Sign in to use this feature.

Years

Between: -

Subjects

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Journals

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Article Types

Countries / Regions

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Search Results (1,232)

Search Parameters:
Keywords = colorectal cancer cell lines

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
13 pages, 2086 KB  
Article
Bioactivity-Guided Fractionation and Mechanistic Insights into Aristolochia ringens Root Extract-Induced G1 Phase Arrest and Mitochondria-Mediated Apoptosis in Human Colon Adenocarcinoma Cells
by Saheed O. Anifowose, Abdalrhaman M. Salih, Musa K. Oladejo, Ahmad Rady, Mobarak S. Al Mosallam, Hasan A. Aljohi, Mansour I. Almansour, Saad Hussin Alkahtani, Ibrahim O. Alanazi and Badr A. Al-Dahmash
Pharmaceuticals 2025, 18(9), 1250; https://doi.org/10.3390/ph18091250 - 23 Aug 2025
Viewed by 231
Abstract
Background/Objectives: Aristolochia ringens, a medicinal plant widely used in traditional medicine, has shown potential therapeutic applications. This study aimed to investigate the anticancer mechanism of action of its crude extract against human colorectal adenocarcinoma cells (Caco-2 and HT-29). Methods: Cell [...] Read more.
Background/Objectives: Aristolochia ringens, a medicinal plant widely used in traditional medicine, has shown potential therapeutic applications. This study aimed to investigate the anticancer mechanism of action of its crude extract against human colorectal adenocarcinoma cells (Caco-2 and HT-29). Methods: Cell viability was assessed using the MTT assay to determine IC50 values. Immunofluorescence microscopy was used to examine nuclear morphology and microtubule integrity. Flow cytometry with PI staining was used for cell cycle analysis and Annexin V-FITC/PI staining for apoptosis detection. Mitochondrial membrane potential was evaluated using JC-1 dye. Bioactivity-guided fractionation was performed via HPLC, and GC–MS was used to profile active constituents. Results: The extract exhibited dose-dependent cytotoxicity with IC50 values below 30 µg/mL in colon adenocarcinoma cell lines. Treated Caco-2 cells showed nuclear shrinkage and disrupted microtubules. PI-based flow cytometry revealed G1 phase arrest, and Annexin V-FITC/PI staining indicated enhanced late apoptosis. JC-1 staining demonstrated mitochondrial depolarization. HPLC fractionation identified fractions 2 and 3 as active, and preliminary GC–MS analysis tentatively annotated the presence of alkaloids, sesquiterpenes/diterpenes, and steroidal compounds. Conclusions: A. ringens exerts anticancer effects through a mitochondria-mediated apoptotic pathway, involving G1 checkpoint arrest and cytoskeletal disruption. These findings provide the first integrated cellular and mechanistic evidence of its anticancer potential in colorectal cancer, supporting its promise as a source of novel therapeutic lead compounds. Full article
Show Figures

Graphical abstract

20 pages, 2095 KB  
Article
CF10 Displayed Improved Activity Relative to 5-FU in a Mouse CRLM Model Under Conditions of Physiological Folate
by Charles Chidi Okechukwu, Xue Ma, Wencheng Li, Ralph D’Agostino, Matthew G. Rees, Melissa M. Ronan, Jennifer A. Roth and William H. Gmeiner
Cancers 2025, 17(17), 2739; https://doi.org/10.3390/cancers17172739 - 23 Aug 2025
Viewed by 202
Abstract
Background/Objective: At least 25% of colorectal cancer (CRC) patients develop liver metastases (CRLM), and chemotherapeutic regimens based on the fluoropyrimidine (FP) drug 5-fluorouracil (5-FU) provide a survival advantage, but long-term survival is uncommon. The primary molecular target of FP drugs is thymidylate synthase [...] Read more.
Background/Objective: At least 25% of colorectal cancer (CRC) patients develop liver metastases (CRLM), and chemotherapeutic regimens based on the fluoropyrimidine (FP) drug 5-fluorouracil (5-FU) provide a survival advantage, but long-term survival is uncommon. The primary molecular target of FP drugs is thymidylate synthase (TS). Methods: A TS/Top1 dual-targeting cytotoxic mechanism for CF10/LV was confirmed by TS ternary complex detection by Western blot and by immunofluorescence detection of Top1 cleavage complexes. CF10/LV activated the ATR/Chk1 pathway consistent with enhanced replication stress and induced apoptosis. In vivo studies showed CF10 and CF10/LV eradicated liver metastasis in a CRLM model without scarring or weight loss, displaying therapeutic advantages relative to legacy FPs. Results: We demonstrated that a nanoscale FP polymer, CF10, displayed greater potency than expected based on FP content in part through more direct conversion to the TS-inhibitory metabolite, FdUMP. In this study, we tested CF10 for potency advantages relative to 5-FU and trifluorothymidine (TFT, the FP component of TAS-102) and confirmed a general potency advantage for CF10 in CRC cell lines in the Broad Institute PRISM screen. We demonstrated that this potency advantage is retained in CRC cells cultured with human-like folate levels and is enhanced by LV co-treatment to a similar extent as that by 5-FU. Our results confirm CF10 development proceeding as a CF10/LV combination. Mechanistically, CF10 cytotoxicity closely correlates with poisons of DNA topoisomerase 1 (Top1) in the PRISM screen relative to 5-FU and TFT. Conclusions: Our pre-clinical data support an early-phase clinical trial for CF10 for treating liver-metastatic CRC. Full article
Show Figures

Figure 1

12 pages, 996 KB  
Article
Augmentation of the Benzyl Isothiocyanate-Induced Antiproliferation by NBDHEX in the HCT-116 Human Colorectal Cancer Cell Line
by Ruitong Sun, Aina Yano, Ayano Satoh, Shintaro Munemasa, Yoshiyuki Murata, Toshiyuki Nakamura and Yoshimasa Nakamura
Int. J. Mol. Sci. 2025, 26(17), 8145; https://doi.org/10.3390/ijms26178145 - 22 Aug 2025
Viewed by 139
Abstract
Increased drug metabolism and elimination are prominent mechanisms mediating multidrug resistance (MDR) to not only chemotherapy drugs but also anti-cancer natural products, such as benzyl isothiocyanate (BITC). To evaluate the possibility of combined utilization of a certain compound to overcome this resistance, we [...] Read more.
Increased drug metabolism and elimination are prominent mechanisms mediating multidrug resistance (MDR) to not only chemotherapy drugs but also anti-cancer natural products, such as benzyl isothiocyanate (BITC). To evaluate the possibility of combined utilization of a certain compound to overcome this resistance, we focused on glutathione S-transferase (GST)-dependent metabolism of BITC. The pharmacological treatment of a pi-class GST-selective inhibitor, 6-(7-nitro-2,1,3-benzoxadiazol-4-ylthio)hexanol (NBDHEX), significantly increased BITC-induced toxicity in human colorectal cancer HCT-116 cells. However, NBDHEX unexpectedly increased the level of the BITC–glutathione (GSH) conjugate as well as BITC-modified proteins, suggesting that NBDHEX might increase BITC-modified protein accumulation by inhibiting BITC–GSH excretion instead of inhibiting GST. Furthermore, NBDHEX significantly potentiated BITC-induced apoptosis with the enhanced activation of apoptosis-related pathways, such as c-Jun N-terminal kinase and caspase-3 pathways. These results suggested that combination treatment with NBDHEX may be an effective way to overcome MDR with drug efflux and thus induce the biological activity of BITC at lower doses. Full article
(This article belongs to the Special Issue Fundamental and Translational Insights into Colorectal Cancer)
Show Figures

Figure 1

20 pages, 6354 KB  
Article
Cloning and Functional Characterization of a Novel Brevinin-1-Type Peptide from Sylvirana guentheri with Anticancer Activity
by Huyen Thi La, Quynh Bach Thi Nhu, Hai Manh Tran, Huyen Thi Ngo, Phuc Minh Thi Le, Hanh Hong Hoang, Linh Trong Nguyen, Dat Tien Nguyen and Thanh Quang Ta
Curr. Issues Mol. Biol. 2025, 47(8), 673; https://doi.org/10.3390/cimb47080673 - 20 Aug 2025
Viewed by 373
Abstract
Despite significant medical advancements, two major health challenges persist: antibiotic resistance in microbial pathogens and drug resistance in cancer cells. To address these issues, research has increasingly focused on discovering novel natural compounds with dual antimicrobial and anticancer activities. Among such candidates, antimicrobial [...] Read more.
Despite significant medical advancements, two major health challenges persist: antibiotic resistance in microbial pathogens and drug resistance in cancer cells. To address these issues, research has increasingly focused on discovering novel natural compounds with dual antimicrobial and anticancer activities. Among such candidates, antimicrobial peptides (AMPs) have attracted attention due to their ability to selectively target microbial and cancer cells while exhibiting minimal toxicity toward normal cells. Although Vietnam possesses rich biodiversity, including a wide range of Anura species, studies on AMPs from these organisms remain limited. In this study, a novel AMP, brevinin-1 E8.13, was identified from the skin secretion of Sylvirana guentheri, a frog species native to Vietnam. The brevinin-1 E8.13 peptide was successfully cloned, sequenced, and chemically synthesized. Functional assays revealed that brevinin-1 E8.13 possesses strong antibacterial activity against Staphylococcus aureus and exerts significant antiproliferative effects on various human cancer cell lines, including A549 (lung), AGS (gastric), Jurkat (leukemia), HCT116 (colorectal), HL60 (leukemia), and HepG2 (liver). The peptide demonstrated moderate to potent cytotoxic activity, with IC50 values ranging from 7.5 to 14.8 μM, depending on the cell type. Notably, brevinin-1 E8.13 exhibited low cytotoxicity toward normal human dermal fibroblast (HDF) cells and even promoted cell proliferation at lower concentrations. Furthermore, Chemically Activated Fluorescent Expression (CAFLUX) bioassay results confirmed that the peptide significantly downregulated Cyp1a1 gene expression in HepG2 cells. Collectively, these findings highlight the therapeutic potential of brevinin-1 E8.13 as a dual-function antimicrobial and anticancer agent derived from the skin secretion of Sylvirana guentheri. Full article
(This article belongs to the Section Biochemistry, Molecular and Cellular Biology)
Show Figures

Figure 1

25 pages, 10155 KB  
Article
SALL2-Mediated Suppression of WNT Signaling Through Transcriptional Control of AXIN2 in Colorectal Cancer Cells
by Aracelly Quiroz, Emilia Escalona, Carlos Farkas, Diego Benítez-Riquelme, Paulina Sepúlveda, Mario Palma, Paula Medina, Carolina Delgado, Matías I. Hepp, Franz Villarroel-Espindola, Ariel F. Castro and Roxana Pincheira
Int. J. Mol. Sci. 2025, 26(16), 7896; https://doi.org/10.3390/ijms26167896 - 15 Aug 2025
Viewed by 355
Abstract
Colorectal cancer (CRC) remains the second leading cause of cancer-related mortality worldwide, with aberrant activation of the Wnt/β-catenin signaling pathway constituting a key driver of tumorigenesis. SALL2, a zinc finger transcription factor deregulated in various cancers, has been implicated in Wnt signaling [...] Read more.
Colorectal cancer (CRC) remains the second leading cause of cancer-related mortality worldwide, with aberrant activation of the Wnt/β-catenin signaling pathway constituting a key driver of tumorigenesis. SALL2, a zinc finger transcription factor deregulated in various cancers, has been implicated in Wnt signaling regulation through its Xenopus ortholog; however, its role in human CRC remains unclear. In this study, we investigated the expression and function of SALL2 in CRC. Immunohistochemical analysis revealed that SALL2 is present in the epithelium and stroma of normal colon tissue but is significantly downregulated in adenomas, carcinomas, and CRC cell lines. Reduced SALL2 expression was associated with elevated levels of active β-catenin and poorer overall patient survival. Functional assays demonstrated that SALL2 transcriptionally activates AXIN2, a key negative regulator of the Wnt/β-catenin pathway. Chromatin immunoprecipitation and promoter-reporter assays confirmed SALL2 binding to the AXIN2 proximal promoter and enhanced promoter activity. Furthermore, SALL2 expression potentiated the pro-apoptotic effects of the Wnt pathway inhibitor XAV939 in CRC cells, suggesting a role in sensitizing cells to Wnt-targeted therapies. Collectively, these findings identify SALL2 as a negative regulator of Wnt/β-catenin signaling and support its potential as a prognostic biomarker and therapeutic target in colorectal cancer. Full article
Show Figures

Figure 1

21 pages, 1921 KB  
Article
Liposomal Formulations for Efficient Delivery of a Novel, Highly Potent Pyrimidine-Based Anticancer Drug
by Sofia Teixeira, Débora Ferreira, Ana Rita O. Rodrigues, Ligia R. Rodrigues, Elisabete M. S. Castanheira and Maria Alice Carvalho
Pharmaceuticals 2025, 18(8), 1210; https://doi.org/10.3390/ph18081210 - 15 Aug 2025
Viewed by 309
Abstract
Background/Objectives: Cancer is one of the deadliest diseases worldwide. Despite the existing treatments, the adverse side effects and the increasing drug resistance to the current therapies lead to a reduced quality of life for patients and poor prognosis. The pyrimido[5,4-d]pyrimidine compound [...] Read more.
Background/Objectives: Cancer is one of the deadliest diseases worldwide. Despite the existing treatments, the adverse side effects and the increasing drug resistance to the current therapies lead to a reduced quality of life for patients and poor prognosis. The pyrimido[5,4-d]pyrimidine compound (PP) was identified as a promising new anticancer drug due to its potent activity against colorectal and triple-negative breast cancers; however it showed poor aqueous solubility and safety profile. This study aimed the synthesis of compound PP, its encapsulation in liposomal formulations based on phosphatidylcholines (PC), the characterization of liposomal formulations and its biological evaluation. Methods: A new synthesis method for PP was developed. The compound was incorporated into different liposomal formulations. The hydrodynamic size, polydispersity, and zeta potential of loaded and non-loaded formulations were measured by DLS. The cytotoxic effects of compound PP, placebo nanoformulations, and PP-loaded nanoformulations were assessed in colorectal (HCT 116) and triple-negative breast cancer (MDA-MB-231) cell lines, as well as in non-tumor BJ-5ta cells. Results: The PP compound was efficiently synthesized. The PP-loaded liposomal formulations exhibit sizes below 150 nm, low polydispersity, and long-time stability upon storage at 4 °C. The antitumor compound was encapsulated with excellent efficiency, and sustained release profiles were obtained. The PP compound showed high activity against HCT 116 (IC50 = 2.04 ± 0.45 µM) and MDA-MB-231 (IC50 = 5.24 ± 0.24 µM) cell lines. DPPC-containing formulations were effective against cancer cells, but showed toxicity comparable to free PP in BJ-5ta normal cells. Conversely, PP-EggPC-Chol-L formulation displayed strong anticancer activity with residual toxicity to normal cells. Conclusions: The PP-loaded liposomal formulation, composed of 70% PC from egg yolk (EggPC) and 30% cholesterol (Chol), designated as PP-EggPC-Chol-L, was the most promising formulation, showing effective anticancer activity in both cancer cell lines and a significant improvement in the safety profile which is of utmost importance to progress to the next phase of drug development. Full article
(This article belongs to the Special Issue Drug Formulation: Solubilization and Controlled-Release Strategies)
Show Figures

Graphical abstract

12 pages, 1797 KB  
Article
Evaluating Allium sativum and Vitis vinifera Extracts as Potential Adjuvant Agents in Colorectal Cancer: Insights from HT-29 and Caco-2 Models
by Raquel Bodoque-Villar, Elisabet María Roldán-Díaz, Leticia Serrano-Oviedo, Hernán David Garzón-Quintero, Mónica Cañete-Rodríguez, Luis Antonio Gómez, Ignacio Gracia, Juan Francisco Rodríguez, Natalia Bejarano-Ramírez, Gema Verdugo-Moreno, José Ramón Muñoz-Rodríguez and Francisco Javier Redondo-Calvo
Biomedicines 2025, 13(8), 1968; https://doi.org/10.3390/biomedicines13081968 - 13 Aug 2025
Viewed by 283
Abstract
Background/Objectives: Colorectal cancer (CRC) remains a major health challenge due to its high incidence and resistance to conventional therapies. Natural compounds have gained attention as potential adjuvant treatments. The study assesses whether combining Allium sativum and Vitis vinifera [rich in oligomeric proanthocyanidins [...] Read more.
Background/Objectives: Colorectal cancer (CRC) remains a major health challenge due to its high incidence and resistance to conventional therapies. Natural compounds have gained attention as potential adjuvant treatments. The study assesses whether combining Allium sativum and Vitis vinifera [rich in oligomeric proanthocyanidins condensed (OPCs)] extracts enhances cell viability reduction and migration inhibition. Methods: Human colorectal cancer cell lines (Caco-2 and HT-29) were treated with increasing concentrations of both extracts individually and in combination. Cell viability was assessed using MTT assays, while migration was evaluated through scratch wound assays. Synergistic effects were analyzed using Combenefit software. Results: Both extracts significantly reduced cell viability in a dose- and time-dependent manner. The combination of both extracts led to an enhanced reduction in cell viability, with a transient synergistic effect observed at 24 h in HT-29 cells. Regarding migration, OPCs showed a transient anti-migratory effect at 6 h in HT-29 cells, but no significant impact was observed in Caco-2 cells or at later time points. Conclusions: These findings suggest that Allium sativum and Vitis vinifera extracts have potential as complementary treatments for colorectal cancer, mainly through their effect on cell viability. This study opens a field of research on the possible therapeutic effects of natural extracts. Full article
Show Figures

Figure 1

16 pages, 2803 KB  
Article
Synergistic Anticancer Effects of Fibroblast Growth Factor Receptor Inhibitor and Cannabidiol in Colorectal Cancer
by Yeonuk Ju, Bu Gyeom Kim, Jeong-An Gim, Jun Woo Bong, Chin Ock Cheong, Sang Cheul Oh, Sang Hee Kang, Byung Wook Min and Sun Il Lee
Nutrients 2025, 17(16), 2609; https://doi.org/10.3390/nu17162609 - 12 Aug 2025
Viewed by 358
Abstract
Background/Objectives: Colorectal cancer (CRC) remains a significant global health concern, with limited treatment options for metastatic stage 4 CRC. Fibroblast Growth Factor Receptor (FGFR) is a promising therapeutic target in CRC, while cannabidiol (CBD) has shown potential for inducing cell death and overcoming [...] Read more.
Background/Objectives: Colorectal cancer (CRC) remains a significant global health concern, with limited treatment options for metastatic stage 4 CRC. Fibroblast Growth Factor Receptor (FGFR) is a promising therapeutic target in CRC, while cannabidiol (CBD) has shown potential for inducing cell death and overcoming drug resistance. This study evaluates the efficacy of FGFR inhibitors and explores the synergistic effects of combining FGFR inhibitors with CBD in inducing apoptosis in CRC cells. Methods: Cannabidiol and FGFR inhibitors were applied, and protein expression was analyzed via Western blot. Cell viability was assessed using the WST-1 assay, while apoptosis was measured through flow cytometry using Annexin V-FITC/PI staining. CHOP-specific siRNA transfection was performed to study gene silencing effects, followed by RNA sequencing for differential expression and pathway analysis. Statistical significance was determined using ANOVA and t-tests, with p < 0.05. Results: FGFR expression patterns were confirmed in various cancer cell lines, with NCI-H716 showing high FGFR2 expression. Treatment with CBD (4 µM) and AZD4547 (10 nM) resulted in significant cell death, especially when used in combination, indicating the effectiveness of this combined therapy. Increased apoptosis in NCI-H716 cells was confirmed with the combined treatment. RNA sequencing and heatmap analysis suggested that ER stress might be related to the observed synergistic effect. The role of ER stress in the combination-induced apoptosis of NCI-H716 cells was further validated. Conclusions: The combination of FGFR inhibitors and cannabidiol exhibited a synergistic effect in inducing cell death in colorectal cancer cells, likely through the ER stress pathway. This study supports the potential of combined FGFR inhibitor and CBD therapy as a promising strategy for enhancing anticancer effects in CRC. Full article
(This article belongs to the Section Proteins and Amino Acids)
Show Figures

Figure 1

13 pages, 2203 KB  
Article
A Cancer-Specific Anti-Podocalyxin Monoclonal Antibody (humPcMab-60) Demonstrated Antitumor Efficacy in Pancreatic and Colorectal Cancer Xenograft Models
by Hiroyuki Suzuki, Tomokazu Ohishi, Takuro Nakamura, Miyuki Yanaka, Saori Handa, Tomohiro Tanaka, Mika K. Kaneko and Yukinari Kato
Antibodies 2025, 14(3), 67; https://doi.org/10.3390/antib14030067 - 11 Aug 2025
Viewed by 249
Abstract
Background: Podocalyxin (PODXL) has been identified as a promising therapeutic target and a potential diagnostic biomarker in various tumors. Despite the therapeutic potential of anti-PODXL monoclonal antibodies (mAbs), their further development has been limited by concerns regarding potential on-target off-tumor toxicities. To [...] Read more.
Background: Podocalyxin (PODXL) has been identified as a promising therapeutic target and a potential diagnostic biomarker in various tumors. Despite the therapeutic potential of anti-PODXL monoclonal antibodies (mAbs), their further development has been limited by concerns regarding potential on-target off-tumor toxicities. To minimize adverse effects on normal tissues, developing a cancer-specific mAb (CasMab) against PODXL is essential. Methods: Our group established a cancer-specific anti-PODXL mAb, PcMab-60 (IgM, κ), through the screening of over one hundred hybridoma clones. In this study, PcMab-60 was engineered into a humanized IgG1-type mAb (humPcMab-60), and its antitumor activity was examined using mouse xenograft models of pancreatic ductal adenocarcinoma (PDAC) and colorectal cancer. Results: HumPcMab-60 retains cancer-specific reactivity; humPcMab-60 reacted to PDAC cell lines (PK-45H and MIA PaCa-2) and the colorectal cancer cell line (Caco-2), but not to a normal lymphatic endothelial cell line in flow cytometry. Furthermore, humPcMab-60 exerted antibody-dependent cellular cytotoxicity and complement-dependent cytotoxicity against PODXL-expressing cell lines and showed antitumor effects against the tumor xenografts. Conclusions: A humanized anti-PODXL CasMab, humPcMab-60, could be a promising mAb-based tumor therapy. Full article
Show Figures

Figure 1

17 pages, 1424 KB  
Article
Role of Different Enzymes in H2O2 Neutralization and Cellular Radioresistance, Estimated by Mathematical Modeling
by Sylwia Ciesielska, Krzysztof Mazur, Krzysztof Fujarewicz and Joanna Rzeszowska-Wolny
Int. J. Mol. Sci. 2025, 26(16), 7754; https://doi.org/10.3390/ijms26167754 - 11 Aug 2025
Viewed by 181
Abstract
Reactive oxygen species (ROS) are fundamental components found in cells that exist in an oxygen environment. While they are often viewed as detrimental metabolic byproducts that can harm cells, leading to aging and cell death, they can also play a role in cellular [...] Read more.
Reactive oxygen species (ROS) are fundamental components found in cells that exist in an oxygen environment. While they are often viewed as detrimental metabolic byproducts that can harm cells, leading to aging and cell death, they can also play a role in cellular regulatory processes and have beneficial effects. One of the main ROS present in all cells is hydrogen peroxide (H2O2), which can function as a signaling molecule in extra- and intracellular signaling. To enhance our understanding of how various enzymes regulate cellular H2O2 levels, we created a mathematical model of H2O2 neutralization and performed computer simulations to estimate the neutralization efficiency in various types of cells. Data on gene expression for genes participating in this process were incorporated into the calculations, along with the regulation of enzymes in oxidation and reduction processes. The conducted simulations demonstrate that cells originating from different tissues utilize systems neutralizing H2O2 variously, which results in differences in H2O2 cellular levels. The simulation findings suggest that the differences in radiosensitivity seen in various cancer cell types may be linked to their effectiveness in scavenging H2O2. Analysis of results from model simulations for colorectal, lung, and breast cancer cell lines indicated that radiosensitive cell lines exhibited elevated levels of H2O2, attributed to the reduced efficiency of neutralizing enzymes. By highlighting cell-type-specific differences in H2O2 neutralization, our findings may contribute to a deeper understanding of redox regulation in cancer cells and reveal new potential correlations with radioresistance. Full article
(This article belongs to the Section Molecular Informatics)
Show Figures

Figure 1

18 pages, 5890 KB  
Article
Targeting Hippo Signaling Pathway with a Boron Derivative, Sodium Pentaborate Pentahydrate (NaB): Therapeutic Strategies in Colorectal Cancer
by Büşra Yüksel, Fikrettin Şahin and Nezaket Türkel
Pharmaceuticals 2025, 18(8), 1171; https://doi.org/10.3390/ph18081171 - 8 Aug 2025
Viewed by 328
Abstract
Background/Objectives: Colorectal cancer (CRC) remains a leading cause of cancer-related mortality globally, highlighting the urgent need for novel therapeutic strategies. This study aimed to investigate the anticancer potential of sodium pentaborate pentahydrate (NaB) in CRC by evaluating its effects on human colorectal [...] Read more.
Background/Objectives: Colorectal cancer (CRC) remains a leading cause of cancer-related mortality globally, highlighting the urgent need for novel therapeutic strategies. This study aimed to investigate the anticancer potential of sodium pentaborate pentahydrate (NaB) in CRC by evaluating its effects on human colorectal cancer cell lines and elucidating underlying molecular mechanisms. Methods: The cytotoxic and molecular effects of NaB were assessed in three human CRC cell lines (HCT-116, HT-29, and COLO-205) and one normal colon epithelial cell line (CCD-18CO). Cell viability assays were conducted to determine time- and dose-dependent responses. Apoptosis, cell cycle progression, colony formation, and migration capacity were evaluated. Gene and protein expression analyses were performed to examine apoptosis-related, DNA damage response, cell cycle, and Hippo signaling pathway components. Results: NaB significantly reduced cancer cell viability in a time- and dose-dependent manner, with minimal cytotoxicity to normal colon cells. It induced marked apoptosis, especially in HCT-116 and COLO-205 cells, and caused G2/M cell cycle arrest. In HCT-116 cells, NaB suppressed proliferation by downregulating PCNA and MKI-67 and reduced colony formation and migration. Molecular analyses revealed upregulation of pro-apoptotic BAX and downregulation of BCL-2, ATM, ATR, and cell cycle–related genes. NaB also inhibited oncogenic Hippo signaling by enhancing YAP1 phosphorylation and decreasing CTGF and CYR61 expression. Conclusions: These findings demonstrate that sodium pentaborate pentahydrate exerts selective anticancer effects on colorectal cancer cells through the induction of apoptosis, cell cycle arrest, and suppression of key oncogenic pathways. NaB represents a promising candidate for further development as a therapeutic agent in CRC treatment. Full article
Show Figures

Graphical abstract

19 pages, 1152 KB  
Article
Phenanthrene Monomers and Dimers from Juncus tenuis with Antiproliferative Activity and Synergistic Effect with Doxorubicin Against Human Colon Cancer Cell Lines
by Anita Barta, Annamária Kincses, Dragica Purger, Gabriella Spengler, Judit Hohmann and Andrea Vasas
Int. J. Mol. Sci. 2025, 26(16), 7665; https://doi.org/10.3390/ijms26167665 - 8 Aug 2025
Viewed by 182
Abstract
Continuing our search for bioactive compounds in species from the Juncaceae family, we investigated Juncus tenuis. The structures of five previously undescribed phenanthrenes—tenuins A–E (15)—and 14 known phenanthrenes (619), along with other components, were [...] Read more.
Continuing our search for bioactive compounds in species from the Juncaceae family, we investigated Juncus tenuis. The structures of five previously undescribed phenanthrenes—tenuins A–E (15)—and 14 known phenanthrenes (619), along with other components, were isolated and characterized using nuclear magnetic resonance and high-resolution mass spectrometry measurements. The antiproliferative activity of all of the isolated phenanthrenes was evaluated against the human colorectal adenocarcinoma cell lines COLO 205 (doxorubicin-sensitive) and COLO 320 (doxorubicin-resistant), as well as a non-tumorigenic human fibroblast cell line (CCD-19Lu), using the MTT viability assay. Diphenanthrenes 4, 5, and 19 showed the most potent antiproliferative effects, with IC50 values ranging from 7.60 to 17.32 μM; however, these compounds lacked selectivity toward cancer cells. To explore potential chemosensitizing properties, the synergistic effects of the phenanthrenes with the anticancer drug doxorubicin were also examined in the COLO 320 cells. Notably, compound 2 exhibited very strong synergism (CI = 0.021), indicating a highly potent interaction. These findings highlight J. tenuis as a valuable source of phenanthrenes and demonstrate the synergistic anticancer potential of natural phenanthrenes with doxorubicin, offering promising prospects for overcoming multidrug resistance in colorectal cancer therapy. Full article
(This article belongs to the Special Issue Plant-Derived Bioactive Compounds for Pharmacological Applications)
Show Figures

Figure 1

15 pages, 1624 KB  
Article
Cytotoxicity Evaluation of Cyprodinil, Potentially Carcinogenic Chemical Micropollutant, for Oxidative Stress, Apoptosis and Cell Membrane Interactions
by Agata Jabłońska-Trypuć, Nina Wiśniewska, Gabriela Sitko, Urszula Wydro, Elżbieta Wołejko, Rafał Krętowski, Monika Naumowicz, Joanna Kotyńska, Marzanna Cechowska-Pasko, Bożena Łozowicka, Piotr Kaczyński and Adam Cudowski
Appl. Sci. 2025, 15(15), 8631; https://doi.org/10.3390/app15158631 - 4 Aug 2025
Viewed by 349
Abstract
Fungicides are compounds with potentially toxic effects on the human body, but the molecular mechanisms of their action have not yet been explained. The effect of cyprodinil on cell viability, apoptosis level, cell membrane function, cell morphology and expression of antioxidant enzyme genes [...] Read more.
Fungicides are compounds with potentially toxic effects on the human body, but the molecular mechanisms of their action have not yet been explained. The effect of cyprodinil on cell viability, apoptosis level, cell membrane function, cell morphology and expression of antioxidant enzyme genes in the A-375 and DLD-1 cell lines was examined. The cell lines were selected because they can be an excellent in vitro model of neoplastic changes occurring in the skin and large intestine after exposure to a fungicide. The fungicide selected for the study is commonly used in Poland to protect crops against fungi. Our results showed that the tested compound increased cell viability and proliferation, probably activated by mechanisms related to oxidative stress. Cyprodinil caused an increase in glutathione level (in A-375 by about 37% and in DLD-1 by about 28%) and oxidative stress enzymes activity, but not in apoptosis level. Its membrane interactions and its penetration into cells was concentration dependent. It is worth emphasizing that the novelty of our work lies in the use of non-traditional toxicological methods based on molecular analyses using human cell lines. This allowed us to demonstrate not only the toxicity of a single substance but also its behavior within cellular structures. Our findings suggest that cyprodinil may have tumor-promoting properties in skin and colorectal cancer cells. Full article
(This article belongs to the Special Issue Exposure Pathways and Health Implications of Environmental Chemicals)
Show Figures

Figure 1

24 pages, 10561 KB  
Article
Investigating the Potential of Propranolol as an Anti-Tumor Agent in Colorectal Cancer Cell Lines
by Shiekhah Mohammad Alzahrani, Huda Abdulaziz Al Doghaither, Hind Ali Alkhatabi, Mohammad Abdullah Basabrain and Peter Natesan Pushparaj
Int. J. Mol. Sci. 2025, 26(15), 7513; https://doi.org/10.3390/ijms26157513 - 4 Aug 2025
Viewed by 367
Abstract
The incidence and mortality of colorectal cancer (CRC) have increased globally. Several therapeutic approaches have been suggested to address this health issue, in addition to classical methods. Propranolol (PRO) is a beta-blocker that was repurposed to treat infantile hemangiomas, and its anti-tumor activity [...] Read more.
The incidence and mortality of colorectal cancer (CRC) have increased globally. Several therapeutic approaches have been suggested to address this health issue, in addition to classical methods. Propranolol (PRO) is a beta-blocker that was repurposed to treat infantile hemangiomas, and its anti-tumor activity has been reported. This study aimed to investigate the effects of PRO in a panel of CRC cell lines and its potential impact when combined with chemotherapy. The effects of PRO on cell cytotoxicity, cell morphology, colony formation, cell death induction, cell cycle, mitochondrial and intracellular reactive oxygen species (ROS), and migration were measured in all cells. CompuSyn software was utilized to assess the possible synergistic or additive interaction in the combined treatment. The results showed that PRO suppressed cell proliferation, altered cell morphology, inhibited colony formation, induced apoptosis, altered cell cycle and ROS generation, and inhibited the migration of treated cells in a cell-type-specific, time-dependent, and dose-dependent manner compared with the control. HT-29 was the most sensitive cell line to PRO in terms of cytotoxicity, apoptosis, cell cycle arrest, and ROS generation, while SW-480 was the most sensitive in terms of migration inhibition. Moreover, the PRO and capecitabine combination exhibited a synergistic effect and induced mitochondrial apoptosis in metastatic CRC cells. The data suggest that PRO could be a promising adjuvant therapy for primary and advanced CRC. This study identified variations between CRC cell lines in response to PRO, which may be related to their genetic and epigenetic differences. In addition, the findings highlight the potential of combination strategies to improve therapeutic outcomes in metastatic CRC. Full article
(This article belongs to the Special Issue Programmed Cell Death and Oxidative Stress: 3rd Edition)
Show Figures

Figure 1

12 pages, 1435 KB  
Article
Amino Acid Analysis and Cytotoxicity Study of Iraqi Ocimum basilicum Plant
by Omar Hussein Ahmed
Molecules 2025, 30(15), 3232; https://doi.org/10.3390/molecules30153232 - 1 Aug 2025
Viewed by 657
Abstract
Background: This paper deals with the detection of amino acid composition of Iraqi Ocimum basilicum (basil) leaves and evaluation of the cytotoxic effects of the plant leaf extract on human colorectal cancer cells. Methods: Leaves of Ocimum basilicum were collected from Iraq in [...] Read more.
Background: This paper deals with the detection of amino acid composition of Iraqi Ocimum basilicum (basil) leaves and evaluation of the cytotoxic effects of the plant leaf extract on human colorectal cancer cells. Methods: Leaves of Ocimum basilicum were collected from Iraq in November 2024. After drying and powdering, the plant material went through cold methanol extraction. Initial phytochemical screening was conducted to identify the presence of alkaloids, flavonoids, coumarins, and terpenoids. Amino acid analysis was completed by an amino acid analyzer with fluorescence detection. The cytotoxic effect was evaluated via the MTT assay on HRT-18 cell lines. Morphological changes were further tested using dual Propidium Iodide/Acridine Orange assay fluorescent staining. Results: Seventeen amino acids were detected in the plant extract. The extract showed dose-dependent cytotoxic effects on HRT-18 cells, with significant reduction in cell viability at concentrations of more than 25 µg/mL. Morphological alterations of membrane blebbing and cell shrinkage were observed, suggesting apoptotic activity. The IC50 value confirmed strong cytotoxic potential. Conclusions: The extract of Ocimum basilicum leaf cultivated in Iraq shows a rich amino acid profile and significant cytotoxic activity against colorectal cancer cells that highlights its potential effect as a natural source of anticancer compounds. Full article
Show Figures

Figure 1

Back to TopTop