Sign in to use this feature.

Years

Between: -

Subjects

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Journals

Article Types

Countries / Regions

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Search Results (543)

Search Parameters:
Keywords = compatibilization

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
19 pages, 3859 KB  
Article
PP-Based Blends with PVP-I Additive: Mechanical, Thermal, and Barrier Properties for Packaging of Iodophor Pharmaceutical Formulations
by Melania Leanza, Domenico Carmelo Carbone, Giovanna Poggi, Marco Rapisarda, Marilena Baiamonte, Emanuela Teresa Agata Spina, David Chelazzi, Piero Baglioni, Francesco Paolo La Mantia and Paola Rizzarelli
Polymers 2025, 17(18), 2442; https://doi.org/10.3390/polym17182442 - 9 Sep 2025
Abstract
The influence of minor components on leaching molecular iodine (I2) through polypropylene (PP)-based packaging from a povidone iodine-based (PVP-I) formulation, simulating an ophthalmic application, was evaluated. I2 is a cheap, broad-spectrum, and multi-target antiseptic. Nevertheless, it is volatile, and the [...] Read more.
The influence of minor components on leaching molecular iodine (I2) through polypropylene (PP)-based packaging from a povidone iodine-based (PVP-I) formulation, simulating an ophthalmic application, was evaluated. I2 is a cheap, broad-spectrum, and multi-target antiseptic. Nevertheless, it is volatile, and the prolonged storage of I2-based formulations is demanding in plastic packaging because of transmission through the material. Therefore, we explored the possibility of moderating the loss of I2 from an iodophor formulation by introducing small amounts of molecular iodine into the polymer material commonly used in eyedropper caps, i.e., PP. Thus, PP was blended via an extrusion process with a polymeric complex containing iodine (such as PVP-I) or with a second polymeric component able to complex the I2 released from an iodophor solution. The aim of this work was to introduce I2 into PP-based polymer matrices without using organic solvents and indirectly, i.e., through the addition of components that could generate molecular iodine or complex it in the solid phase, as I2 is heat-sensitive. To increase the miscibility between PP and PVP-I, poly(N-vinylpyrrolidone) (PVP) or a vinyl pyrrolidone vinyl acetate copolymer 55/45 (Sokalan) were added as compatibilizers. The PP-based binary and ternary blends, in granular or sheet form, were characterized thermally (Differential Scanning Calorimetry, DSC, and Thermogravimetric analysis, TGA), mechanically (tensile tests), morphologically (scanning electron microscopy (SEM)), and chemically (attenuated total reflectance Fourier transform infrared (ATR-FTIR)). Additionally, the variation in wettability induced by the introduction of the hydrophilic minority components was determined by static contact angle measurements (static contact angle (SCA)), and tests were carried out to determine the barrier properties against oxygen (oxygen transmission rate (OTR)) and molecular iodine. The I2 leaching of the different blends was compared with that of PP by monitoring the I2 retention in a buffered PVP-I solution via UV-vis spectroscopy. Overall, the experimental data showed the capability of the minority components in the blends to increase thermal stability as well as act as a barrier to oxygen. Additionally, the PP blend with PVP-I induced a reduction in molecular iodine leaching in comparison with PP. Full article
(This article belongs to the Section Polymer Processing and Engineering)
Show Figures

Figure 1

20 pages, 12005 KB  
Article
In Situ Constructing Highly Aligned Ribbon-like PHBV Lamellae in PBAT: Towards Strong, Ductile and High-Barrier PBAT/PHBV Films
by Yaqiao Wang, Jun Xu and Baohua Guo
Materials 2025, 18(17), 3947; https://doi.org/10.3390/ma18173947 - 22 Aug 2025
Viewed by 484
Abstract
This study presents a facile approach to fabricate PBAT/PHBV films with superior mechanical and barrier properties by in situ forming ribbon-like lamellae, achieving a PHBV platelet-reinforced PBAT films. The fabrication involves melt blending of PBAT and PHBV, where styrene–methyl methacrylate–glycidyl methacrylate copolymer as [...] Read more.
This study presents a facile approach to fabricate PBAT/PHBV films with superior mechanical and barrier properties by in situ forming ribbon-like lamellae, achieving a PHBV platelet-reinforced PBAT films. The fabrication involves melt blending of PBAT and PHBV, where styrene–methyl methacrylate–glycidyl methacrylate copolymer as a multifunctional reactive compatibilizer (RC) regulates PHBV domain size by forming a branched/cross-linked PBAT-B-PHBV structure. The introduction of a compatibilizer into the PBAT/PHBV system can reduce domain size and improve interfacial adhesion, thereby elevating PBAT’s storage modulus and complex viscosity for optimized blow-molding processability. During blow-molding, biaxial stretching with rapid cooling transforms PHBV sea–island structures into well-aligned ribbon-like lamellae. Notably, when PHBV content is ≤30 wt.%, lamellae form in the PBAT matrix, significantly enhancing both mechanical and barrier properties. The addition of RC reduces the lateral dimensions of PHBV lamellae while increasing PHBV number density. The introduction of 0.2 wt.% RC optimizes lamellar dimensions and density to maximize permeation pathway tortuosity. Ultimately, the lamellae in the PBAT matrix yield remarkable property enhancements: yield strength increased by >600%, elastic modulus by >200%, and water vapor/oxygen transmission rate reduced by ~81% and ~85%, respectively. Full article
(This article belongs to the Section Thin Films and Interfaces)
Show Figures

Graphical abstract

52 pages, 10078 KB  
Article
PLA, PBS, and PBAT Biocomposites—Part A: Matrix–Filler Interactions with Agro-Industrial Waste Fillers (Brewer’s Spent Grain, Orange Peel) and Their Influence on Thermal, Mechanical, and Water Sorption Properties
by Jules Bellon, Feriel Bacoup, Stéphane Marais and Richard Gattin
Materials 2025, 18(16), 3867; https://doi.org/10.3390/ma18163867 - 18 Aug 2025
Viewed by 538
Abstract
Plastic pollution, largely driven by packaging waste, calls for sustainable alternatives. This study investigates biodegradable thermoplastic biocomposites based on PLA, PBS, and PBAT, incorporating 10 wt.% of agro-industrial filler-brewers’ spent grain (BSG) and orange peel (OP) without compatibilization. The biocomposites were produced by [...] Read more.
Plastic pollution, largely driven by packaging waste, calls for sustainable alternatives. This study investigates biodegradable thermoplastic biocomposites based on PLA, PBS, and PBAT, incorporating 10 wt.% of agro-industrial filler-brewers’ spent grain (BSG) and orange peel (OP) without compatibilization. The biocomposites were produced by melt extrusion followed by thermo-compression. A full factorial design was implemented to assess matrix–filler interactions and compare biocomposites to pure polymer fragments. OP particles, smaller and rougher than BSG, exhibited a higher specific surface area, influencing composite morphology and behavior. The OP slightly plasticized PLA, possibly due to volatile release during processing, whereas BSG increased stiffness in PBS and PBAT. Both fillers reduced mechanical strength, especially in PLA, due to limited interfacial adhesion, and significantly decreased PLA’s thermal stability. The addition of fillers also increased water sorption and modified the sorption kinetics of the three main modes (Langmuir-type, Henry’s law sorption, and water molecule clustering), as well as the values of the half-sorption diffusion coefficients (D1 and D2), with notable differences between the OP and BSG linked to their structure and composition. These findings provide a better understanding of structure–property relationships in biodegradable composites and highlight their potential for sustainable packaging and other industrial applications. Full article
Show Figures

Figure 1

14 pages, 369 KB  
Article
Rethinking Moral Responsibility: The Case of the Evil-Natured Tyrants in Confucian Thought
by Yunwoo Song
Religions 2025, 16(8), 1062; https://doi.org/10.3390/rel16081062 - 16 Aug 2025
Viewed by 435
Abstract
In general, the justification for the divine punishment in the Christian cosmos hinges on the notion of free will. Despite doctrinal complexities involving sin, grace, and divine sovereignty, individuals are held morally responsible for choosing evil over good. According to an ancient Chinese [...] Read more.
In general, the justification for the divine punishment in the Christian cosmos hinges on the notion of free will. Despite doctrinal complexities involving sin, grace, and divine sovereignty, individuals are held morally responsible for choosing evil over good. According to an ancient Chinese legend, however, the tyrant King Zhou (11th C. BCE) who lost his throne due to a changed mandate from Heaven was born with extreme evil tendencies. But if his evilness was determined before his birth and all his evil deeds are consequences of his natural tendencies, what might justify his punishment? Through an examination of Confucian responses to this question, this essay argues that Confucians did not ground moral responsibility in volitional freedom but rather in the extremity of one’s moral conduct. Their framework reveals a distinctive form of compatibilism—one in which blame is assigned not on the basis of freedom to choose otherwise but on how radically one’s actions deviate from shared ethical expectations. This suggests that the assumption of free will as a necessary condition for moral responsibility may reflect culturally specific intuitions, rather than a universal moral standard. Full article
18 pages, 4770 KB  
Article
Development of Eco-Friendly Silane-Treated Rice Flour/PBS Biocomposites with ENR-50 as a Compatibilizer: A Study on Phase Morphology, Properties and Biodegradation
by Thritima Sritapunya, Apaipan Rattanapan, Surakit Tuampoemsab and Pornsri Sapsrithong
Polymers 2025, 17(16), 2213; https://doi.org/10.3390/polym17162213 - 13 Aug 2025
Viewed by 508
Abstract
This study investigated the development of biocomposites for use as packaging and film in everyday applications. The utilization of rice flour (RF) as a cheap natural filler in the production of polybutylene succinate (PBS) biocomposites has been shown to reduce environmental issues caused [...] Read more.
This study investigated the development of biocomposites for use as packaging and film in everyday applications. The utilization of rice flour (RF) as a cheap natural filler in the production of polybutylene succinate (PBS) biocomposites has been shown to reduce environmental issues caused by non-biodegradable plastic waste. The effect of rice flour content on the morphology and properties of PBS and RF biocomposites was comprehensively evaluated. Different amounts of rice flour were considered (0, 10, 20, 30, 40, and 50 phr), and a silane coupling agent and epoxidized natural rubber (ENR-50: 1 phr) were used as interfacial agents to improve compatibility between the matrix (PBS) and filler (RF). The PBS/RF biocomposites were prepared using a two-roll mill and shaped into test specimens and films using a compression molding machine. Batches of the composites containing different amounts of RF were prepared in accordance with the standards, and their morphology and properties, including mechanical properties, density, water absorption, and soil burial degradation, were evaluated. The results revealed that the incorporation of silane-treated RF filler and ENR-50 compatibilizer led to notable improvements in mechanical properties, particularly in tensile modulus, flexural strength, flexural modulus, and hardness. A significant improvement in mechanical performance was observed as the RF content increased, with the highest value recorded at the 50 phr loading. The enhancements observed in the composite properties are due to the inherent rigidity of the RF filler and its improved compatibility with the PBS matrix, which together contribute to a stronger and more efficient material. Additionally, the percentage of water absorption in the PBS/RF biocomposites increased with higher RF content. The results from the soil burial test demonstrated that increasing the RF content positively influenced the biodegradability of the PBS/RF biocomposite materials. Full article
(This article belongs to the Special Issue Biodegradable Polymers in Sustainable and Biomedical Applications)
Show Figures

Graphical abstract

16 pages, 5272 KB  
Article
Molecular Dynamics Study on the Synergistic Compatibilization Mechanism of MAH-g-SBS in Epoxy Asphalt
by Pan Liu, Kaimin Niu, Bo Tian, Binbin Wang, Kai Li, Jiaxin Wan and Bailin Shan
Coatings 2025, 15(8), 946; https://doi.org/10.3390/coatings15080946 - 13 Aug 2025
Viewed by 418
Abstract
Epoxy asphalt is a superior polymer-modified asphalt material; however, significant differences in physicochemical properties, such as solubility parameters and dielectric constants, between epoxy resin and asphalt have led to compatibility issues that hinder its development. This study employed molecular dynamics simulations to investigate [...] Read more.
Epoxy asphalt is a superior polymer-modified asphalt material; however, significant differences in physicochemical properties, such as solubility parameters and dielectric constants, between epoxy resin and asphalt have led to compatibility issues that hinder its development. This study employed molecular dynamics simulations to investigate the effect of maleic anhydride-grafted styrene-butadiene-styrene (MAH-g-SBS) on the compatibility of epoxy asphalt. By analyzing parameters such as cohesive energy density, solubility parameters, energy distribution, interaction energy, radial distribution function, free volume fraction, and mean square displacement, the molecular mechanism underlying the enhanced compatibility was elucidated. The results indicate that the amphiphilic molecular structure of MAH-g-SBS significantly improves the thermodynamic compatibility between asphalt and epoxy resin, enhances interfacial affinity and stability, reduces the system’s total interaction and nonbonded energies, facilitates the dispersion and permeation of epoxy molecules into asphalt, and increases molecular mobility, thereby comprehensively enhancing the compatibility of the epoxy asphalt blend. Segregation tests and fluorescence microscopy further verified the simulation results, demonstrating that MAH-g-SBS improves the storage stability and phase uniformity of the epoxy asphalt system. Full article
(This article belongs to the Special Issue Novel Cleaner Materials for Pavements)
Show Figures

Figure 1

18 pages, 4336 KB  
Article
Development of an Antibacterial Poly(Lactic Acid)/Poly(ε-Caprolactone)/Tributyl Citrate Film Loaded with Staphylococcus aureus Bacteriophages Using a Sodium Alginate Coating
by Seulgi Imm, Jaewoo Bai and Yoonjee Chang
Int. J. Mol. Sci. 2025, 26(16), 7793; https://doi.org/10.3390/ijms26167793 - 12 Aug 2025
Viewed by 443
Abstract
Biodegradable poly(lactic acid) (PLA)/poly(ε-caprolactone) (PCL) composite films were prepared with a compatibilizer (tributyl citrate, TBC) using a solvent casting method. Incorporation of 5% TBC (w/v, of PCL weight) improved tensile strength and elongation at break (21.93 ± 2.33 MPa [...] Read more.
Biodegradable poly(lactic acid) (PLA)/poly(ε-caprolactone) (PCL) composite films were prepared with a compatibilizer (tributyl citrate, TBC) using a solvent casting method. Incorporation of 5% TBC (w/v, of PCL weight) improved tensile strength and elongation at break (21.93 ± 2.33 MPa and 21.02 ± 1.54%, respectively) and reduced water vapor permeability (from 0.12 ± 0.01 to 0.098 ± 0.01 g·mm·m2·h·kPa), indicating improved compatibility between PLA and PCL. Staphylococcus aureus phage PBSA08 demonstrated rapid and persistent bacteriolytic activity for up to 24 h, suggesting its potential as a promising antibacterial biological agent. To impart antibacterial properties to the developed PLA/PCL/TBC film, PBSA08 was loaded into sodium alginate (SA) and coated on the film surface. The optimal composition was 3% (w/v) SA and 3% (w/v) glycerol, which exhibited suitable dynamic behavior as a coating solution and excellent adhesion to the film surface. The phage-coated antibacterial films demonstrated progressive and significant inhibition against S. aureus starting from 10 to 24 h, with controlled phage-release properties. Overall, the developed active film might exert sustained and remarkable antibacterial effects through controlled release of biological agents (phage) under realistic packaging conditions. Full article
Show Figures

Graphical abstract

17 pages, 415 KB  
Review
Advanced Wood Composites with Recyclable or Biodegradable Polymers Embedded—A Review of Current Trends
by Paschalina Terzopoulou, Dimitris S. Achilias and Evangelia C. Vouvoudi
J. Compos. Sci. 2025, 9(8), 415; https://doi.org/10.3390/jcs9080415 - 4 Aug 2025
Viewed by 1044
Abstract
Wood polymer composites (WPCs) represent a rapidly growing class of sustainable materials, formed by combining lignocellulosic fibers with thermoplastic or thermoset polymeric matrices. This review summarizes the state of the art in WPC development, emphasizing the use of recyclable (or recycled) and biodegradable [...] Read more.
Wood polymer composites (WPCs) represent a rapidly growing class of sustainable materials, formed by combining lignocellulosic fibers with thermoplastic or thermoset polymeric matrices. This review summarizes the state of the art in WPC development, emphasizing the use of recyclable (or recycled) and biodegradable polymers as matrix materials. The integration of waste wood particles into the production of WPCs addresses global environmental challenges, including plastic pollution and deforestation, by offering an alternative to conventional wood-based and petroleum-based products. Key topics covered in the review include raw material sources, fiber pre-treatments, compatibilizers, mechanical performance, water absorption behavior, thermal stability and end-use applications. Full article
Show Figures

Figure 1

19 pages, 17315 KB  
Article
Development and Mechanical Characterization of Environmentally Friendly PLA/Crop Waste Green Composites
by Karolina Ewelina Mazur, Tomasz Wacław Witko, Alicja Kośmider and Stanisław Tadeusz Kuciel
Materials 2025, 18(15), 3608; https://doi.org/10.3390/ma18153608 - 31 Jul 2025
Viewed by 410
Abstract
This study presents the fabrication and characterization of sustainable polylactic acid (PLA)-based biocomposites reinforced with bio-origin fillers derived from food waste: seashells, eggshells, walnut shells, and spent coffee grounds. All fillers were introduced at 15 wt% into a commercial PLA matrix modified with [...] Read more.
This study presents the fabrication and characterization of sustainable polylactic acid (PLA)-based biocomposites reinforced with bio-origin fillers derived from food waste: seashells, eggshells, walnut shells, and spent coffee grounds. All fillers were introduced at 15 wt% into a commercial PLA matrix modified with a compatibilizer to improve interfacial adhesion. Mechanical properties (tensile, flexural, and impact strength), morphological characteristics (via SEM), and hydrolytic aging behavior were evaluated. Among the tested systems, PLA reinforced with seashells (PLA15S) and coffee grounds (PLA15C) demonstrated the most balanced mechanical performance, with PLA15S achieving a tensile strength increase of 72% compared to neat PLA. Notably, PLA15C exhibited the highest stability after 28 days of hydrothermal aging, retaining ~36% of its initial tensile strength, outperforming other systems. In contrast, walnut-shell-filled composites showed the most severe degradation, losing over 98% of their mechanical strength after aging. The results indicate that both the physicochemical nature and morphology of the biofiller play critical roles in determining mechanical reinforcement and degradation resistance. This research underlines the feasibility of valorizing agri-food residues into biodegradable, semi-structural PLA composites for potential use in sustainable packaging or non-load-bearing structural applications. Full article
Show Figures

Graphical abstract

29 pages, 7510 KB  
Article
Stretchability and Melt Strength Enhancement of Biodegradable Polymer Blends for Packaging Solutions
by Katy D. Laevsky, Achiad Zilberfarb, Amos Ophir and Ana L. Dotan
Molecules 2025, 30(15), 3211; https://doi.org/10.3390/molecules30153211 - 31 Jul 2025
Viewed by 595
Abstract
Biodegradable polymers offer environmental advantages compared to fossil-based alternatives, but they currently lack the stretchability required for demanding applications such as mesh fabrics for woven flexible intermediate bulk container (FIBC) bags and stretch, shrink, and cling films. The goal of this research is [...] Read more.
Biodegradable polymers offer environmental advantages compared to fossil-based alternatives, but they currently lack the stretchability required for demanding applications such as mesh fabrics for woven flexible intermediate bulk container (FIBC) bags and stretch, shrink, and cling films. The goal of this research is to enhance the stretchability of biodegradable blends based on 80% poly(butylene adipate-co-terephthalate) (PBAT) and 20% poly(lactic acid) (PLA) through reactive extrusion. Radical initiator (dicumyl peroxide (DCP)) and chain extenders (maleic anhydride (MA), glycidyl methacrylate (GMA)) were employed to improve the melt strength and elasticity of the extruded films. The reactive blends were initially prepared using a batch mixer and subsequently compounded in a twin-screw extruder. Films were produced via cast extrusion. 0.1% wt. DCP led to a 200% increase in elongation at break and a 44% improvement in tensile strength. Differential scanning calorimetry and scanning electron microscopy revealed enhanced miscibility between components. Shear and complex viscosity increased by 38% and 85%, compared to the neat blend, respectively. Reactive extrusion led to a better dispersion and distribution of the phases. An improved interfacial adhesion between the phases, in addition to higher molecular weight, led to enhanced melt strength and improved stretchability. Full article
Show Figures

Figure 1

21 pages, 5017 KB  
Article
Effects of Phase Structure Regulation on Properties of Hydroxyl-Terminated Polyphenylpropylsiloxane-Modified Epoxy Resin
by Yundong Ji, Jun Pan, Chengxin Xu and Dongfeng Cao
Polymers 2025, 17(15), 2099; https://doi.org/10.3390/polym17152099 - 30 Jul 2025
Viewed by 395
Abstract
4,4’-Methylenebis(N,N-diglycidylaniline) (AG80), as a high-performance thermosetting material, holds significant application value due to the enhancement of its strength, toughness, and thermal stability. However, conventional toughening methods often lead to a decrease in material strength, limiting their application. Modification of AG80 epoxy resin was [...] Read more.
4,4’-Methylenebis(N,N-diglycidylaniline) (AG80), as a high-performance thermosetting material, holds significant application value due to the enhancement of its strength, toughness, and thermal stability. However, conventional toughening methods often lead to a decrease in material strength, limiting their application. Modification of AG80 epoxy resin was performed using hydroxy-terminated polyphenylpropylsiloxane (Z-6018) and a self-synthesized epoxy compatibilizer (P/E30) to regulate the phase structure of the modified resin, achieving a synergistic enhancement in both strength and toughness. The modified resin was characterized by Fourier transform infrared analysis (FTIR), proton nuclear magnetic resonance (1H NMR) spectroscopy, silicon-29 nuclear magnetic resonance (29Si NMR) spectroscopy, and epoxy value titration. It was found that the phase structure of the modified resin significantly affects mechanical properties. Thus, P/E30 was introduced to regulate the phase structure, achieving enhanced toughness and strength. At 20 wt.% P/E30 addition, the tensile strength, impact strength, and fracture toughness increased by 50.89%, 454.79%, and 152.43%, respectively, compared to AG80. Scanning electron microscopy (SEM) and atomic force microscopy (AFM) analyses indicate that P/E30 regulates the silicon-rich spherical phase and interfacial compatibility, establishing a bicontinuous structure within the spherical phase, which is crucial for excellent mechanical properties. Additionally, the introduction of Z-6018 enhances the thermal stability of the resin. Full article
(This article belongs to the Section Polymer Analysis and Characterization)
Show Figures

Figure 1

20 pages, 14936 KB  
Article
Viscosity, Morphology, and Thermomechanical Performance of Attapulgite-Reinforced Bio-Based Polyurethane Asphalt Composites
by Haocheng Yang, Suzhou Cao, Xinpeng Cui, Zhonghua Xi, Jun Cai, Zuanru Yuan, Junsheng Zhang and Hongfeng Xie
Polymers 2025, 17(15), 2045; https://doi.org/10.3390/polym17152045 - 26 Jul 2025
Cited by 1 | Viewed by 550
Abstract
Bio-based polyurethane asphalt binder (PUAB) derived from castor oil (CO) is environmentally friendly and exhibits extended allowable construction time. However, CO imparts inherently poor mechanical performance to bio-based PUAB. To address this limitation, attapulgite (ATT) with fibrous nanostructures was incorporated. The effects of [...] Read more.
Bio-based polyurethane asphalt binder (PUAB) derived from castor oil (CO) is environmentally friendly and exhibits extended allowable construction time. However, CO imparts inherently poor mechanical performance to bio-based PUAB. To address this limitation, attapulgite (ATT) with fibrous nanostructures was incorporated. The effects of ATT on bio-based PUAB were systematically investigated, including cure kinetics, rotational viscosity (RV) evolution, phase-separation microstructures, dynamic mechanical properties, thermal stability, and mechanical performance. Experimental characterization employed Fourier transform infrared spectroscopy, Brookfield viscometry, laser scanning confocal microscopy, dynamic mechanical analysis, thermogravimetry, and tensile testing. ATT incorporation accelerated the polyaddition reaction conversion between isocyanate groups in polyurethane (PU) and hydroxyl groups in ATT. Paradoxically, it reduced RV during curing, prolonging allowable construction time proportionally with clay content. Additionally, ATT’s compatibilizing effect decreased bitumen particle size in PUAB, with scaling proportionally with clay loading. While enhancing thermal stability, ATT lowered the glass transition temperature and damping properties. Crucially, 1 wt% ATT increased tensile strength by 71% and toughness by 62%, while maintaining high elongation at break (>400%). The cost-effectiveness and significant reinforcement capability of ATT make it a promising candidate for producing high-performance bio-based PUAB composites. Full article
Show Figures

Figure 1

23 pages, 2364 KB  
Review
A Comprehensive Review of Applications and Environmental Risks of Waste Plastics in Asphalt Pavements
by Ju Pan, Jue Li, Bailin Shan, Yongsheng Yao and Chao Huang
Materials 2025, 18(15), 3441; https://doi.org/10.3390/ma18153441 - 22 Jul 2025
Cited by 1 | Viewed by 546
Abstract
The global plastic crisis has generated significant interest in repurposing waste plastics as asphalt modifiers, presenting both environmental and engineering advantages. This study offers a comprehensive review of the applications of waste plastics in asphalt, focusing on their types, modification mechanisms, incorporation techniques, [...] Read more.
The global plastic crisis has generated significant interest in repurposing waste plastics as asphalt modifiers, presenting both environmental and engineering advantages. This study offers a comprehensive review of the applications of waste plastics in asphalt, focusing on their types, modification mechanisms, incorporation techniques, and environmental impacts, alongside proposed mitigation strategies. Commonly utilized plastics include polyethylene (PE), polypropylene (PP), polystyrene (PS), polyvinyl chloride (PVC), and polyethylene terephthalate (PET), each affecting asphalt performance differently—enhancing high-temperature stability and fatigue resistance while exhibiting varying levels of compatibility and environmental risks. The incorporation techniques, namely wet and dry processes, differ in terms of efficiency, cost, and environmental footprint: the wet process enhances durability but requires more energy, whereas the dry process is more cost-effective but may lead to uneven dispersion. Environmental concerns associated with these practices include toxic emissions (such as polycyclic aromatic hydrocarbons and volatile organic compounds) during production, microplastic generation through abrasion and weathering, and ecological contamination of soil and water. Mitigation strategies encompass optimizing plastic selection, improving pre-treatment and compatibilization methods, controlling high-temperature processing, and monitoring the spread of microplastics. This review highlights the need for balanced adoption of waste plastic-modified asphalt, emphasizing sustainable practices to maximize benefits while minimizing risks. Full article
(This article belongs to the Section Construction and Building Materials)
Show Figures

Graphical abstract

19 pages, 4571 KB  
Article
Modified Asphalt Prepared by Coating Rubber Powder with Waste Cooking Oil: Performance Evaluation and Mechanism Analysis
by Jianwei Zhang, Meizhu Chen, Yuan Yan, Muyan Han and Yuechao Zhao
Coatings 2025, 15(7), 844; https://doi.org/10.3390/coatings15070844 - 18 Jul 2025
Viewed by 511
Abstract
Waste cooking oil (WCO) plays different roles in modified asphalt and significantly affects the performance of the binder. However, a systematic comparative study is still lacking in the existing research. This study investigates the effects of WCO used as a swelling agent for [...] Read more.
Waste cooking oil (WCO) plays different roles in modified asphalt and significantly affects the performance of the binder. However, a systematic comparative study is still lacking in the existing research. This study investigates the effects of WCO used as a swelling agent for rubber powder (RP) and as a compatibilizer in rubber powder-modified asphalt (RPMA) on the performance of modified asphalt. Specifically, the microstructure and functional groups of WCO-coated RP were first characterized. Then, RPMAs with different RP dosages were prepared, and the storage stability and rheological properties of RPMAs were thoroughly investigated. Finally, the flue gas emission characteristics of different RPMAs at 30% RP dosing were further analyzed, and the corresponding inhibition mechanisms were proposed. The results showed that the RP coated by WCO was fully solubilized internally, and the WCO formed a uniform and continuous coating film on the RP surface. Comparative analysis revealed that when WCO was used as a swelling agent, the prepared S-RPMA exhibited superior storage stability. At a 30% RP content, the softening point difference value of S-RPMA was only 1.8 °C, and the reduction rate of the segregation index reached 40.91%. Surprisingly, after WCO was used to coat the RP, the average concentrations of VOCs and H2S in S-RPMA30 were reduced to 146.7 mg/m3 and 10.6 ppm, respectively, representing decreases of 20.8% and 22.1% compared with the original RPMA30. These findings demonstrate that using WCO as a swelling agent enhances both the physical stability and environmental performance of RPMA, offering valuable insights for the rational application and optimization of WCO incorporation methods in asphalt modification. It also makes meaningful contributions to the fields of coating science and sustainable materials engineering. Full article
(This article belongs to the Section Environmental Aspects in Colloid and Interface Science)
Show Figures

Figure 1

14 pages, 4074 KB  
Article
Synthesis and Characterization of Biodegradable Polymer Blends Based on Chitosan
by Lyazzat Bekbayeva, Grigoriy A. Mun, Bayana B. Yermukhambetova, El-Sayed Negim, Galiya Irmukhametova, Khaldun M. Al Azzam, Sergey V. Nechipurenko, Sergey A. Efremov, Mubarak Yermaganbetov and Moshera Samy
Polymers 2025, 17(13), 1853; https://doi.org/10.3390/polym17131853 - 2 Jul 2025
Viewed by 587
Abstract
Despite its broad application due to its affordability, biodegradability, and natural antimicrobial and antioxidant activities, chitosan (CS) still exhibits limitations in mechanical strength and barrier effectiveness. Owing to its unique chemical characteristics, itaconic acid (IT) presents potential as a compatibilizing agent in polymeric [...] Read more.
Despite its broad application due to its affordability, biodegradability, and natural antimicrobial and antioxidant activities, chitosan (CS) still exhibits limitations in mechanical strength and barrier effectiveness. Owing to its unique chemical characteristics, itaconic acid (IT) presents potential as a compatibilizing agent in polymeric blend formulations. Biodegradable polymers composed of chitosan (CS), itaconic acid (IT), and starch (S) were synthesized using two polymerization methods. The first method involved grafting IT onto CS at varying ratios of IT (4%, 6%, and 8% wt.), using 1% v/v acetic acid/water as the solvent and potassium persulfate as the initiator. In the second approach, starch (S) was blended with the copolymer P(CS-g-IT) at concentrations of 1%, 3%, and 5%, utilizing water as the solvent and glacial acetic acid as a catalyst. The resulting biodegradable films underwent characterization through FTIR, TGA, SEM, and mechanical property analysis. To further explore the effects of combining IT, starch, and carbon black, the blends, referred to as P[(CS-g-IT)-b-S], were also loaded with carbon black. This allowed for the evaluation of the materials’ physicomechanical properties, such as viscosity, tensile strength, elongation, and contact angle. The findings demonstrated that the presence of IT, starch, and carbon black collectively improved the films’ mechanical performance, physical traits, and biodegradability. Among the samples, the blended copolymer with 1% starch exhibited the highest mechanical properties, followed by the grafted copolymer with 8% IT and the blended copolymer mixed with carbon black at 7%. In contrast, the blended copolymer with 5% starch showed the highest hydrophilicity and the shortest degradation time compared to the grafted copolymer with 8% IT and the blended copolymer mixed with 7% carbon black. Full article
(This article belongs to the Section Polymer Chemistry)
Show Figures

Figure 1

Back to TopTop