Sign in to use this feature.

Years

Between: -

Subjects

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Journals

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Article Types

Countries / Regions

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Search Results (26,684)

Search Parameters:
Keywords = complex networks

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
29 pages, 15237 KB  
Article
Integrating BIM, Machine Learning, and PMBOK for Green Project Management in Saudi Arabia: A Framework for Energy Efficiency and Environmental Impact Reduction
by Maher Abuhussain, Ali Hussain Alhamami, Khaled Almazam, Omar Humaidan, Faizah Mohammed Bashir and Yakubu Aminu Dodo
Buildings 2025, 15(17), 3031; https://doi.org/10.3390/buildings15173031 (registering DOI) - 25 Aug 2025
Abstract
This study introduces a comprehensive framework combining building information modeling (BIM), project management body of knowledge (PMBOK), and machine learning (ML) to optimize energy efficiency and reduce environmental impacts in Riyadh’s construction sector. The suggested methodology utilizes BIM for dynamic energy simulations and [...] Read more.
This study introduces a comprehensive framework combining building information modeling (BIM), project management body of knowledge (PMBOK), and machine learning (ML) to optimize energy efficiency and reduce environmental impacts in Riyadh’s construction sector. The suggested methodology utilizes BIM for dynamic energy simulations and design visualization, PMBOK for integrating sustainability into project-management processes, and ML for predictive modeling and real-time energy optimization. Implementing an integrated model that incorporates building-management strategies and machine learning for both commercial and residential structures can offer stakeholders a thorough solution for forecasting energy performance and environmental impact. This is particularly essential in arid climates owing to specific conditions and environmental limitations. Using a simulation-based methodology, the framework was evaluated based on two representative case studies: (i) a commercial complex and (ii) a residential building. The neural network (NN), reinforcement learning (RL), and decision tree (DT) were implemented to assess performance in energy prediction and optimization. Results demonstrated notable seasonal energy savings, particularly in spring (15% reduction for commercial buildings) and fall (13% reduction for residential buildings), driven by optimized heating, ventilation, and air conditioning (HVAC) systems, insulation strategies, and window configurations. ML models successfully predicted energy consumption and greenhouse gas (GHG) emissions, enabling targeted mitigation strategies. GHG emissions were reduced by up to 25% in commercial and 20% in residential settings. Among the models, NN achieved the highest predictive accuracy (R2 = 0.95), while RL proved effective in adaptive operational control. This study highlights the synergistic potential of BIM, PMBOK, and ML in advancing green project management and sustainable construction. Full article
Show Figures

Figure 1

23 pages, 3736 KB  
Article
Accelerating Thermally Safe Operating Area Assessment of Ignition Coils for Hydrogen Engines via AI-Driven Power Loss Estimation
by Federico Ricci, Mario Picerno, Massimiliano Avana, Stefano Papi, Federico Tardini and Massimo Dal Re
Vehicles 2025, 7(3), 90; https://doi.org/10.3390/vehicles7030090 (registering DOI) - 25 Aug 2025
Abstract
In order to determine thermally safe driving parameters of ignition coils for hydrogen internal combustion engines (ICE), a reliable estimation of internal power losses is essential. These losses include resistive winding losses, magnetic core losses due to hysteresis and eddy currents, dielectric losses [...] Read more.
In order to determine thermally safe driving parameters of ignition coils for hydrogen internal combustion engines (ICE), a reliable estimation of internal power losses is essential. These losses include resistive winding losses, magnetic core losses due to hysteresis and eddy currents, dielectric losses in the insulation, and electronic switching losses. Direct experimental assessment is difficult because the components are inaccessible, while conventional computer-aided engineering (CAE) approaches face challenges such as the need for accurate input data, the need for detailed 3D models, long computation times, and uncertainties in loss prediction for complex structures. To address these limitations, we propose an artificial intelligence (AI)-based framework for estimating internal losses from external temperature measurements. The method relies on an artificial neural network (ANN), trained to capture the relationship between external coil temperatures and internal power losses. The trained model is then employed within an optimization process to identify losses corresponding to experimental temperature values. Validation is performed by introducing the identified power losses into a CAE thermal model to compare predicted and experimental temperatures. The results show excellent agreement, with errors below 3% across the −30°C to 125°C range. This demonstrates that the proposed hybrid ANN–CAE approach achieves high accuracy while reducing experimental effort and computational demand. Furthermore, the methodology allows for a straightforward determination of the coil safe operating area (SOA). Starting from estimates derived from fitted linear trends, the SOA limits can be efficiently refined through iterative verification with the CAE model. Overall, the ANN–CAE framework provides a robust and practical tool to accelerate thermal analysis and support coil development for hydrogen ICE applications. Full article
32 pages, 5540 KB  
Article
High-Accuracy Cotton Field Mapping and Spatiotemporal Evolution Analysis of Continuous Cropping Using Multi-Source Remote Sensing Feature Fusion and Advanced Deep Learning
by Xiao Zhang, Zenglu Liu, Xuan Li, Hao Bao, Nannan Zhang and Tiecheng Bai
Agriculture 2025, 15(17), 1814; https://doi.org/10.3390/agriculture15171814 (registering DOI) - 25 Aug 2025
Abstract
Cotton is a globally strategic crop that plays a crucial role in sustaining national economies and livelihoods. To address the challenges of accurate cotton field extraction in the complex planting environments of Xinjiang’s Alaer reclamation area, a cotton field identification model was developed [...] Read more.
Cotton is a globally strategic crop that plays a crucial role in sustaining national economies and livelihoods. To address the challenges of accurate cotton field extraction in the complex planting environments of Xinjiang’s Alaer reclamation area, a cotton field identification model was developed that integrates multi-source satellite remote sensing data with machine learning methods. Using imagery from Sentinel-2, GF-1, and Landsat 8, we performed feature fusion using principal component, Gram–Schmidt (GS), and neural network techniques. Analyses of spectral, vegetation, and texture features revealed that the GS-fused blue bands of Sentinel-2 and Landsat 8 exhibited optimal performance, with a mean value of 16,725, a standard deviation of 2290, and an information entropy of 8.55. These metrics improved by 10,529, 168, and 0.28, respectively, compared with the original Landsat 8 data. In comparative classification experiments, the endmember-based random forest classifier (RFC) achieved the best traditional classification performance, with a kappa value of 0.963 and an overall accuracy (OA) of 97.22% based on 250 samples, resulting in a cotton-field extraction error of 38.58 km2. By enhancing the deep learning model, we proposed a U-Net architecture that incorporated a Convolutional Block Attention Module and Atrous Spatial Pyramid Pooling. Using the GS-fused blue band data, the model achieved significantly improved accuracy, with a kappa coefficient of 0.988 and an OA of 98.56%. This advancement reduced the area estimation error to 25.42 km2, representing a 34.1% decrease compared with that of the RFC. Based on the optimal model, we constructed a digital map of continuous cotton cropping from 2021 to 2023, which revealed a consistent decline in cotton acreage within the reclaimed areas. This finding underscores the effectiveness of crop rotation policies in mitigating the adverse effects of large-scale monoculture practices. This study confirms that the synergistic integration of multi-source satellite feature fusion and deep learning significantly improves crop identification accuracy, providing reliable technical support for agricultural policy formulation and sustainable farmland management. Full article
(This article belongs to the Special Issue Computers and IT Solutions for Agriculture and Their Application)
28 pages, 67780 KB  
Article
YOLO-GRBI: An Enhanced Lightweight Detector for Non-Cooperative Spatial Target in Complex Orbital Environments
by Zimo Zhou, Shuaiqun Wang, Xinyao Wang, Wen Zheng and Yanli Xu
Entropy 2025, 27(9), 902; https://doi.org/10.3390/e27090902 (registering DOI) - 25 Aug 2025
Abstract
Non-cooperative spatial target detection plays a vital role in enabling autonomous on-orbit servicing and maintaining space situational awareness (SSA). However, due to the limited computational resources of onboard embedded systems and the complexity of spaceborne imaging environments, where spacecraft images often contain small [...] Read more.
Non-cooperative spatial target detection plays a vital role in enabling autonomous on-orbit servicing and maintaining space situational awareness (SSA). However, due to the limited computational resources of onboard embedded systems and the complexity of spaceborne imaging environments, where spacecraft images often contain small targets that are easily obscured by background noise and characterized by low local information entropy, many existing object detection frameworks struggle to achieve high accuracy with low computational cost. To address this challenge, we propose YOLO-GRBI, an enhanced detection network designed to balance accuracy and efficiency. A reparameterized ELAN backbone is adopted to improve feature reuse and facilitate gradient propagation. The BiFormer and C2f-iAFF modules are introduced to enhance attention to salient targets, reducing false positives and false negatives. GSConv and VoV-GSCSP modules are integrated into the neck to reduce convolution operations and computational redundancy while preserving information entropy. YOLO-GRBI employs the focal loss for classification and confidence prediction to address class imbalance. Experiments on a self-constructed spacecraft dataset show that YOLO-GRBI outperforms the baseline YOLOv8n, achieving a 4.9% increase in mAP@0.5 and a 6.0% boost in mAP@0.5:0.95, while further reducing model complexity and inference latency. Full article
(This article belongs to the Special Issue Space-Air-Ground-Sea Integrated Communication Networks)
17 pages, 1028 KB  
Article
Graph Neural Network-Based Beamforming Optimization for Multi-BS RIS-Aided Communication Systems
by Seung-Hwan Seo, Seong-Gyun Choi, Ji-Hee Yu, Yoon-Ju Choi, Ki-Chang Tong, Min-Hyeok Choi, Yeong-Gyun Jung, Hyoung-Kyu Song and Young-Hwan You
Mathematics 2025, 13(17), 2732; https://doi.org/10.3390/math13172732 (registering DOI) - 25 Aug 2025
Abstract
The optimization of beamforming in multi-base station (multi-BS) reconfigurable intelligent surface (RIS)-aided systems is a challenging task due to its high computational complexity. This paper first demonstrates that an optimized multi-BS system exhibits superior communication performance compared to a centralized large-scale single-BS system. [...] Read more.
The optimization of beamforming in multi-base station (multi-BS) reconfigurable intelligent surface (RIS)-aided systems is a challenging task due to its high computational complexity. This paper first demonstrates that an optimized multi-BS system exhibits superior communication performance compared to a centralized large-scale single-BS system. To efficiently solve the complex beamforming problem in the multi-BS environment, this paper proposes a novel optimization solver based on a graph neural network (GNN) that models the physical structure of the system. Experimental results show that the proposed GNN solver finds solutions of higher quality, achieving a 42% performance increase with 45% less total computational complexity compared to a conventional iterative optimization method. Furthermore, when compared to other complex AI models such as transformer and Bi-LSTM, the proposed GNN achieves similar state-of-the-art performance while having less than 1% of the parameters and a fraction of the computational cost. These findings demonstrate that the GNN is a powerful, efficient, and practical solution for beamforming optimization in multi-BS RIS-aided systems, satisfying the demands for performance, computational efficiency, and model compactness. Full article
19 pages, 5379 KB  
Article
Geometric Coupling Effects of Multiple Cracks on Fracture Behavior: Insights from Discrete Element Simulations
by Shuangping Li, Bin Zhang, Hang Zheng, Zuqiang Liu, Xin Zhang, Linjie Guan and Han Tang
Intell. Infrastruct. Constr. 2025, 1(2), 6; https://doi.org/10.3390/iic1020006 (registering DOI) - 25 Aug 2025
Abstract
Understanding the multi-crack coupling fracture behavior in brittle materials is particularly critical for aging dam infrastructure, where 78% of structural failures originate from crack network coalescence. In this study, we introduce the concepts of crack distance ratio (DR) and size ratio (SR) to [...] Read more.
Understanding the multi-crack coupling fracture behavior in brittle materials is particularly critical for aging dam infrastructure, where 78% of structural failures originate from crack network coalescence. In this study, we introduce the concepts of crack distance ratio (DR) and size ratio (SR) to describe the relationship between crack position and length and employ the discrete element method (DEM) for extensive numerical simulations. Specifically, a crack density function is introduced to assess microscale damage evolution, and the study systematically examines the macroscopic mechanical properties, failure modes, and microscale damage evolution of rock-like materials under varying DR and SR conditions. The results show that increasing the crack distance ratio and crack angle can inhibit the crack formation at the same tip of the prefabricated crack. The increase in the size ratio will promote the formation of prefabricated cracks on the same side. The increase in the distance ratio and size ratio significantly accelerate the rapid increase in crack density in the second stage. The crack angle provides the opposite effect. In the middle stage of loading, the growth rate of crack density decreases with the increase in crack angle. Overall, the size ratio has a greater influence on the evolution of microscopic damage. This research provides new insights into understanding and predicting the behavior of materials under complex stress conditions, thus contributing to the optimization of structural design and the improvement of engineering safety. Full article
Show Figures

Figure 1

19 pages, 3847 KB  
Article
Bayesian Network-Driven Risk Assessment and Reinforcement Strategy for Shield Tunnel Construction Adjacent to Wall–Pile–Anchor-Supported Foundation Pit
by Yuran Lu, Bin Zhu and Hongsheng Qiu
Buildings 2025, 15(17), 3027; https://doi.org/10.3390/buildings15173027 (registering DOI) - 25 Aug 2025
Abstract
With the increasing demand for urban rail transit capacity, shield tunneling has become the predominant method for constructing underground metro systems in densely populated cities. However, the spatial interaction between shield tunnels and adjacent retaining structures poses significant engineering challenges, potentially leading to [...] Read more.
With the increasing demand for urban rail transit capacity, shield tunneling has become the predominant method for constructing underground metro systems in densely populated cities. However, the spatial interaction between shield tunnels and adjacent retaining structures poses significant engineering challenges, potentially leading to excessive ground settlement, structural deformation, and even stability failure. This study systematically investigates the deformation behavior and associated risks of retaining systems during adjacent shield tunnel construction. An orthogonal multi-factor analysis was conducted to evaluate the effects of grouting pressure, grout stiffness, and overlying soil properties on maximum surface settlement. Results show that soil cohesion and grouting pressure are the most influential parameters, jointly accounting for over 72% of the variance in settlement response. Based on the numerical findings, a Bayesian network model was developed to assess construction risk, integrating expert judgment and field monitoring data to quantify the conditional probability of deformation-induced failure. The model identifies key risk sources such as geological variability, groundwater instability, shield steering correction, segmental lining quality, and site construction management. Furthermore, the effectiveness and cost-efficiency of various grouting reinforcement strategies were evaluated. The results show that top grouting increases the reinforcement efficiency to 34.7%, offering the best performance in terms of both settlement control and economic benefit. Sidewall grouting yields an efficiency of approximately 30.2%, while invert grouting shows limited effectiveness, with an efficiency of only 11.6%, making it the least favorable option in terms of both technical and economic considerations. This research provides both practical guidance and theoretical insight for risk-informed shield tunneling design and management in complex urban environments. Full article
Show Figures

Figure 1

13 pages, 2870 KB  
Article
NR3C1/GLMN-Mediated FKBP12.6 Ubiquitination Disrupts Calcium Homeostasis and Impairs Mitochondrial Quality Control in Stress-Induced Myocardial Damage
by Jingze Cong, Lihui Liu, Rui Shi, Mengting He, Yuchuan An, Xiaowei Feng, Xiaoyu Yin, Yingmin Li, Bin Cong and Weibo Shi
Int. J. Mol. Sci. 2025, 26(17), 8245; https://doi.org/10.3390/ijms26178245 (registering DOI) - 25 Aug 2025
Abstract
Excessive stress disrupts cardiac homeostasis via complex and multifactorial mechanisms, resulting in cardiac dysfunction, cardiovascular disease, or even sudden cardiac death, yet the underlying molecular mechanisms remain poorly understood. Accordingly, we aimed to elucidate how stress induces calcium dysregulation and contributes to cardiac [...] Read more.
Excessive stress disrupts cardiac homeostasis via complex and multifactorial mechanisms, resulting in cardiac dysfunction, cardiovascular disease, or even sudden cardiac death, yet the underlying molecular mechanisms remain poorly understood. Accordingly, we aimed to elucidate how stress induces calcium dysregulation and contributes to cardiac dysfunction and injury through the nuclear receptor subfamily 3 group c member 1 (NR3C1)/Glomulin (GLMN)/FK506-binding protein 12.6 (FKBP12.6) signaling pathway. Using mouse models of acute and chronic restraint stress, we observed that stress-exposed mice exhibited reduced left ventricular ejection fraction, ventricular wall thickening, elevated serum and myocardial cTnI levels, along with pathological features of myocardial ischemia and hypoxia, through morphological, functional, and hormonal assessments. Using transmission electron microscopy and Western blotting, we found that stress disrupted mitochondrial quality control in cardiomyocytes, evidenced by progressive mitochondrial swelling, cristae rupture, decreased expression of fusion proteins (MFN1/OPA1) and biogenesis regulator PGC-1α, along with aberrant accumulation of fission protein (FIS1) and autophagy marker LC3. At the cellular level, ChIP-qPCR and siRNA knockdown confirmed that stress activates the glucocorticoid receptor NR3C1 to repress its downstream target GLMN, thereby preventing FKBP12.6 ubiquitination and degradation, resulting in calcium leakage and overload, which ultimately impairs mitochondrial quality control and damages cardiomyocytes. In conclusion, our findings reveal that stress induces myocardial damage through NR3C1/GLMN-mediated FKBP12.6 ubiquitination, disrupting calcium homeostasis and mitochondrial quality control, and lay a theoretical foundation for dissecting the intricate molecular network of stress-induced cardiomyopathy. Full article
(This article belongs to the Section Molecular Endocrinology and Metabolism)
23 pages, 16577 KB  
Article
SLD-YOLO: A Lightweight Satellite Component Detection Algorithm Based on Multi-Scale Feature Fusion and Attention Mechanism
by Yonghao Li, Hang Yang, Bo Lü and Xiaotian Wu
Remote Sens. 2025, 17(17), 2950; https://doi.org/10.3390/rs17172950 (registering DOI) - 25 Aug 2025
Abstract
Space-based on-orbit servicing missions impose stringent requirements for precise identification and localization of satellite components, while existing detection algorithms face dual challenges of insufficient accuracy and excessive computational resource consumption. This paper proposes SLD-YOLO, a lightweight satellite component detection model based on improved [...] Read more.
Space-based on-orbit servicing missions impose stringent requirements for precise identification and localization of satellite components, while existing detection algorithms face dual challenges of insufficient accuracy and excessive computational resource consumption. This paper proposes SLD-YOLO, a lightweight satellite component detection model based on improved YOLO11, balancing accuracy and efficiency through structural optimization and lightweight design. First, we design RLNet, a lightweight backbone network that employs reparameterization mechanisms and hierarchical feature fusion strategies to reduce model complexity by 19.72% while maintaining detection accuracy. Second, we propose the CSP-HSF multi-scale feature fusion module, used in conjunction with PSConv downsampling, to effectively improve the model’s perception of multi-scale objects. Finally, we introduce SimAM, a parameter-free attention mechanism in the detection head to further improve feature representation capability. Experiments on the UESD dataset demonstrate that SLD-YOLO achieves measurable improvements compared to the baseline YOLO11s model across five satellite component detection categories: mAP50 increases by 2.22% to 87.44%, mAP50:95 improves by 1.72% to 63.25%, while computational complexity decreases by 19.72%, parameter count reduces by 25.93%, model file size compresses by 24.59%, and inference speed reaches 90.4 FPS. Validation experiments on the UESD_edition2 dataset further confirm the model’s robustness. This research provides an effective solution for target detection tasks in resource-constrained space environments, demonstrating practical engineering application value. Full article
(This article belongs to the Special Issue Advances in Remote Sensing Image Target Detection and Recognition)
22 pages, 3691 KB  
Article
Graph Convolutional Network with Agent Attention for Recognizing Digital Ink Chinese Characters Written by International Students
by Huafen Xu and Xiwen Zhang
Information 2025, 16(9), 729; https://doi.org/10.3390/info16090729 (registering DOI) - 25 Aug 2025
Abstract
Digital ink Chinese characters (DICCs) written by international students often contain various errors and irregularities, making the recognition of these characters a highly challenging pattern recognition problem. This paper designs a graph convolutional network with agent attention (GCNAA) for recognizing DICCs written by [...] Read more.
Digital ink Chinese characters (DICCs) written by international students often contain various errors and irregularities, making the recognition of these characters a highly challenging pattern recognition problem. This paper designs a graph convolutional network with agent attention (GCNAA) for recognizing DICCs written by international students. Each sampling point is treated as a vertex in a graph, with connections between adjacent sampling points within the same stroke serving as edges to create a Chinese character graph structure. The GCNAA is used to process the data of the Chinese character graph structure, implemented by stacking Block modules. In each Block module, the graph agent attention module not only models the global context between graph nodes but also reduces computational complexity, shortens training time, and accelerates inference speed. The graph convolution block module models the local adjacency structure of the graph by aggregating local geometric information from neighboring nodes, while graph pooling is employed to learn multi-resolution features. Finally, the Softmax function is used to generate prediction results. Experiments conducted on public datasets such as CASIA-OLWHDB1.0-1.2, SCUT-COUCH2009 GB1&GB2, and HIT-OR3C-ONLINE demonstrate that the GCNAA performs well even on large-category datasets, showing strong generalization ability and robustness. The recognition accuracy for DICCs written by international students reaches 98.7%. Accurate and efficient handwritten Chinese character recognition technology can provide a solid technical foundation for computer-assisted Chinese character writing for international students, thereby promoting the development of international Chinese character education. Full article
(This article belongs to the Section Artificial Intelligence)
Show Figures

Figure 1

24 pages, 1231 KB  
Article
Invisible Threads, Tangible Impacts: Industrial Networks and Land Use Efficiency in Chinese Cities
by Tian Tian, Fubin Wang and Mingxin Song
Urban Sci. 2025, 9(9), 332; https://doi.org/10.3390/urbansci9090332 (registering DOI) - 25 Aug 2025
Abstract
Efficient urban land use is a cornerstone of sustainable city development, yet the drivers of such efficiency are increasingly complex in an era of spatial transformation. As industrial specialization and collaboration deepen, cities are becoming interconnected through complex networks. These “invisible threads” are [...] Read more.
Efficient urban land use is a cornerstone of sustainable city development, yet the drivers of such efficiency are increasingly complex in an era of spatial transformation. As industrial specialization and collaboration deepen, cities are becoming interconnected through complex networks. These “invisible threads” are redefining the dynamics of land use and spatial efficiency. This study examines the influence of intercity industrial networks on urban land use efficiency by constructing urban networks from multi-regional input–output data and evaluating city performance using a super-SBM model. We employed Tobit regression and mediation analysis to identify the mechanisms. Results indicate that both the quantity and quality of urban network connections significantly enhance land use efficiency, with notable differences across city types. The positive effect of industrial network centrality is most pronounced in large cities. In growing cities, both the number and quality of industrial linkages promote efficiency, whereas in shrinking cities, connection quality is more critical than quantity. Mechanism analysis reveals that industrial networks improve land use efficiency primarily by expanding intermediate goods markets and fostering technological innovation. Full article
(This article belongs to the Special Issue Human, Technologies, and Environment in Sustainable Cities)
31 pages, 3129 KB  
Review
A Review on Gas Pipeline Leak Detection: Acoustic-Based, OGI-Based, and Multimodal Fusion Methods
by Yankun Gong, Chao Bao, Zhengxi He, Yifan Jian, Xiaoye Wang, Haineng Huang and Xintai Song
Information 2025, 16(9), 731; https://doi.org/10.3390/info16090731 (registering DOI) - 25 Aug 2025
Abstract
Pipelines play a vital role in material transportation within industrial settings. This review synthesizes detection technologies for early-stage small gas leaks from pipelines in the industrial sector, with a focus on acoustic-based methods, optical gas imaging (OGI), and multimodal fusion approaches. It encompasses [...] Read more.
Pipelines play a vital role in material transportation within industrial settings. This review synthesizes detection technologies for early-stage small gas leaks from pipelines in the industrial sector, with a focus on acoustic-based methods, optical gas imaging (OGI), and multimodal fusion approaches. It encompasses detection principles, inherent challenges, mitigation strategies, and the state of the art (SOTA). Small leaks refer to low flow leakage originating from defects with apertures at millimeter or submillimeter scales, posing significant detection difficulties. Acoustic detection leverages the acoustic wave signals generated by gas leaks for non-contact monitoring, offering advantages such as rapid response and broad coverage. However, its susceptibility to environmental noise interference often triggers false alarms. This limitation can be mitigated through time-frequency analysis, multi-sensor fusion, and deep-learning algorithms—effectively enhancing leak signals, suppressing background noise, and thereby improving the system’s detection robustness and accuracy. OGI utilizes infrared imaging technology to visualize leakage gas and is applicable to the detection of various polar gases. Its primary limitations include low image resolution, low contrast, and interference from complex backgrounds. Mitigation techniques involve background subtraction, optical flow estimation, fully convolutional neural networks (FCNNs), and vision transformers (ViTs), which enhance image contrast and extract multi-scale features to boost detection precision. Multimodal fusion technology integrates data from diverse sensors, such as acoustic and optical devices. Key challenges lie in achieving spatiotemporal synchronization across multiple sensors and effectively fusing heterogeneous data streams. Current methodologies primarily utilize decision-level fusion and feature-level fusion techniques. Decision-level fusion offers high flexibility and ease of implementation but lacks inter-feature interaction; it is less effective than feature-level fusion when correlations exist between heterogeneous features. Feature-level fusion amalgamates data from different modalities during the feature extraction phase, generating a unified cross-modal representation that effectively resolves inter-modal heterogeneity. In conclusion, we posit that multimodal fusion holds significant potential for further enhancing detection accuracy beyond the capabilities of existing single-modality technologies and is poised to become a major focus of future research in this domain. Full article
Show Figures

Figure 1

13 pages, 4412 KB  
Proceeding Paper
Approximation of Dynamic Systems Using Deep Neural Networks and Laguerre Functions
by Georgi Mihalev
Eng. Proc. 2025, 104(1), 22; https://doi.org/10.3390/engproc2025104022 (registering DOI) - 25 Aug 2025
Abstract
This article presents a hybrid approach that combines Laguerre orthonormal functions with deep neural networks (DNN) for effective approximation of impulse responses of dynamic systems. Attention is given to key limitations in approximation with Laguerre functions, such as the selection of the optimal [...] Read more.
This article presents a hybrid approach that combines Laguerre orthonormal functions with deep neural networks (DNN) for effective approximation of impulse responses of dynamic systems. Attention is given to key limitations in approximation with Laguerre functions, such as the selection of the optimal scaling factor, the number of functions used, and computational complexity. By training compact DNNs that directly predict the decomposition coefficients, increased functionality is achieved, as well as greater flexibility and efficiency in the context of implementing MPC. The proposed architecture provides good scalability, robustness, and computational efficiency, making it applicable in tasks related to system approximation and identification under uncertainty and noise conditions. Full article
Show Figures

Figure 1

40 pages, 48075 KB  
Article
Directional Lighting-Based Deep Learning Models for Crack and Spalling Classification
by Sanjeetha Pennada, Jack McAlorum, Marcus Perry, Hamish Dow and Gordon Dobie
J. Imaging 2025, 11(9), 288; https://doi.org/10.3390/jimaging11090288 (registering DOI) - 25 Aug 2025
Abstract
External lighting is essential for autonomous inspections of concrete structures in low-light environments. However, previous studies have primarily relied on uniformly diffused lighting to illuminate images and faced challenges in detecting complex crack patterns. This paper proposes two novel algorithms that use directional [...] Read more.
External lighting is essential for autonomous inspections of concrete structures in low-light environments. However, previous studies have primarily relied on uniformly diffused lighting to illuminate images and faced challenges in detecting complex crack patterns. This paper proposes two novel algorithms that use directional lighting to classify concrete defects. The first method, named fused neural network, uses the maximum intensity pixel-level image fusion technique and selects the maximum intensity pixel values from all directional images for each pixel to generate a fused image. The second proposed method, named multi-channel neural network, generates a five-channel image, with each channel representing the grayscale version of images captured in the Right (R), Down (D), Left (L), Up (U), and Diffused (A) directions, respectively. The proposed multi-channel neural network model achieved the best performance, with accuracy, precision, recall, and F1 score of 96.6%, 96.3%, 97%, and 96.6%, respectively. It also outperformed the FusedNet and other models found in the literature, with no significant change in evaluation time. The results from this work have the potential to improve concrete crack classification in environments where external illumination is required. Future research focuses on extending the concepts of multi-channel and image fusion to white-box techniques. Full article
(This article belongs to the Section AI in Imaging)
Show Figures

Figure 1

13 pages, 4677 KB  
Proceeding Paper
Hyperspectral Analysis of Apricot Quality Parameters Using Classical Machine Learning and Deep Neural Networks
by Martin Dejanov
Eng. Proc. 2025, 107(1), 24; https://doi.org/10.3390/engproc2025104024 (registering DOI) - 25 Aug 2025
Abstract
This study focuses on predicting β-carotene content using hyperspectral images captured in the near-infrared (NIR) region during the drying process. Several machine learning models are compared, including Partial Least Squares Regression (PLSR), Stacked Autoencoders (SAEs) combined with Random Forest (RF), and Convolutional Neural [...] Read more.
This study focuses on predicting β-carotene content using hyperspectral images captured in the near-infrared (NIR) region during the drying process. Several machine learning models are compared, including Partial Least Squares Regression (PLSR), Stacked Autoencoders (SAEs) combined with Random Forest (RF), and Convolutional Neural Networks (CNNs) in three configurations: 1D-CNN, 2D-CNN, and 3D-CNN. The models are evaluated using R2, Mean Absolute Error (MAE), and Root Mean Squared Error (RMSE). The PLSR model showed excellent results with R2 = 0.97 for both training and testing, indicating minimal overfitting. The SAE-RF model also performed well, with R2 values of 0.82 and 0.83 for training and testing, respectively, showing strong consistency. The CNN models displayed varying results: 1D-CNN achieved moderate performance, while 2D-CNN and 3D-CNN exhibited signs of overfitting, especially on testing data. Overall, the findings suggest that although CNNs are capable of capturing complex patterns, the PLSR and SAE-RF models deliver more reliable and robust predictions for β-carotene content in hyperspectral imaging. Full article
Show Figures

Figure 1

Back to TopTop