Sign in to use this feature.

Years

Between: -

Subjects

remove_circle_outline
remove_circle_outline
remove_circle_outline

Journals

Article Types

Countries / Regions

Search Results (2)

Search Parameters:
Keywords = complex impedance spectroscopy (CIS)

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
25 pages, 4373 KiB  
Article
Uncovering the Possibilities of Ceramic Ba(1−x)CoxTiO3 Nanocrystals: Heightened Electrical and Dielectric Attributes
by Sana Jebali, Chadha Mejri, Wael Albouchi, Mahdi Meftah, Abderrazek Oueslati and Walid Oueslati
Solids 2024, 5(3), 460-484; https://doi.org/10.3390/solids5030031 - 18 Sep 2024
Cited by 2 | Viewed by 1307
Abstract
The hydrothermal synthesis of Ba1−xCoxTiO3 (BCT) ceramic nanocrystals across varied substitution fractions (x = 0, …, 1) is the subject of this study. Hydrothermal synthesis is well known for producing high-purity and well-crystallized nanocrystals. A thorough examination is [...] Read more.
The hydrothermal synthesis of Ba1−xCoxTiO3 (BCT) ceramic nanocrystals across varied substitution fractions (x = 0, …, 1) is the subject of this study. Hydrothermal synthesis is well known for producing high-purity and well-crystallized nanocrystals. A thorough examination is conducted to examine the effects on the structural and electrical properties of the resultant BCT nanocrystals by altering the cobalt substitution fraction. X-ray diffraction (XRD) is used to analyze the structure, while complex impedance spectroscopy (CIS) is used to analyze the electrical properties. As the cobalt content rises, XRD examination reveals a smooth transition from the ferroelectric BaTiO3 phase to the ferromagnetic CoTiO3 phase, offering extensive insights into the phase composition and crystallographic alterations. This phase shift is important because it creates new opportunities to adjust the properties of the material for particular uses. The electrical activity of BCT nanocrystals is clarified further by CIS measurements. A distribution of relaxation times, frequently linked to complex microstructures or heterogeneous materials, is suggested by the detected non-Debye relaxation. A thermally activated conduction process, in which higher temperatures promote the passage of charge carriers, is suggested by the temperature-dependent increase in conductivity. This behavior is strongly dependent on the cobalt content, suggesting that cobalt enhances electrical conductivity and crystallinity through a catalytic effect. A frequency-dependent dielectric constant that rises with temperature and cobalt content is shown by investigating the dielectric characteristics of BCT nanocrystals. Improved polarization mechanisms inside the material are suggested by this increase in dielectric constant, which may be the result of cobalt ion presence. With a thorough grasp of the dielectric behavior, the examination of the loss angle further validates the non-Debye relaxation process. Full article
Show Figures

Figure 1

24 pages, 3996 KiB  
Article
FPGA-Based Processor for Continual Capacitive-Coupling Impedance Spectroscopy and Circuit Parameter Estimation
by Akihiko Tsukahara, Tomiharu Yamaguchi, Yuho Tanaka and Akinori Ueno
Sensors 2022, 22(12), 4406; https://doi.org/10.3390/s22124406 - 10 Jun 2022
Cited by 4 | Viewed by 3246
Abstract
In principle, the recently proposed capacitive-coupling impedance spectroscopy (CIS) has the capability to acquire frequency spectra of complex electrical impedance sequentially on a millisecond timescale. Even when the measured object with time-varying unknown resistance Rx is capacitively coupled with the measurement electrodes [...] Read more.
In principle, the recently proposed capacitive-coupling impedance spectroscopy (CIS) has the capability to acquire frequency spectra of complex electrical impedance sequentially on a millisecond timescale. Even when the measured object with time-varying unknown resistance Rx is capacitively coupled with the measurement electrodes with time-varying unknown capacitance Cx, CIS can be measured. As a proof of concept, this study aimed to develop a prototype that implemented the novel algorithm of CIS and circuit parameter estimation to verify whether the frequency spectra and circuit parameters could be obtained in milliseconds and whether time-varying impedance could be measured. This study proposes a dedicated processor that was implemented as field-programmable gate arrays to perform CIS, estimate Rx and Cx, and their digital-to-analog conversions at a certain time, and to repeat them continually. The proposed processor executed the entire sequence in the order of milliseconds. Combined with a front-end nonsinusoidal oscillator and interfacing circuits, the processor estimated the fixed Rx and fixed Cx with reasonable accuracy. Additionally, the combined system with the processor succeeded in detecting a quick optical response in the resistance of the cadmium sulfide (CdS) photocell connected in series with a capacitor, and in reading out their resistance and capacitance independently as voltages in real-time. Full article
(This article belongs to the Special Issue Electronics for Sensors, Volume 2)
Show Figures

Figure 1

Back to TopTop