying cold tolerance is therefore essential for improving fish resilience and aquaculture [...] Read more.
Background: Low temperature stress is a major environmental challenge affecting the growth, metabolism, and survival of many aquaculture species, including Nile tilapia (Oreochromis niloticus). Understanding the molecular mechanisms underlying cold tolerance is therefore essential for improving fish resilience and aquaculture sustainability. Methods: In the present study, an acute cold stress model of Nile tilapia (Oreochromis niloticus) was established and it was found that uncoupling protein 1 (UCP1) was involved in the acute cold stress process of tilapia. Results: The upregulation of UCP1 in the liver under cold stimulation was regulated by stress hormones such as cortisol and adrenaline. UCP1 has a short half-life and is degraded by proteasomes. In tilapia primary hepatocytes, the addition of adrenergic receptor agonists resulted in mitochondrial membrane potential decreasing, while UCP1 siRNA transfection inhibited mitochondrial membrane potential. Biochemical characteristics indicate that UCP1 is a channel protein that mediates proton leakage. In addition, feeding and intraperitoneal injection of mitochondrial uncoupling agent BAM15 can alleviate the low-temperature stress of tilapia. Conclusions: UCP1 helps maintain the metabolic homeostasis of tilapia under acute cold stimulation and provides new insights into the mechanisms of cold resistance as well as potential treatment strategies in fish. Full article
(This article belongs to the Special Issue Nutrition, Metabolism and Physiology in Aquatic Animals)
Show Figures

Figure 1

16 pages, 6997 KB  
Article
Ascorbic Acid Priming Boosts Cotton Seed Chilling Tolerance via Membrane Stability and Antioxidant Cycles
by Peng Han, Haixia Ma, Lu Lu, Jincheng Zhu, Xinhui Nie, Jianwei Xu and Zhibo Li
Plants 2025, 14(20), 3122; https://doi.org/10.3390/plants14203122 - 10 Oct 2025
Viewed by 339
Abstract
Low-temperature stress severely restricts cotton seed germination and seedling establishment, especially in early spring. Ascorbic acid (AsA) priming is a promising strategy to enhance stress tolerance, yet its mechanisms in cotton remain unclear. This study examined the effects of AsA priming on seed [...] Read more.
Low-temperature stress severely restricts cotton seed germination and seedling establishment, especially in early spring. Ascorbic acid (AsA) priming is a promising strategy to enhance stress tolerance, yet its mechanisms in cotton remain unclear. This study examined the effects of AsA priming on seed germination at 15 °C. Seeds were treated with 0, 25, 50, or 100 mg/L AsA for 3, 6, 12, or 24 h. Results showed that 50 mg/L AsA for 24 h significantly improved germination potential, rate, index, and promptness index (p < 0.05). Compared with water-primed seeds, AsA-primed seeds exhibited greater radicle length (+17.67%) and fresh weight (+136.26%) under chilling stress. This treatment markedly increased antioxidant enzyme activities, including POD (+196.74%), SOD (+43.81%), and CAT (+49.43%), while also promoting the accumulation of Ascorbate–Glutathione cycle-related enzymes and metabolites, thereby reinforcing the antioxidant defense system. Multidimensional statistical analyses further indicated that AsA enhanced root growth by stimulating antioxidant defenses while inducing a trade-off that slightly reduced fresh weight, suggesting a balance between growth and oxidative protection. Overall, AsA priming improves cotton seed cold tolerance by activating enzymatic and non-enzymatic antioxidant systems and mediating a growth–defense trade-off, underscoring its potential as an effective priming agent for early sowing under low-temperature stress. Full article
(This article belongs to the Special Issue Plant Functioning Under Abiotic Stress)
Show Figures

Figure 1

10 pages, 1366 KB  
Article
Immunotropic Effects of Steroid Hormone Medicines in Combination with Plasma-Treated Solution in Women of a Reproductive Age and Postmenopausal Women
by Tatyana Ivanovna Pavlik, Nadejda Maximovna Kostukova, Darya Andreevna Razvolyaeva, Evgeny Mikhaylovich Konchekov, Leonid Viktorovich Kolik, Namik Guseinaga-ogly Gusein-zade and Nikolai L’vovich Shimanovskii
Med. Sci. 2025, 13(4), 209; https://doi.org/10.3390/medsci13040209 - 24 Sep 2025
Viewed by 320
Abstract
Background: Steroidal glucocorticoid and gestagenic drugs and cold plasma-treated solutions (PTSs) are known to exert anti-inflammatory effects by influencing the production of a number of cytokines. The aim of this work was to test their independent and combined effects exerted on the production [...] Read more.
Background: Steroidal glucocorticoid and gestagenic drugs and cold plasma-treated solutions (PTSs) are known to exert anti-inflammatory effects by influencing the production of a number of cytokines. The aim of this work was to test their independent and combined effects exerted on the production of cytokines IL-1, IL-6, TNF-α, TGF-β, and IL-10 and reactive oxygen and nitrogen species (RONS) by leukocytes in women of a reproductive age and postmenopausal women. Methods: ELISA and chemiluminescence methods were used for this purpose. Results: PTS reduced IL-6 and RONS production by 50% and increased IL-10 production 2-fold in postmenopausal women, and it reduced IL-6 production by 80% and RONS production by 50% in women of reproductive age. When PTS and steroid hormonal drugs are used together, there is a general suppression of cytokine and oxidant activity. Conclusions: PTS reduces the production of inflammatory factors by leukocytes and stimulates the production of anti-inflammatory factors, more so in postmenopausal women. Progestins showed greater suppression of pro-inflammatory cytokine and RONS formation and stimulation of anti-inflammatory cytokines for women of reproductive age and dexamethasone showed such results for postmenopausal women. Full article
Show Figures

Figure 1

32 pages, 2223 KB  
Review
Changes Induced in Seeds as a Result of Non-Thermal Plasma Treatment in Plasma Agriculture Applications
by Camelia Elena Luchian, Constantin Lungoci, Mihai-Alexandru Ciolan, Cristina-Mihaela Rimbu, Liviu Dan Miron and Iuliana Motrescu
Appl. Sci. 2025, 15(19), 10366; https://doi.org/10.3390/app151910366 - 24 Sep 2025
Viewed by 664
Abstract
Non-thermal or cold plasma is an innovative agricultural technology used for the treatment of seeds, producing physicochemical and biochemical changes without thermal damage and stimulating germination and plant growth. The interaction of reactive species generated in cold plasma modifies the morphology of the [...] Read more.
Non-thermal or cold plasma is an innovative agricultural technology used for the treatment of seeds, producing physicochemical and biochemical changes without thermal damage and stimulating germination and plant growth. The interaction of reactive species generated in cold plasma modifies the morphology of the seed surface, increasing porosity, producing microcracks, removing material or producing other physical changes, and chemically modifying it. The changes induced positively influence the rate, speed, and uniformity of germination, as it is believed that these changes take place as a result of activated metabolic pathways, regulated hormone balance, and stimulated production of enzymes involved in the mobilisation of nutrient reserves needed for seedling growth. Plasma sources, electrical parameters, feed gas, and processing time are some of the essential factors involved in tuning the effects on seeds. Optimising the outcomes and their adaptation for specific species is crucial to maximise the benefits and avoid inhibitory effects. In the frame of ecological and sustainable agriculture, with the benefits given by cold plasma, this review follows the modifications produced by different sources on the seeds, starting from morphological changes to biochemical ones, up to germination, aiming to facilitate the understanding of the interaction and outcomes. We also address the challenges, including variability of biological responses, the need for standard procedures and parameters, and development of scalable technologies. A thorough examination of the changes induced in seeds as a result of non-thermal plasma treatment not only facilitates the improvement of experimental designs and reproducibility but also plays an important role in advancing seed treatment technologies and, ultimately, enhancing crop yields in a sustainable manner. Full article
(This article belongs to the Special Issue Technical Advances in Plasma Agriculture)
Show Figures

Figure 1

38 pages, 2356 KB  
Review
Non-Thermal Technologies in Food Fermentation: Mechanisms, Benefits, and Industrial Perspectives for Sustainable Development
by Fernanda Elaine Barros Souza, Sueli Rodrigues and Thatyane Vidal Fonteles
Processes 2025, 13(9), 2988; https://doi.org/10.3390/pr13092988 - 18 Sep 2025
Cited by 1 | Viewed by 645
Abstract
Non-thermal technologies (NTTs) such as ultrasound (US), pulsed electric fields (PEF), high-pressure processing (HPP), cold plasma (CP), and pulsed light (PL) are emerging as versatile tools in food fermentation, offering microbial control and process enhancement without the detrimental heat effects of conventional methods. [...] Read more.
Non-thermal technologies (NTTs) such as ultrasound (US), pulsed electric fields (PEF), high-pressure processing (HPP), cold plasma (CP), and pulsed light (PL) are emerging as versatile tools in food fermentation, offering microbial control and process enhancement without the detrimental heat effects of conventional methods. Operating at ambient low temperatures, these techniques preserve heat-sensitive compounds, modulate microbial activity, and improve mass transfer, enabling both quality retention and functional enrichment. Recent studies highlight their potential to stimulate metabolic pathways and enhance the release of bioactive compounds, opening new opportunities for fermented food production. The bibliometric analysis of the recent literature further reveals a growing interest in NTT applications in fermentation, with HPP and PEF showing the highest industrial maturity. Each technology exhibits distinct mechanisms and optimal niches across upstream, midstream, and downstream stages: HPP for uniform volumetric treatment, US for fermentation intensification, CP for surface-selective oxidative chemistry, PEF for membrane permeability control, and PL for rapid, residue-free decontamination. While the degree of industrial readiness varies, critical barriers such as scale-up limitations, high capital costs, energy distribution uniformity, process standardization, and techno-economic feasibility remain to be overcome. Beyond technical aspects, the successful commercialization of NTTs will also depend on addressing regulatory approval pathways, ensuring consumer trust and acceptance, and demonstrating their contribution to sustainability goals through lower energy use, reduced food waste, and environmentally responsible processing. Strategic, stand-alone, or hybrid applications of NTTs can therefore act not only as technological alternatives but also as enablers of a more sustainable, consumer-centered, and innovation-driven food system. Full article
(This article belongs to the Section Environmental and Green Processes)
Show Figures

Graphical abstract

16 pages, 4054 KB  
Article
Chemogenetic Modulation of Electroacupuncture Analgesia in a Mouse Intermittent Cold Stress-Induced Fibromyalgia Model by Activating Cerebellum Cannabinoid Receptor 1 Expression and Signaling
by I-Han Hsiao, Ming-Chia Lin, Hsin-Cheng Hsu, Younbyoung Chae, Yi-Kai Su and Yi-Wen Lin
Life 2025, 15(9), 1458; https://doi.org/10.3390/life15091458 - 17 Sep 2025
Viewed by 539
Abstract
Fibromyalgia (FM) is characterized by widespread musculoskeletal pain and tenderness, cognitive dysfunction, fatigue, and insomnia. Electroacupuncture (EA) has documented efficacy against FM-associated pain, while cannabinoid receptor 1 (CB1) plays a critical role in endogenous analgesia. Herein, we examined whether pain relief initiated by [...] Read more.
Fibromyalgia (FM) is characterized by widespread musculoskeletal pain and tenderness, cognitive dysfunction, fatigue, and insomnia. Electroacupuncture (EA) has documented efficacy against FM-associated pain, while cannabinoid receptor 1 (CB1) plays a critical role in endogenous analgesia. Herein, we examined whether pain relief initiated by EA was linked with differing cerebellar CB1 levels and signaling in an intermittent cold stress (ICS) mouse model of FM. FM-like hyperalgesia and recovery were assessed by measuring mechanical and thermal nociceptive thresholds. Compared to control mice, ICS-induced FM-model mice exhibited a significantly reduced mechanical withdrawal threshold (2.3 ± 0.1 g) and shorter thermal withdrawal latency (4.0 ± 0.5 s), indicative of mechanical and thermal hyperalgesia. Both conditions were reversed by 2 Hz EA but not sham EA. Hyperalgesia was associated with reduced CB1 receptor expression and the enhanced activity of multiple nociceptive signaling pathways (PKA, PI3K, Akt, mTOR, ERK, and NF-kB) in the mouse cerebellum. The 2 Hz EA treatment reliably reversed these abnormalities, while the sham EA treatment did not. Intracerebroventricular injection of the CB1 agonist anandamide (AEA) recapitulated the effects of EA on pain thresholds, while the analgesic effects of EA were blocked by the CB1 antagonist AM251. Precise chemogenetic stimulation at the paraventricular nucleus (PVN) of the hypothalamus reliably induced FM pain. Chemogenetic inhibition at the PVN diminished FM through the CB1 pathway in the cerebellum. Our findings suggest that dysregulation of CB1 expression and aberrant hyperactivity of nociceptive signaling pathways in the cerebellum contribute to the etiology of FM and that the upregulation of CB1 signaling mediates the analgesic efficacy of EA. Full article
(This article belongs to the Section Physiology and Pathology)
Show Figures

Figure 1

14 pages, 1559 KB  
Article
Electroacupuncture Relieves Fibromyalgia Pain in a Female Mouse Model by Augmenting Cannabinoid Receptor 1 Expression and Suppressing Astrocyte and Microglial Activation in Nociceptive Pathways
by I-Han Hsiao, Ming-Chia Lin, Hsin-Cheng Hsu, Younbyoung Chae, I-Ying Lin and Yi-Wen Lin
Biomedicines 2025, 13(9), 2112; https://doi.org/10.3390/biomedicines13092112 - 29 Aug 2025
Viewed by 878
Abstract
Background/Objectives: Fibromyalgia is a chronic pain syndrome with unclear etiology, meaning that it is difficult to treat effectively. The stimulation of cannabinoid receptor 1 (CB1) suppresses neuronal excitability and synaptic transmission in nociceptive pathways via reducing activity in the calcium channel and [...] Read more.
Background/Objectives: Fibromyalgia is a chronic pain syndrome with unclear etiology, meaning that it is difficult to treat effectively. The stimulation of cannabinoid receptor 1 (CB1) suppresses neuronal excitability and synaptic transmission in nociceptive pathways via reducing activity in the calcium channel and promoting the opening of the potassium channel. Methods: In this study, we examined whether CB1 activity contributes to the antinociceptive efficacy of electroacupuncture (EA) in a mouse fibromyalgia (FM) pain model established using intermittent cold stress (ICS). The model mice demonstrated both mechanical and thermal hyperalgesia measured using the von Frey and Hargreaves tests, respectively. Results: Electroacupuncture effectively reduced both forms of hyperalgesia and enhanced CB1 expression in the dorsal root ganglia, spinal cord, hypothalamus, and periaqueductal gray. In addition, EA attenuated the fibromyalgia-associated reactive transformation of microglia and astrocytes and the activation of the pain-related TLR4–MyD88–TRAF6 signaling pathway. The effects of ICS were also mitigated by the deletion of Trpv1, the gene encoding the transient receptor potential cation channel TRPV1 (capsaicin channel) implicated in nociceptive and inflammatory signaling. Further, the antinociceptive efficacy of EA was partially recapitulated by the acupoint injection of a CB1 agonist and abolished by the injection of a CB1 antagonist, suggesting that activating CB1 is essential for this therapeutic effect. Conclusions: Electroacupuncture can effectively alleviate mechanical and thermal hyperalgesia in a mouse model affected by fibromyalgia pain by activating the CB1 pathway, highlighting the therapeutic potential of CB1 agonism as a therapeutic strategy. Full article
(This article belongs to the Section Neurobiology and Clinical Neuroscience)
Show Figures

Figure 1

43 pages, 18411 KB  
Review
Physiological Conditions, Bioactive Ingredients, and Drugs Stimulating Non-Shivering Thermogenesis as a Promising Treatment Against Diabesity
by Diego Salagre, Ciskey V. Ayala-Mosqueda, Samira Aouichat and Ahmad Agil
Pharmaceuticals 2025, 18(9), 1247; https://doi.org/10.3390/ph18091247 - 22 Aug 2025
Viewed by 1166
Abstract
Obesity (lipotoxicity) results from a chronic imbalance between energy intake and expenditure. It is strongly associated with type 2 diabetes mellitus (T2DM, glucotoxicity) and considered a major risk factor for the development of metabolic complications. Their convergence constitutes “diabesity”, representing a major challenge [...] Read more.
Obesity (lipotoxicity) results from a chronic imbalance between energy intake and expenditure. It is strongly associated with type 2 diabetes mellitus (T2DM, glucotoxicity) and considered a major risk factor for the development of metabolic complications. Their convergence constitutes “diabesity”, representing a major challenge for public health worldwide. Limited treatment efficacy highlights the need for novel, multi-targeted therapies. Non-shivering thermogenesis (NST), mediated by brown and beige adipose tissue and skeletal muscle, has emerged as a promising therapy due to its capacity to increase energy expenditure and improve metabolic health. Also, skeletal muscle plays a central role in glucose uptake and lipid oxidation, further highlighting its relevance in diabesity. This review explores current and emerging knowledge on physiological stimuli, including cold exposure, physical activity, and fasting, as well as bioactive ingredients and drugs that stimulate NST in thermogenic tissues. Special emphasis is placed on melatonin as a potential regulator of mitochondrial function and energy balance. The literature search was conducted using MEDLINE and Web of Science. Studies were selected based on scientific relevance, novelty, and mechanistic insight; prioritizing human and high-quality rodent research published in peer-reviewed journals. Evidence shows that multiple interventions enhance NST, leading to improved glucose metabolism, reduced fat accumulation, and increased energy expenditure in humans and/or rodents. Melatonin, in particular, shows promise in modulating thermogenesis through organelle-molecular pathways and mitochondrial protective effects. In conclusion, a multi-target approach through the activation of NST by physiological, nutritional, and pharmacological agents offers an effective and safe treatment for diabesity. Further research is needed to confirm these effects in clinical practice and support their use as effective therapeutic strategies. Full article
Show Figures

Graphical abstract

13 pages, 878 KB  
Article
A Wearable EMG-Driven Closed-Loop TENS Platform for Real-Time, Personalized Pain Modulation
by Jiahao Du, Shengli Luo and Ping Shi
Sensors 2025, 25(16), 5113; https://doi.org/10.3390/s25165113 - 18 Aug 2025
Cited by 1 | Viewed by 2128
Abstract
A wearable closed-loop transcutaneous electrical nerve stimulation (TENS) platform has been developed to address the limitations of conventional open-loop neuromodulation systems. Unlike existing systems such as CLoSES—which targets intracranial stimulation—and electromyography-triggered functional electrical stimulation (EMG-FES) platforms primarily used for motor rehabilitation, the proposed [...] Read more.
A wearable closed-loop transcutaneous electrical nerve stimulation (TENS) platform has been developed to address the limitations of conventional open-loop neuromodulation systems. Unlike existing systems such as CLoSES—which targets intracranial stimulation—and electromyography-triggered functional electrical stimulation (EMG-FES) platforms primarily used for motor rehabilitation, the proposed device uniquely integrates low-latency surface electromyography (sEMG)-driven control with six-channel current stimulation in a fully wearable, non-invasive format aimed at ambulatory pain modulation. The system combines real-time sEMG acquisition, adaptive signal processing, a programmable multi-channel stimulation engine, and a high-voltage, boost-regulated power supply within a compact, battery-powered architecture. Bench-top evaluations demonstrate rapid response to EMG events and stable biphasic output (±22 mA) across all channels with high electrical isolation. A human-subject protocol using the Cold Pressor Test (CPT), heart rate variability (HRV), and galvanic skin response (GSR) has been designed to evaluate analgesic efficacy. While institutional review board (IRB) approval is pending, the system establishes a robust foundation for future personalized, mobile neuromodulation therapies. Full article
Show Figures

Figure 1

20 pages, 2665 KB  
Article
Subjective Perception and Cooling Effect for Dynamic Ventilation with Fluctuating Air Velocity
by Chunfeng Lao, Jing Ling, Jing Li, Jinghua Jiang, Sheng Zhang, Yan Yan, Yue Yin and Mingliang Gu
Buildings 2025, 15(16), 2871; https://doi.org/10.3390/buildings15162871 - 14 Aug 2025
Viewed by 509
Abstract
Dynamic ventilation has proven effective in enhancing indoor thermal comfort. However, previous studies often expose participants to inconsistent thermal environments, potentially compromising the accuracy of subjective evaluations. To address this limitation, this study implemented dynamic ventilation with fluctuating air velocity in an accurately [...] Read more.
Dynamic ventilation has proven effective in enhancing indoor thermal comfort. However, previous studies often expose participants to inconsistent thermal environments, potentially compromising the accuracy of subjective evaluations. To address this limitation, this study implemented dynamic ventilation with fluctuating air velocity in an accurately controlled environmental chamber. Objective measurements of indoor air velocity and air temperature distribution are conducted, and subjective thermal sensation votes are collected under thermally consistent environments among participants. During the experiment, all participants experience similar dynamic thermal environments. The results show that participants experience thermal comfort under dynamic ventilation. Dynamic ventilation enhances convective heat transfer between the human body and the surrounding air and stimulates cutaneous cold receptors. The pronounced cooling effect of dynamic airflow contributes to a reduction in skin temperature on the head, chest, upper arm, forearm, hand, and thigh, with a temperature drop ranging from 1.3% to 2.8%. In addition, dynamic ventilation significantly reduces draft risk, with the proportion of participants reporting a dissatisfied sensation decreasing from 10% to 0%. This study demonstrates the advantages of dynamic ventilation in improving thermal comfort and minimizing draft risk under controlled and uniform environmental conditions for all participants. Full article
(This article belongs to the Special Issue Development of Indoor Environment Comfort)
Show Figures

Figure 1

21 pages, 645 KB  
Review
Vernalization of Winter Crops Increases Photosynthetic Energy Conversion Efficiency and Seed Yield
by Norman P. A. Hüner, Alexander G. Ivanov, Beth Szyszka-Mroz, Leon A. Bravo, Leonid V. Savitch and Marianna Krol
Plants 2025, 14(15), 2357; https://doi.org/10.3390/plants14152357 - 31 Jul 2025
Viewed by 686
Abstract
We summarize our present knowledge of the regulation of photostasis and photosynthetic performance versus photoprotection in response to vernalization and conclude that the enhanced photosynthetic performance of winter crops is due to an inherent increase in photosynthetic energy conversion efficiency induced by vernalization [...] Read more.
We summarize our present knowledge of the regulation of photostasis and photosynthetic performance versus photoprotection in response to vernalization and conclude that the enhanced photosynthetic performance of winter crops is due to an inherent increase in photosynthetic energy conversion efficiency induced by vernalization which translates into high seed yield in the field as well as under controlled environment conditions. This is consistent with the published data for enhanced photosynthetic performance of the only two extant terrestrial angiosperms, Colobanthus quitensis and Deschampsia antarctica, native to the frigid conditions of terrestrial Antarctica. The Cold Binding factor family of transcription factors (CBFs/DREBs) governs the enhanced photosynthetic performance of winter cereals as well as the Antarctic angiosperms. In contrast to winter crops, spring varieties survive cold environments by stimulating photoprotection at the expense of photosynthetic performance like that observed for green algae and cyanobacteria. Consequently, this minimizes the photosynthetic energy conversion efficiency of spring varieties and limits their seed yield upon cold acclimation. This review provides critical insights into the regulation of photostasis and the balance between photosynthetic performance and photoprotection in plants and how vernalization has enhanced photosynthetic energy conversion, which is essential for understanding plant adaptation to cold environments and optimizing agricultural productivity for improving crop resilience and yield in challenging climates. Full article
Show Figures

Figure 1

19 pages, 2243 KB  
Article
Theoretical Calculation of Ground and Electronically Excited States of MgRb+ and SrRb+ Molecular Ions: Electronic Structure and Prospects of Photo-Association
by Mohamed Farjallah, Hela Ladjimi, Wissem Zrafi and Hamid Berriche
Atoms 2025, 13(8), 69; https://doi.org/10.3390/atoms13080069 - 25 Jul 2025
Viewed by 709
Abstract
In this work, a comprehensive theoretical investigation is carried out to explore the electronic and spectroscopic properties of selected diatomic molecular ions MgRb+ and SrRb+. Using high-level ab initio calculations based on a pseudopotential approach, along with large Gaussian basis [...] Read more.
In this work, a comprehensive theoretical investigation is carried out to explore the electronic and spectroscopic properties of selected diatomic molecular ions MgRb+ and SrRb+. Using high-level ab initio calculations based on a pseudopotential approach, along with large Gaussian basis sets and full valence configuration interaction (FCI), we accurately determine adiabatic potential energy curves, spectroscopic constants, transition dipole moments (TDMs), and permanent electric dipole moments (PDMs). To deepen our understanding of these systems, we calculate radiative lifetimes for vibrational levels in both ground and low-lying excited electronic states. This includes evaluating spontaneous and stimulated emission rates, as well as the effects of blackbody radiation. We also compute Franck–Condon factors and analyze photoassociation processes for both ions. Furthermore, to explore low-energy collisional dynamics, we investigate elastic scattering in the first excited states (21Σ+) describing the collision between the Ra atom and Mg+ or Sr+ ions. Our findings provide detailed insights into the theoretical electronic structure of these molecular ions, paving the way for future experimental studies in the field of cold and ultracold molecular ion physics. Full article
Show Figures

Figure 1

27 pages, 10769 KB  
Article
Cold Plasma Treatment Alters the Morphology, Oxidative Stress Response and Specialized Metabolite Content in Yellow Iris (I. reichenbachii) Callus
by Slađana Jevremović, Milica Milutinović, Ksenija Veličković, Uroš Gašić, Nikola Škoro, Nevena Puač and Suzana Živković
Horticulturae 2025, 11(7), 781; https://doi.org/10.3390/horticulturae11070781 - 3 Jul 2025
Cited by 1 | Viewed by 3432
Abstract
The application of non-thermal (cold) plasmas is considered an environmentally friendly method that could affect plant metabolism and cellular development or can be used for the commercial production of natural products that cannot be chemically synthesized. In the present study, the non-embryogenic callus [...] Read more.
The application of non-thermal (cold) plasmas is considered an environmentally friendly method that could affect plant metabolism and cellular development or can be used for the commercial production of natural products that cannot be chemically synthesized. In the present study, the non-embryogenic callus of iris (Iris reichenbachii Heuff.) was treated with a Radio Frequency (RF) plasma needle device using He as a working gas. We investigated short-term (up to seven days) and long-term (up to one year) changes on morphological, physiological and biochemical levels. An increased production of O2 and H2O2 was observed in the callus tissue after plasma treatment. The enzymes SOD and CAT represented the frontline in the antioxidant defense against reactive oxygen species (ROS) produced during the first hour of treatment, while POX was the leading antioxidant enzyme seven days after plasma treatment. Significant long-term morphological changes were observed in the calli due to the increased mitotic activity of the plant cells. In addition, three flavonoids (naringenin, apigenin and acacetin) and two isoflavonoids (irisolidone and irilone) were detected only in the plasma-treated tissue even one year after plasma treatment. The present study emphasizes the application of the plasma technique to promote meristematic activity and stimulate the production of specialized metabolites in iris calli. Full article
(This article belongs to the Special Issue Innovative Micropropagation of Horticultural and Medicinal Plants)
Show Figures

Graphical abstract

20 pages, 641 KB  
Article
Vestibular Versus Cochlear Stimulation on the Relief of Phantom Pain After Traumatic Finger Amputation
by José Joaquín Díaz-López, José Adán Miguel-Puga, María Isabel Jaime-Esquivias, Maricela Peña-Chávez and Kathrine Jáuregui-Renaud
Biomedicines 2025, 13(7), 1601; https://doi.org/10.3390/biomedicines13071601 - 30 Jun 2025
Viewed by 667
Abstract
Objective: The aim of this study was to assess the effects of vestibular stimulation (semicircular canals/utricles) compared to cochlear stimulation on phantom pain and depersonalization/derealization symptoms after ≥3 months since traumatic amputation of hand-finger(s). Methods: A total of 125 adults (38.2 ± [...] Read more.
Objective: The aim of this study was to assess the effects of vestibular stimulation (semicircular canals/utricles) compared to cochlear stimulation on phantom pain and depersonalization/derealization symptoms after ≥3 months since traumatic amputation of hand-finger(s). Methods: A total of 125 adults (38.2 ± 8.1 years old) with phantom pain after amputation of one to four fingers agreed to participate. None of them wore prosthetic devices or had history of otology/audiology/vestibular/neurology/rheumatology/orthopedic/psychiatry disorders or psychopharmacological treatment. After a preliminary assessment, in a random order, they were exposed to caloric stimulation (right/left 44 °C/30 °C), centrifuge (right/left), and transient evoked otoacoustic emissions (TOAEs, right/left) with a follow-up of three days in between. Immediately before and after each stimulus, they reported on their pain characteristics and depersonalization/derealization symptoms. Results: After vestibular stimulation, a decrease in pain intensity was reported by at least one-third of the participants, which persisted for at least one day in the majority of them. Less than one-sixth of the participants reported pain decrease after cochlear stimulation. No influence was observed based on the side of the stimulation or the temperature, but the stimuli sequence had an effect. The centrifuge and TOAE effects were related to anxiety/depression symptoms and mainly observed when they were the first stimulus used. After caloric stimulation, pain decrease was independent from the sequence of the stimuli, and it was related to reports of feeling estrangement from the body. Conclusions: Mild caloric vestibular stimulation, whether applied to the right or left side and using warm or cold temperature, can modulate phantom pain after amputation of hand-finger(s) in patients with altered bodily sensations. However, individual cofactors may influence one’s susceptibility to experiencing this effect. Full article
(This article belongs to the Section Molecular and Translational Medicine)
Show Figures

Figure 1

Back to TopTop