Sign in to use this feature.

Years

Between: -

Subjects

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Journals

Article Types

Countries / Regions

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Search Results (554)

Search Parameters:
Keywords = compatibilism

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
19 pages, 6054 KB  
Article
Chitosan Enhanced Polymers for Active Packaging: Intelligent Moisture Regulation and Non-Invasive Assessment
by Jesús R. Villegas Méndez, María Maura Téllez Rosas, Rafael Aguirre Flores, Felipe Avalos Belmontes, Francisco J. González and Mario Hoyos
Appl. Sci. 2025, 15(21), 11744; https://doi.org/10.3390/app152111744 - 4 Nov 2025
Viewed by 186
Abstract
This work presents the non-destructive assessment of polymeric composites based on synthetic matrices low-density polyethylene (LDPE) and polystyrene (PS) enhanced with chitosan (CS) biopolymer for use in active packaging systems for moisture control. Composites were prepared by incorporating CS at different contents (1, [...] Read more.
This work presents the non-destructive assessment of polymeric composites based on synthetic matrices low-density polyethylene (LDPE) and polystyrene (PS) enhanced with chitosan (CS) biopolymer for use in active packaging systems for moisture control. Composites were prepared by incorporating CS at different contents (1, 3 and 5 phr) into LDPE and PS matrices. To evaluate the structural and thermal alterations induced by biopolymer loading, the materials were characterized using scanning electron microscopy (SEM), X-ray diffraction (XRD), and differential scanning calorimetry (DSC). The composites’ water-regulating properties—specifically, moisture absorption, retention, diffusion, and water vapor transmission rate—were quantitively tracked. Furthermore, the mechanical integrity of both dried and water-exposed systems was assessed via Shore D hardness testing. The results reveal a direct correlation between CS concentrations and enhanced hydrophilic behavior and water absorption, primarily attributed to the polar hydroxyl and amine groups within its molecular structure. The composites maintained adequate mechanical strength even after water exposure, confirming their structural stability for practical applications. This study demonstrates that the incorporation of CS into non-polar synthetic matrices significantly improves water affinity without requiring chemical compatibilizers, representing a cost-effective route to develop responsive packaging. The promise of these composites as responsive materials for real-time environmental interaction is highlighted by the successful non-destructive monitoring of their performance. This research establishes the feasibility and efficacy of non-destructive monitoring techniques in developing active packaging technologies, accelerating the progress of polymer-based systems with integrated and tunable moisture regulation capabilities. Full article
Show Figures

Figure 1

13 pages, 3051 KB  
Article
Effect of Surface Treatment of Nano-Magnetite Particles on PLA/PBAT Composites
by Le Zhang, Wenbo Wang, Kun Li, Jingbo Chen, Yunlong Xu, Zhibo Zhao, Yanan Li and Long Yu
J. Compos. Sci. 2025, 9(11), 592; https://doi.org/10.3390/jcs9110592 - 1 Nov 2025
Viewed by 128
Abstract
In this work, polylactic acid (PLA)/poly(butylene adipate-coterephthalate) (PBAT) composites containing nanomagnetite particles were developed for electromagnetic shielding. The nanomagnetite particles acted not only as a conductive filler but also as a reinforced agent and compatibilizer for PLA/PBAT blends. The effect of surface treatments [...] Read more.
In this work, polylactic acid (PLA)/poly(butylene adipate-coterephthalate) (PBAT) composites containing nanomagnetite particles were developed for electromagnetic shielding. The nanomagnetite particles acted not only as a conductive filler but also as a reinforced agent and compatibilizer for PLA/PBAT blends. The effect of surface treatments by the silicon coupling agent (SCA) under different pH conditions and with other substances (silica and dopamine (DA)) were investigated in particular. The composites were prepared by thermal mixing and characterized by Fourier-transform infrared spectroscopy (FTRI), differential scanning calorimetry (DSC), thermogravimetric analysis (TGA), scanning electron microscopy (SEM), transparency electron microscopy (TEM) and tensile testing. The results show that the interface between the PBAT spheres and the PLA matrix was improved after the addition of magnetite particles treated with SCA or PDA. It is interesting to find that under acidic conditions, SCA acted more efficiently due to the chemical reaction of SCA with the hydroxyl groups on the surface of the magnetite particles, which resulted in chemical improvement. Tensile strength increased about 20%, while elongation also increased about 15%. The fracture surface under SEM clearly showed plastic deformation, which contributed to an improvement in mechanical properties, especially toughness. Full article
(This article belongs to the Section Composites Manufacturing and Processing)
Show Figures

Figure 1

11 pages, 2501 KB  
Article
A Simple Coloration of Calcium Alginate Fiber via Structural Colors
by Xinyu Yang, Xing Tian, Yu Zhang, Pengfei Gao, Jianhua Hou and Junyu Zhong
Polymers 2025, 17(21), 2919; https://doi.org/10.3390/polym17212919 - 31 Oct 2025
Viewed by 185
Abstract
Seaweed fiber is a new type of functional fiber made from natural seaweed as raw material. Seaweed fiber has excellent moisture absorption, bio compatibilization, controlled degradation profile, and flame retardancy, and can be used to develop high-performance and high value-added textiles. However, seaweed [...] Read more.
Seaweed fiber is a new type of functional fiber made from natural seaweed as raw material. Seaweed fiber has excellent moisture absorption, bio compatibilization, controlled degradation profile, and flame retardancy, and can be used to develop high-performance and high value-added textiles. However, seaweed fibers are prone to swelling in salt ion solutions, making dyeing with traditional chemical dyes very difficult. In recent years, the research and application of controllable structural colors have been an important direction and hot spot in the textile field. SiO2 nanospheres of different sizes were synthesized and combined with polydopamine as an additive to produce structural colors with high visibility. The resulting photonic crystals exhibited vibrant rainbow hues and were successfully applied to stain seaweed fibers. The color of polydopamine-coated silica photonic crystals (PDA/SiO2) depended on the diameter of the SiO2 microspheres, while their spectral purity could be tuned by adjusting the ratio of SiO2 microspheres to dopamine hydrochloride. Full article
(This article belongs to the Special Issue Advanced Study on Natural Polymers and Their Applications)
Show Figures

Figure 1

19 pages, 4219 KB  
Article
Mitigating Composition Variability in Post-Industrial PC/ABS Recycling via Targeted Compatibilization
by Silvia Zanatta, Eleonora Dal Lago, Filippo Dall’Amico, Carlo Boaretti, Alessandra Lorenzetti, Martina Roso and Michele Modesti
Polymers 2025, 17(21), 2848; https://doi.org/10.3390/polym17212848 - 25 Oct 2025
Viewed by 460
Abstract
The growing demand for sustainable solutions in the plastics industry has highlighted the need to reintroduce post-industrial polymer waste into high-performance applications. This study focuses on the mechanical recycling of automotive scraps containing variable proportions of polycarbonate (PC), acrylonitrile–butadiene–styrene (ABS), and a commercial [...] Read more.
The growing demand for sustainable solutions in the plastics industry has highlighted the need to reintroduce post-industrial polymer waste into high-performance applications. This study focuses on the mechanical recycling of automotive scraps containing variable proportions of polycarbonate (PC), acrylonitrile–butadiene–styrene (ABS), and a commercial PC/ABS blend. After determining the composition of two representative batches, a screening of seven commercial compatibilizers and impact modifiers was performed to improve impact strength. Among them, an ethylene–methyl acrylate–glycidyl methacrylate (E-MA-GMA) terpolymer was identified as the most effective additive. Its influence was further investigated through a mixture design approach, varying the composition of the three polymer phases and the additive content (0–10 wt.%). The resulting response surface model revealed a significant increase in impact resistance in PC-rich formulations with increasing E-MA-GMA content, while ABS and PC/ABS showed more complex trends. Rheological, mechanical, and thermal analyses supported the observed behavior, suggesting improved matrix compatibility and reduced degradation during processing. The proposed model enables the prediction of impact performance across a wide range of compositions, offering a practical tool for the optimization of recycled blends. These findings support the potential of targeted compatibilization strategies for closed-loop recycling in the automotive sector. Full article
Show Figures

Graphical abstract

32 pages, 6187 KB  
Article
Sustainable Reprocessing of Thermoset Composite Waste into Thermoplastics: A Polymer Blend Approach for Circular Material Design
by Hasan Kasim, Yu-Chao Shih, Selvum Pillay and Haibin Ning
J. Compos. Sci. 2025, 9(10), 565; https://doi.org/10.3390/jcs9100565 - 14 Oct 2025
Viewed by 482
Abstract
Thermoset composites provide excellent strength but pose major recycling challenges due to their crosslinked structure. In this study, epoxy–polyurethane–glass fiber (EPG) wastes were mechanically recycled into low-density polyethylene (LDPE), high-density polyethylene (HDPE), and polyamide-6 (PA6) matrices to produce second-generation thermoplastic composites (STCs). Fillers [...] Read more.
Thermoset composites provide excellent strength but pose major recycling challenges due to their crosslinked structure. In this study, epoxy–polyurethane–glass fiber (EPG) wastes were mechanically recycled into low-density polyethylene (LDPE), high-density polyethylene (HDPE), and polyamide-6 (PA6) matrices to produce second-generation thermoplastic composites (STCs). Fillers at 10–50 wt% were processed by single-screw extrusion and compression molding, and the resulting composites were comprehensively characterized. For LDPE, the tensile modulus increased by ~286–589% and tensile strength increased by 40–47% at 20–30 wt% loading, though ductility decreased at higher levels. HDPE composites showed a ~347% rise in modulus and ~24% increase in strength, but performance declined with more than 40 wt% filler. PA6 offered the most balanced outcome, retaining ~70% of its neat tensile strength while achieving an ~300% modulus improvement at 40 wt% loading. Thermal stability was strongly enhanced, with char residue at 700 °C rising from 0.4% to 38.7% in PA6 and from ~2.5% to 33–46% in polyolefins. In contrast, crystallinity decreased (e.g., LDPE 62.2% → 23.7%), and impact strength dropped at a loading above 30 wt%. Overall, the results demonstrate that EPG wastes can be reprocessed into functional composites without compatibilizers, with PA6 providing the most robust property retention at high filler contents. Full article
(This article belongs to the Special Issue Advances in Continuous Fiber Reinforced Thermoplastic Composites)
Show Figures

Figure 1

30 pages, 7436 KB  
Article
Pea Pod Valorization: A Green Processing Route to Obtain Cellulosic Reinforcements for Compression Molded Polylactic Acid Biocomposites
by Daniela Negrete-Bolagay, Victor H. Guerrero, Salomé Galeas, Jennifer Tejedor, Patricia I. Pontón and Anja Dosen
Materials 2025, 18(19), 4608; https://doi.org/10.3390/ma18194608 - 4 Oct 2025
Viewed by 1303
Abstract
The valorization of agroindustrial residues represents a sustainable alternative in the production of materials attractive for sustainable technologies. In this work, cellulosic materials were isolated from treated pea pods aiming to obtain highly crystalline, thermally stable reinforcements for biocomposites. Four different treatments were [...] Read more.
The valorization of agroindustrial residues represents a sustainable alternative in the production of materials attractive for sustainable technologies. In this work, cellulosic materials were isolated from treated pea pods aiming to obtain highly crystalline, thermally stable reinforcements for biocomposites. Four different treatments were evaluated; two employed 0.5 or 0.75 M oxalic acid (OA) solutions at 90 °C, and two used 5% w/v KOH solutions after each OA treatment. The cellulosic materials (10, 20 wt.%) were compounded with a polylactic acid (PLA) matrix and polyvinyl alcohol (0, 2.5 wt.%) as a compatibilizer by extrusion. Compression molding was used to obtain samples to study the composite’s mechanical and thermal behavior. The cellulosic materials and the composites were characterized by Fourier transform infrared spectroscopy, thermogravimetry, and calorimetry. The composites were also subjected to flexural, thermo-mechanical, and water absorption testing. The cellulosic reinforcements obtained using 0.75 M OA and 0.5 M OA and KOH showed the highest crystallinities (91–92%). In general, 20 wt.% reinforced composites showed lower thermal expansion and higher water absorption than those incorporating 10 wt.% reinforcements. The composites incorporating 10 wt.% of 0.5 M OA treated pea pods exhibited flexural modulus/strength 17/3% higher than that of PLA. The composites incorporating 20 wt.% of 0.5 M OA and KOH-treated pea pods showed the highest flexural modulus/strength, 35/25% higher than that of PLA. These results show that agroresidues treated with low-concentration organic acids can be effectively used to tune the mechanical, thermal, and water absorption behavior of biodegradable composites. Full article
Show Figures

Graphical abstract

24 pages, 3215 KB  
Article
Biaxial Stretching of PBAT/PLA Blends for Improved Mechanical Properties
by Nikki Rodriguez, Osnat Gillor, Murat Guvendiren and Lisa Axe
Polymers 2025, 17(19), 2651; https://doi.org/10.3390/polym17192651 - 30 Sep 2025
Viewed by 600
Abstract
Biodegradable polymers offer a promising solution to the growing issue of global microplastic pollution. To effectively replace conventional plastics, it is essential to develop strategies for tuning the properties of biodegradable polymers without relying on additives. Biaxial stretching promotes anisotropic crystallization in polymer [...] Read more.
Biodegradable polymers offer a promising solution to the growing issue of global microplastic pollution. To effectively replace conventional plastics, it is essential to develop strategies for tuning the properties of biodegradable polymers without relying on additives. Biaxial stretching promotes anisotropic crystallization in polymer domains, thereby altering the mechanical performance of polymer blends. In this study, we employed a design of experiment (DoE) approach to investigate the effects of biaxial stretching at three drawing temperatures (Tds) and draw ratios (λs) on a biodegradable blend of poly(lactic acid) (PLA) and poly(butylene adipate-co-terephthalate) (PBAT), aiming to optimize both the strength and ductility. The DoE analysis revealed that the composition, the λ, the interaction between the λ and composition, and the interaction between the Td and composition significantly affect the elongation at break (εBreak). For the stress at break (σBreak), the most influential factors were the interaction between the λ and PLA concentration; a three-way interaction among the λ, PLA, and Td; the Td; the λ; and finally the PLA concentration alone. The optimal εBreak and σBreak were achieved at a λ = 5 × 5 and Td = 110 °C, with a composition of 10% PLA and 90% PBAT. The stretched samples exhibited higher crystallinity compared to the pressed samples across all compositions. This work demonstrates that in addition to the composition, the processing parameters, such as the λ and Td, critically influence the mechanical properties, enabling performance enhancements without the need for compatibilizers or toxic additives. Full article
Show Figures

Graphical abstract

17 pages, 3397 KB  
Article
Preparation and Performance of Poly(Butylene Succinate) (PBS) Composites Reinforced with Taxus Residue and Compatibilized with Branched PBS
by Shiwanyi Chen, Shufeng Li, Bing Wang, Chen Chen and Liuchun Zheng
Polymers 2025, 17(19), 2597; https://doi.org/10.3390/polym17192597 - 25 Sep 2025
Viewed by 747
Abstract
In response to the escalating plastic pollution crisis, the development of high-performance biodegradable materials is critical. Poly(butylene succinate) (PBS) is an important biodegradable polymer as it possesses excellent biodegradability and processability. But it suffers from limitations such as low mechanical strength, poor thermal [...] Read more.
In response to the escalating plastic pollution crisis, the development of high-performance biodegradable materials is critical. Poly(butylene succinate) (PBS) is an important biodegradable polymer as it possesses excellent biodegradability and processability. But it suffers from limitations such as low mechanical strength, poor thermal stability, and high production costs. In this study, taxus residue (TF), a waste by-product, was utilized as a reinforcing filler to reduce PBS costs while enhancing its overall performance. To address the interfacial incompatibility between TF and PBS, branched PBS (T-PBS) was introduced as a compatibilizer. The TF was surface-modified via alkali treatment and silane coupling (KH550), and a series of PBS/TF/T-PBS composites with varying T-PBS viscosity grades were prepared by melt blending. The compatibilization mechanism of T-PBS and its influence on the composite structure, crystallization behavior, thermal stability, rheological, and mechanical properties were systematically investigated. Results show that the branched structure significantly enhanced T-PBS melt strength and reactivity. The introduction of T-PBS effectively improved interfacial compatibility between TF and PBS matrix, reducing phase separation and interfacial defects. Compared to uncompatibilized PBS/TF composites, those with appropriately viscous T-PBS exhibited improved tensile strength (increased by 19.7%) and elongation at break (increased by 78.8%), while flexural strength was also maintained at an enhanced level. The branched points acted as nucleating agents, increasing the onset temperature and degree of crystallinity. In the high-temperature region, the synergistic barrier effect from TF and char residue improved thermal stability (T85% reached 408.19 °C). Rheological analysis revealed enhanced viscosity and elasticity of the system. This study provides a promising strategy and theoretical foundation for the high-value utilization of taxus waste and the development of high-performance biodegradable PBS-based composites. Full article
Show Figures

Figure 1

34 pages, 20406 KB  
Article
Designing Sustainable Packaging Materials: Citric Acid-Modified TPS/PLA Blends with Enhanced Functional and Eco-Performance
by Vesna Ocelić Bulatović, Mario Kovač, Dajana Kučić Grgić, Vilko Mandić and Antun Jozinović
Polymers 2025, 17(19), 2571; https://doi.org/10.3390/polym17192571 - 23 Sep 2025
Viewed by 815
Abstract
Starch extracted from the domestically cultivated Scala potato variety was explored as a renewable resource for the formulation of biodegradable thermoplastic starch (TPS)/polylactic acid (PLA) blends intended for environmentally friendly food packaging applications. The isolated starch underwent comprehensive physicochemical and structural characterization to [...] Read more.
Starch extracted from the domestically cultivated Scala potato variety was explored as a renewable resource for the formulation of biodegradable thermoplastic starch (TPS)/polylactic acid (PLA) blends intended for environmentally friendly food packaging applications. The isolated starch underwent comprehensive physicochemical and structural characterization to assess its suitability for polymer processing. TPS derived from Scala starch was compounded with PLA, both with and without citric acid (CA) as a green compatibilizer to enhance phase compatibility. The resulting polymer blends were systematically analyzed using Fourier-transform infrared spectroscopy with attenuated total reflectance (FTIR–ATR), scanning electron microscopy (SEM), differential scanning calorimetry (DSC), thermogravimetric analysis (TGA), and X-ray diffraction (XRD) to evaluate thermal and structural properties. Mechanical performance, water vapor permeability (WVP), water absorption (WA), and biodegradability in soil over 56 days were also assessed. The incorporation of citric acid improved phase miscibility, leading to enhanced structural uniformity, thermal stability, mechanical strength, and barrier efficiency. Bio-degradation tests confirmed the environmental compatibility of the developed blends. Overall, the results demonstrate the potential of Scala-based TPS/PLA systems, particularly those modified with citric acid, as viable candidates for sustainable food packaging, while highlighting the importance of further formulation optimization to balance functional and biodegradative performance. Full article
(This article belongs to the Special Issue Biodegradable and Biobased Polymers for Sustainable Food Applications)
Show Figures

Graphical abstract

20 pages, 2436 KB  
Article
Thermal and Mechanical Performance of Maleic Anhidride/Benzoyl Peroxide-Modified PLA/PCL Biocomposites
by Aritz Unamuno Garay, Alexandra Llidó Barragán, Santiago Ferrandiz-Bou and Maria Dolores Samper
Polymers 2025, 17(18), 2540; https://doi.org/10.3390/polym17182540 - 19 Sep 2025
Viewed by 476
Abstract
This study investigated PLA/PCL blends modified with maleic anhydride (MA) via radical grafting using benzoyl peroxide (BPO) as an initiator. Different formulations with 5 and 10 wt.% of PLA-g-MA (containing 1, 3, and 5 wt.% MA) were prepared to evaluate their compatibilizing effect. [...] Read more.
This study investigated PLA/PCL blends modified with maleic anhydride (MA) via radical grafting using benzoyl peroxide (BPO) as an initiator. Different formulations with 5 and 10 wt.% of PLA-g-MA (containing 1, 3, and 5 wt.% MA) were prepared to evaluate their compatibilizing effect. Samples were characterized thermally, mechanically, and morphologically using DSC, TGA, FTIR, goniometry, SEM, and tensile, impact, and hardness tests. The results show that adding PCL significantly improves the ductility of PLA, though it reduces tensile strength and hardness. Grafting with MA partially improves phase compatibility, as seen by increased elongation at break and impact resistance, especially at intermediate MA concentrations (1–3%). However, higher MA contents lead to greater variability in thermal and mechanical results, likely due to heterogeneous phase dispersion. FTIR analysis detected residual BPO in some formulations, though below 0.1 phr. TGA indicated a slight improvement in thermal stability at 5 wt.% MA. Overall, the findings suggest that controlled use of MA as a compatibilizer enhances the balance of mechanical and thermal properties in PLA/PCL systems. Full article
(This article belongs to the Special Issue Biodegradable Polymer Composites, 2nd Edition)
Show Figures

Graphical abstract

17 pages, 7136 KB  
Article
Study of Thermoplastic Starch/Poly (Butylene Succinate) Blends: The Effect of Reactive Compatibilizers
by Ke Gong, Yuanyuan Chen, Yinshi Lu, Zijian Zhao, Alexandre Portela, Han Xu, Mengli Hu, Handai Liu and Maurice N. Collins
Macromol 2025, 5(3), 42; https://doi.org/10.3390/macromol5030042 - 11 Sep 2025
Viewed by 609
Abstract
Compatibilizers that enhance sustainability and improve the miscibility of polymer blend components have garnered significant attention. This study investigates the difference between the synthetic chain extender Joncryl® ADR 4468 and the natural epoxidized linseed oil (ELO) Merginat 8510100 as compatibilizers for thermoplastic [...] Read more.
Compatibilizers that enhance sustainability and improve the miscibility of polymer blend components have garnered significant attention. This study investigates the difference between the synthetic chain extender Joncryl® ADR 4468 and the natural epoxidized linseed oil (ELO) Merginat 8510100 as compatibilizers for thermoplastic starch/poly (butylene succinate) (TPS/PBS) blends. Blends containing 40% TPS and 60% PBS were prepared with 1, 3, and 5 phr of each compatibilizer, along with a reference with no additives. The properties of these blends were evaluated using tensile testing, differential scanning calorimetry (DSC), Fourier transform infrared spectroscopy (FTIR), rheology, and scanning electron microscopy (SEM). The findings indicate that while Joncryl® ADR 4468 significantly improved tensile strength, it also resulted in a brittle fracture. In contrast, ELO batches exhibited greater ductility, albeit with lower tensile strength. These differences are attributed to the chain extension and minor cross-linking effects of Joncryl® ADR 4468, compared to the increased chain mobility arising from ELO’s plasticizing and compatibilizing actions. Supporting evidence for these observations includes increased cold crystallization temperature (Tcc) and melting temperature (Tm), greater storage modulus along with higher complex viscosity, strengthened interfacial adhesion, and fewer morphological defects in Joncryl® ADR 4468 blends. These results highlight the importance of selecting an appropriate compatibilizer based on specific application requirements. Overall, this study addresses the knowledge gap regarding the loadings of Joncryl® ADR 4468 and ELO in TPS/PBS blends and provides a basis for further optimization strategies, such as the incorporation of binary compatibilizers, alternative grafting-based compatibilizers, and twin-screw blending modifications. Full article
(This article belongs to the Special Issue Advances in Starch and Lignocellulosic-Based Materials)
Show Figures

Figure 1

19 pages, 3859 KB  
Article
PP-Based Blends with PVP-I Additive: Mechanical, Thermal, and Barrier Properties for Packaging of Iodophor Pharmaceutical Formulations
by Melania Leanza, Domenico Carmelo Carbone, Giovanna Poggi, Marco Rapisarda, Marilena Baiamonte, Emanuela Teresa Agata Spina, David Chelazzi, Piero Baglioni, Francesco Paolo La Mantia and Paola Rizzarelli
Polymers 2025, 17(18), 2442; https://doi.org/10.3390/polym17182442 - 9 Sep 2025
Viewed by 872
Abstract
The influence of minor components on leaching molecular iodine (I2) through polypropylene (PP)-based packaging from a povidone iodine-based (PVP-I) formulation, simulating an ophthalmic application, was evaluated. I2 is a cheap, broad-spectrum, and multi-target antiseptic. Nevertheless, it is volatile, and the [...] Read more.
The influence of minor components on leaching molecular iodine (I2) through polypropylene (PP)-based packaging from a povidone iodine-based (PVP-I) formulation, simulating an ophthalmic application, was evaluated. I2 is a cheap, broad-spectrum, and multi-target antiseptic. Nevertheless, it is volatile, and the prolonged storage of I2-based formulations is demanding in plastic packaging because of transmission through the material. Therefore, we explored the possibility of moderating the loss of I2 from an iodophor formulation by introducing small amounts of molecular iodine into the polymer material commonly used in eyedropper caps, i.e., PP. Thus, PP was blended via an extrusion process with a polymeric complex containing iodine (such as PVP-I) or with a second polymeric component able to complex the I2 released from an iodophor solution. The aim of this work was to introduce I2 into PP-based polymer matrices without using organic solvents and indirectly, i.e., through the addition of components that could generate molecular iodine or complex it in the solid phase, as I2 is heat-sensitive. To increase the miscibility between PP and PVP-I, poly(N-vinylpyrrolidone) (PVP) or a vinyl pyrrolidone vinyl acetate copolymer 55/45 (Sokalan) were added as compatibilizers. The PP-based binary and ternary blends, in granular or sheet form, were characterized thermally (Differential Scanning Calorimetry, DSC, and Thermogravimetric analysis, TGA), mechanically (tensile tests), morphologically (scanning electron microscopy (SEM)), and chemically (attenuated total reflectance Fourier transform infrared (ATR-FTIR)). Additionally, the variation in wettability induced by the introduction of the hydrophilic minority components was determined by static contact angle measurements (static contact angle (SCA)), and tests were carried out to determine the barrier properties against oxygen (oxygen transmission rate (OTR)) and molecular iodine. The I2 leaching of the different blends was compared with that of PP by monitoring the I2 retention in a buffered PVP-I solution via UV-vis spectroscopy. Overall, the experimental data showed the capability of the minority components in the blends to increase thermal stability as well as act as a barrier to oxygen. Additionally, the PP blend with PVP-I induced a reduction in molecular iodine leaching in comparison with PP. Full article
(This article belongs to the Section Polymer Processing and Engineering)
Show Figures

Graphical abstract

20 pages, 12005 KB  
Article
In Situ Constructing Highly Aligned Ribbon-like PHBV Lamellae in PBAT: Towards Strong, Ductile and High-Barrier PBAT/PHBV Films
by Yaqiao Wang, Jun Xu and Baohua Guo
Materials 2025, 18(17), 3947; https://doi.org/10.3390/ma18173947 - 22 Aug 2025
Viewed by 995
Abstract
This study presents a facile approach to fabricate PBAT/PHBV films with superior mechanical and barrier properties by in situ forming ribbon-like lamellae, achieving a PHBV platelet-reinforced PBAT films. The fabrication involves melt blending of PBAT and PHBV, where styrene–methyl methacrylate–glycidyl methacrylate copolymer as [...] Read more.
This study presents a facile approach to fabricate PBAT/PHBV films with superior mechanical and barrier properties by in situ forming ribbon-like lamellae, achieving a PHBV platelet-reinforced PBAT films. The fabrication involves melt blending of PBAT and PHBV, where styrene–methyl methacrylate–glycidyl methacrylate copolymer as a multifunctional reactive compatibilizer (RC) regulates PHBV domain size by forming a branched/cross-linked PBAT-B-PHBV structure. The introduction of a compatibilizer into the PBAT/PHBV system can reduce domain size and improve interfacial adhesion, thereby elevating PBAT’s storage modulus and complex viscosity for optimized blow-molding processability. During blow-molding, biaxial stretching with rapid cooling transforms PHBV sea–island structures into well-aligned ribbon-like lamellae. Notably, when PHBV content is ≤30 wt.%, lamellae form in the PBAT matrix, significantly enhancing both mechanical and barrier properties. The addition of RC reduces the lateral dimensions of PHBV lamellae while increasing PHBV number density. The introduction of 0.2 wt.% RC optimizes lamellar dimensions and density to maximize permeation pathway tortuosity. Ultimately, the lamellae in the PBAT matrix yield remarkable property enhancements: yield strength increased by >600%, elastic modulus by >200%, and water vapor/oxygen transmission rate reduced by ~81% and ~85%, respectively. Full article
(This article belongs to the Section Thin Films and Interfaces)
Show Figures

Graphical abstract

52 pages, 10078 KB  
Article
PLA, PBS, and PBAT Biocomposites—Part A: Matrix–Filler Interactions with Agro-Industrial Waste Fillers (Brewer’s Spent Grain, Orange Peel) and Their Influence on Thermal, Mechanical, and Water Sorption Properties
by Jules Bellon, Feriel Bacoup, Stéphane Marais and Richard Gattin
Materials 2025, 18(16), 3867; https://doi.org/10.3390/ma18163867 - 18 Aug 2025
Viewed by 1244
Abstract
Plastic pollution, largely driven by packaging waste, calls for sustainable alternatives. This study investigates biodegradable thermoplastic biocomposites based on PLA, PBS, and PBAT, incorporating 10 wt.% of agro-industrial filler-brewers’ spent grain (BSG) and orange peel (OP) without compatibilization. The biocomposites were produced by [...] Read more.
Plastic pollution, largely driven by packaging waste, calls for sustainable alternatives. This study investigates biodegradable thermoplastic biocomposites based on PLA, PBS, and PBAT, incorporating 10 wt.% of agro-industrial filler-brewers’ spent grain (BSG) and orange peel (OP) without compatibilization. The biocomposites were produced by melt extrusion followed by thermo-compression. A full factorial design was implemented to assess matrix–filler interactions and compare biocomposites to pure polymer fragments. OP particles, smaller and rougher than BSG, exhibited a higher specific surface area, influencing composite morphology and behavior. The OP slightly plasticized PLA, possibly due to volatile release during processing, whereas BSG increased stiffness in PBS and PBAT. Both fillers reduced mechanical strength, especially in PLA, due to limited interfacial adhesion, and significantly decreased PLA’s thermal stability. The addition of fillers also increased water sorption and modified the sorption kinetics of the three main modes (Langmuir-type, Henry’s law sorption, and water molecule clustering), as well as the values of the half-sorption diffusion coefficients (D1 and D2), with notable differences between the OP and BSG linked to their structure and composition. These findings provide a better understanding of structure–property relationships in biodegradable composites and highlight their potential for sustainable packaging and other industrial applications. Full article
Show Figures

Figure 1

14 pages, 369 KB  
Article
Rethinking Moral Responsibility: The Case of the Evil-Natured Tyrants in Confucian Thought
by Yunwoo Song
Religions 2025, 16(8), 1062; https://doi.org/10.3390/rel16081062 - 16 Aug 2025
Viewed by 696
Abstract
In general, the justification for the divine punishment in the Christian cosmos hinges on the notion of free will. Despite doctrinal complexities involving sin, grace, and divine sovereignty, individuals are held morally responsible for choosing evil over good. According to an ancient Chinese [...] Read more.
In general, the justification for the divine punishment in the Christian cosmos hinges on the notion of free will. Despite doctrinal complexities involving sin, grace, and divine sovereignty, individuals are held morally responsible for choosing evil over good. According to an ancient Chinese legend, however, the tyrant King Zhou (11th C. BCE) who lost his throne due to a changed mandate from Heaven was born with extreme evil tendencies. But if his evilness was determined before his birth and all his evil deeds are consequences of his natural tendencies, what might justify his punishment? Through an examination of Confucian responses to this question, this essay argues that Confucians did not ground moral responsibility in volitional freedom but rather in the extremity of one’s moral conduct. Their framework reveals a distinctive form of compatibilism—one in which blame is assigned not on the basis of freedom to choose otherwise but on how radically one’s actions deviate from shared ethical expectations. This suggests that the assumption of free will as a necessary condition for moral responsibility may reflect culturally specific intuitions, rather than a universal moral standard. Full article
Back to TopTop