Sign in to use this feature.

Years

Between: -

Subjects

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Journals

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Article Types

Countries / Regions

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Search Results (2,071)

Search Parameters:
Keywords = composite beam

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
22 pages, 7322 KB  
Article
Performance of Pultruded FRP Beam-Column Connections Under Different Design Parameters
by Said Abdel-Monsef, Alaa Elsisi, Hassan Maaly and Ossama El-Hosseiny
J. Compos. Sci. 2025, 9(9), 487; https://doi.org/10.3390/jcs9090487 (registering DOI) - 8 Sep 2025
Abstract
In frame structures, connections play a vital role in governing both serviceability and ultimate strength. For pultruded fiber-reinforced polymer (PFRP) frames, connection design is even more critical due to the anisotropic and viscoelastic nature of the composite materials used in the primary elements [...] Read more.
In frame structures, connections play a vital role in governing both serviceability and ultimate strength. For pultruded fiber-reinforced polymer (PFRP) frames, connection design is even more critical due to the anisotropic and viscoelastic nature of the composite materials used in the primary elements (e.g., beams and columns) and their joints. This study presents a finite element model (FEM) to evaluate the influence of several connection parameters—namely, connection stiffening, bolt diameter, washer diameter, and clamping force—on the elastic behavior of beam-column joints composed of PFRP elements. The results demonstrate that stiffening the upper and lower connection angles significantly enhances joint performance. Increasing the bolt diameter improves moment capacity, reduces rotational deformation, decreases stress concentrations around bolt-hole edges, and increases both minor principal and compressive stresses beneath the bolt shank. Similarly, a larger washer diameter contributes to higher connection stiffness and reduces stress concentrations at bolt holes. Although the clamping force has a relatively modest effect on global connection behavior, it positively influences the through-thickness stress distribution in the angle beneath the bolt shank. Finally, regression equations were developed to quantify the relationship between rotation, moment, bolt diameter, washer diameter, and clamping force, providing a valuable tool for the design and optimization of PFRP connections in structural applications. Full article
(This article belongs to the Special Issue Polymer Composites and Fibers, 3rd Edition)
Show Figures

Figure 1

24 pages, 2898 KB  
Article
Evaluating UV Stability of Miscanthus × giganteus Particles via Radiografting of UV Absorbers
by Roland El Hage, Dominique Lafon-Pham and Rodolphe Sonnier
Molecules 2025, 30(17), 3649; https://doi.org/10.3390/molecules30173649 - 8 Sep 2025
Abstract
Miscanthus × giganteus particles possess excellent advantages in biodegradability and sustainability. However, their susceptibility to ultraviolet (UV) degradation limits wider outdoor applications. In the present work, electron beam (e-beam) radiation-induced grafting was used for the first time to attempt covalent grafting [...] Read more.
Miscanthus × giganteus particles possess excellent advantages in biodegradability and sustainability. However, their susceptibility to ultraviolet (UV) degradation limits wider outdoor applications. In the present work, electron beam (e-beam) radiation-induced grafting was used for the first time to attempt covalent grafting of UV absorbers onto miscanthus particles to address a major challenge in natural fiber stabilization. Two UV absorbers, 2-hydroxy-4-(methacryloyloxy) benzophenone (HMB) and 2-(4-benzoyl-3-hydroxyphenoxy) ethyl acrylate (BHEA), were explored using both pre-irradiation and simultaneous approaches. Pre-irradiation grafting did not achieve useful covalent fixation of HMB or BHEA, due in part to the premature decay of radicals at elevated temperatures and with solvent use, and the lignin-based quenching of radicals. Solvent-free mutual irradiation grafting failed due to immobility of the UV absorbers, while grafting of HMB in solvent failed due to radical-scavenging behavior. Grafting of BHEA was successfully achieved under solvent-based simultaneous irradiation, reaching up to 38 wt % DG in a butanone/2.5% H2SO4 system. This condition led to the improved UV stability of miscanthus particles, in which color change was reduced significantly after 1000 h of accelerated weathering; this was mainly linked to a beneficial pre-darkening effect which was induced by the presence of the acid. This work proposes a route of grafting strategy that aims to improve the photostability of miscanthus particles, paving the way for durable bio-based materials in outdoor composite applications. Full article
(This article belongs to the Special Issue Advances in Polymer Materials Based on Lignocellulosic Biomass)
Show Figures

Figure 1

32 pages, 4617 KB  
Article
Dynamic Behaviour of Two-Layered Beam Subjected to Mechanical Load in Thermal Environment
by Simona Doneva, Jerzy Warminski and Emil Manoach
Materials 2025, 18(17), 4167; https://doi.org/10.3390/ma18174167 - 5 Sep 2025
Viewed by 171
Abstract
The research investigates a composite beam composed of two layers of different materials and thicknesses subjected to thermal and mechanical loads. Two cases of thermal loading are considered here: uniformly distributed temperature along the whole beam and linearly distributed temperature along the beam [...] Read more.
The research investigates a composite beam composed of two layers of different materials and thicknesses subjected to thermal and mechanical loads. Two cases of thermal loading are considered here: uniformly distributed temperature along the whole beam and linearly distributed temperature along the beam thickness. A reduced model of the problem based on the first three beam normal modes is formulated. Additionally, a simplified one-mode reduction model is developed and solved analytically by the harmonic balance method (HBM). A comparison between the results of the three-mode reduction and one-mode reduction models highlights the applicability and limitations of the latter. Differences in the resonance curves produced by these models are thoroughly examined. The correctness of the reduced models is validated through comparison with the created finite element model (FEM) of the bilayer beam. The detailed bifurcation diagrams presented for the three-degrees-of-freedom (3-DOFs) model reveal phenomena such as loss of stability, mode interaction, buckling, and existence of multiple solutions. These findings provide deeper insights into the dynamic behaviour of thin composite beams subjected to mechanical and thermal loads, considering different variations of the temperature distribution. Full article
Show Figures

Figure 1

18 pages, 3048 KB  
Article
Comparison of Plasma Polymerized Thin Films Deposited from 2-Methyl-2-oxazoline and 2-Ethyl-2-oxazoline: II Analysis of Deposition Process
by Peter Papp, Věra Mazánková, Ladislav Moravský, Ján Blaško, Pavel Sťahel, Lubomír Prokeš, Radek Horňák, Marián Lehocký, Hana Pištěková and David Trunec
Int. J. Mol. Sci. 2025, 26(17), 8641; https://doi.org/10.3390/ijms26178641 - 5 Sep 2025
Viewed by 216
Abstract
Poly(2-oxazoline) coatings with antibiofouling properties and good biocompatibility can also be deposited by the plasma polymerization method using 2-methyl-2-oxazoline and 2-ethyl-2-oxazoline as monomers. Plasma polymers are formed of various monomer fragments and recombination products. Commonly, plasma polymers are highly crosslinked structures created by [...] Read more.
Poly(2-oxazoline) coatings with antibiofouling properties and good biocompatibility can also be deposited by the plasma polymerization method using 2-methyl-2-oxazoline and 2-ethyl-2-oxazoline as monomers. Plasma polymers are formed of various monomer fragments and recombination products. Commonly, plasma polymers are highly crosslinked structures created by many different fragments, preferably of no repeating unit. Thus, chemical analysis of plasma polymers is difficult. To obtain a better description of plasma polymerized poly(2-oxazoline) coatings, the analysis of their plasma deposition process was performed. The electron ionization of 2-methyl-2-oxazoline and 2-ethyl-2-oxazoline molecules was studied using the crossed electron–molecular beam technique with mass spectrometric detection of the produced ions. The chemical composition of gaseous compounds at plasma polymerization was determined by gas chromatography-mass spectrometry (GC-MS), ion mobility spectrometry (IMS) and optical emission spectroscopy (OES). Also, the chemical composition and antibacterial activity of the water leachates from previously deposited poly(2-oxazoline) films were tested using FTIR spectroscopy and the disk diffusion method, respectively. It was found that acetonitrile and propionitrile are the main neutral products created in the nitrogen discharge with 2-methyl-2-oxazoline and 2-ethyl-2-oxazoline monomers. The water leachates from deposited films do not exhibit any antibacterial activity. It was concluded that the antibacterial properties of POx films are due to their hydrophility. Full article
(This article belongs to the Special Issue Bioactive Materials with Antimicrobial Properties: 2nd Edition)
Show Figures

Figure 1

15 pages, 3034 KB  
Article
Experimental Study on Seismic Performance of Fire-Damaged Concrete-Filled Steel Tubular Column-Steel Beam Joints Under Low-Cycle Reversed Loading
by Fang Liu, Longxin Yuan, Tongyao Xu, Wenchao Miao, Ran Zheng and Yusong Mu
Buildings 2025, 15(17), 3169; https://doi.org/10.3390/buildings15173169 - 3 Sep 2025
Viewed by 265
Abstract
As a typical steel-concrete composite structure, Concrete-Filled Steel Tubular (CFST) structures utilize the synergistic mechanical advantages of steel and concrete, showing good performance in bearing capacity, ductility and fire resistance, and becoming important in modern buildings. However, CFST structures may suffer hazards like [...] Read more.
As a typical steel-concrete composite structure, Concrete-Filled Steel Tubular (CFST) structures utilize the synergistic mechanical advantages of steel and concrete, showing good performance in bearing capacity, ductility and fire resistance, and becoming important in modern buildings. However, CFST structures may suffer hazards like fire, which causes performance degradation affecting subsequent seismic behavior. To study seismic performance of fire-damaged CFST column-steel beam joints, low-cycle repeated loading experiments were carried out on 3 specimens: 2 exposed to different fire temperatures and 1 ambient temperature control. Tests examined hysteretic behavior, ductility, energy dissipation, bearing capacity and stiffness degradation under post-fire axial compression ratios. Results show fire-damaged specimens had similar ductile failure modes to the control. Despite high temperatures, they maintained relatively full hysteretic curves and strong energy dissipation, but with reduced bearing capacity, increased deformation, nonlinear ductility growth, and more significant degradation at higher temperatures. Full article
Show Figures

Figure 1

13 pages, 3614 KB  
Article
Purification of DZ125 Superalloy Reverts Through Droplet Electron-Beam Melting and Centrifugal Directional Solidification
by Xuanjing Zhang, Xinqi Wang, Lei Gao, Yidong Wu, Jianing Xue and Xidong Hui
Metals 2025, 15(9), 982; https://doi.org/10.3390/met15090982 - 2 Sep 2025
Viewed by 259
Abstract
The effective removal of oxygen (O), nitrogen (N), sulfur (S), and oxide inclusions from superalloy reverts is crucial for enhancing service life and achieving cost efficiency. However, refining DZ125 superalloy presents particular challenges, as conventional processes prove ineffective against hafnium (Hf) oxides. This [...] Read more.
The effective removal of oxygen (O), nitrogen (N), sulfur (S), and oxide inclusions from superalloy reverts is crucial for enhancing service life and achieving cost efficiency. However, refining DZ125 superalloy presents particular challenges, as conventional processes prove ineffective against hafnium (Hf) oxides. This study introduces an innovative purification method combining droplet electron-beam melting (EBM) with centrifugal directional solidification. Through this advanced EBM technique, we successfully produced ultrapure DZ125 superalloy with nitrogen content reduced below 5 ppm and total O + N + S content below 10 ppm. Most significantly, the process nearly eliminated Hf oxides from the reverts, meeting the stringent purity standards for DZ125 superalloy. We conducted a comprehensive analysis of inclusion morphology and composition in three distinct regions: the top slag layer, final solidification zone, and interior section of the ingot processed at varying EBM power levels. Our findings reveal that MC-type carbides at the slag–crucible interface were formed. There are HfO2, TaC, and Al2O3 in the final solidification zone, with notable encapsulation of HfO2 particulates within Al2O3 particles; and few HfO2 and Al2O3 inclusions exist in the ingot interior. It is also found that increasing EBM power from 36 kW to 46 kW significantly improved impurity removal efficiency, as evidenced by substantial reductions in both inclusion quantity and size. This enhanced purification stems from two primary mechanisms: (1) flotation of inclusions during EBM melting, facilitated by Marangoni convection, droplet stirring effects, and centrifugal forces generated by ingot rotation; and (2) decomposition of stable oxides enabled by the high-energy density characteristic of EBM and high-vacuum processing environment. This combined approach demonstrates superior capability in overcoming the limitations of traditional refining methods, particularly for challenging Hf oxide removal, while establishing an effective pathway for superalloy revert recycling. Full article
Show Figures

Figure 1

18 pages, 1955 KB  
Article
Dynamic Response Analysis of Steel Bridge Deck Pavement Using Analytical Methods
by Shuyao Yang, Zhigang Zhou, Yinghui Zhang and Kai Li
Coatings 2025, 15(9), 1019; https://doi.org/10.3390/coatings15091019 - 1 Sep 2025
Viewed by 242
Abstract
This study simplifies the local model of the orthotropic steel bridge deck pavement into a two-dimensional composite continuous beam. Based on the Modal Superposition Method and Duhamel Integration, an analytical solution for the dynamic response of the composite continuous beam under moving harmonic [...] Read more.
This study simplifies the local model of the orthotropic steel bridge deck pavement into a two-dimensional composite continuous beam. Based on the Modal Superposition Method and Duhamel Integration, an analytical solution for the dynamic response of the composite continuous beam under moving harmonic loads is derived. Using the UHPC (Ultra-High Performance Concrete)-SMA (Stone Mastic Asphalt) composite pavement as an example, the influence of structural parameters on the analytical results is investigated. The results demonstrate that the natural frequencies of the three-span continuous composite beam obtained from the analytical method exhibit a relative error of less than 10% compared to finite element modal analysis, indicating high consistency. Furthermore, the analytical solutions for four key indicators—deflection, bending stress, interlayer shear stress, and interlayer vertical tensile stress—closely align with finite element simulation results, confirming the reliability of the derived formula. Additionally, increasing the thickness of the steel plate, UHPC layer, or asphalt mixture pavement layer effectively reduces the peak values of all dynamic response indicators. Full article
(This article belongs to the Special Issue Novel Cleaner Materials for Pavements)
Show Figures

Figure 1

23 pages, 15884 KB  
Article
Controlling Residual Stress and Microstructure Distribution in an Invar Alloy Joint Fabricated by Oscillating Laser Welding
by Yi Jiang, Xing Liu, Suming Chen, Kun Zhou, Yanqiu Zhao and Xiaohong Zhan
Materials 2025, 18(17), 4099; https://doi.org/10.3390/ma18174099 - 1 Sep 2025
Viewed by 466
Abstract
The efficient and high-quality welding for joining Invar alloy parts is imperative for the fabrication of composite material forming molds. The residual stress distributions and microstructural evolution during oscillating welding of Invar alloy remain inadequately characterized in the current literature, necessitating further comprehensive [...] Read more.
The efficient and high-quality welding for joining Invar alloy parts is imperative for the fabrication of composite material forming molds. The residual stress distributions and microstructural evolution during oscillating welding of Invar alloy remain inadequately characterized in the current literature, necessitating further comprehensive investigation. In this paper, laser oscillating welding with circle mode is carried out for 5 mm thick plates of Invar alloy. A finite element model for the laser oscillation welding process of Invar alloy has been established. The numerical simulations and experimental methodologies are synthetically carried out to investigate the influence of oscillating parameters on temperature field, residual stress field, and microstructure characteristics. Furthermore, the microstructural evolution of laser oscillating-welded Invar alloy is elucidated by correlating it with the characteristic distribution of the temperature field. Simulation results showed that the residual stress significantly decreases under the action of the oscillating laser. The increasing of the oscillation frequency and amplitude results in a more uniform distribution of the residual stress, and the stress peak shows a downward trend. It is indicated that the oscillation of the beam resulted in the formation of numerous fragmented fine crystals within the weld seam. Consequently, the tensile strength and elongation of the oscillating welded joint exhibit respective enhancements of 15.0% and 36.6% compared to the non-oscillating condition. Full article
(This article belongs to the Special Issue Advanced Laser Welding Technology of Metallic Materials)
Show Figures

Figure 1

18 pages, 6285 KB  
Article
Physics-Informed Machine Learning for Mechanical Performance Prediction of ECC-Strengthened Reinforced Concrete Beams: An Empirical-Guided Framework
by Jinshan Yu, Yongchao Li, Haifeng Yang and Yongquan Zhang
Math. Comput. Appl. 2025, 30(5), 94; https://doi.org/10.3390/mca30050094 - 1 Sep 2025
Viewed by 335
Abstract
Predicting the mechanical performance of Engineered Cementitious Composite (ECC)-strengthened reinforced concrete (RC) beams is both meaningful and challenging. Although existing methods each have their advantages, traditional numerical simulations struggle to capture the complex micro-mechanical behavior of ECC, experimental approaches are costly, and data-driven [...] Read more.
Predicting the mechanical performance of Engineered Cementitious Composite (ECC)-strengthened reinforced concrete (RC) beams is both meaningful and challenging. Although existing methods each have their advantages, traditional numerical simulations struggle to capture the complex micro-mechanical behavior of ECC, experimental approaches are costly, and data-driven methods heavily depend on large, high-quality datasets. This study proposes a novel physics-informed machine learning framework that integrates domain-specific empirical knowledge and physical laws into a neural network architecture to enhance predictive accuracy and interpretability. The approach leverages outputs from physics-based simulations and experimental insights as weak supervision and incorporates physically consistent loss terms into the training process to guide the model toward scientifically valid solutions, even for unlabeled or sparse data regimes. While the proposed physics-informed model yields slightly lower accuracy than purely data-driven models (mean squared errors of 0.101 VS. 0.091 on the test set), it demonstrates superior physical consistency and significantly better generalization. This trade-off ensures more robust and scientifically reliable predictions, especially under limited data conditions. The results indicate that the empirical-guided framework is a practical and reliable tool for evaluating the structural performance of ECC-strengthened RC beams, supporting their design, retrofitting, and safety assessment. Full article
Show Figures

Figure 1

20 pages, 6556 KB  
Article
Comprehensive Analysis of Microstructure and Mechanical, Operational, and Technological Properties of AISI 321 Austenitic Stainless Steel at Electron Beam Freeform Fabrication
by Sergey V. Panin, Mengxu Qi, Dmitry Yu. Stepanov, Mikhail V. Burkov, Valery E. Rubtsov, Yury V. Kushnarev and Igor Yu. Litovchenko
Constr. Mater. 2025, 5(3), 62; https://doi.org/10.3390/constrmater5030062 - 30 Aug 2025
Viewed by 378
Abstract
The aim of this study was to investigate microstructure and the mechanical and operational characteristics of thick and thin walls 3D-built by electron beam additive manufacturing (EBAM). In addition, the milling parameters (rotation speed, feed, and cutting width) were optimized based on simultaneous [...] Read more.
The aim of this study was to investigate microstructure and the mechanical and operational characteristics of thick and thin walls 3D-built by electron beam additive manufacturing (EBAM). In addition, the milling parameters (rotation speed, feed, and cutting width) were optimized based on simultaneous assessments of Ra roughness on the machined surfaces and material removing rate values. The wall dimensions did not exert a noticeable effect on their chemical compositions, as compared with the original wires used for 3D printing. In comparison, the strength characteristics of the wrought steel (cold-rolled plate) were higher due to finer grains, with both ferrite content and dislocation density being greater as well. In the 3D building process, multiple thermal cycles gave rise to the formation of elongated columnar grains, reducing the strength characteristics. The corrosion rate of the wrought steel was almost twice those of the 3D-printed blanks because of the higher content of both ferrite and twins. By assessing the machinability of the EBAM-built blanks using the stationary milling machine, the cutting forces were comparable due to similar mechanical properties (including microhardness). To improve the removing rate values and reduce the cutting forces, it is recommended to enhance the cutting speeds while not increasing the feeds. For the semi-industrial milling machine, both linear multiple regression and nonlinear neural network models were applied. An integrated approach was proposed that rationally determined both additive manufacturing and post-processing parameters based on a combination of express assessment and analysis of the mechanical, operational, and technological characteristics of built products within a single laboratory complex. Full article
(This article belongs to the Special Issue Mineral and Metal Materials in Civil Engineering)
Show Figures

Figure 1

17 pages, 5136 KB  
Article
Laser Welding of Metal–Polymer–Metal Composites: Enhancing Energy Control
by Serguei P. Murzin and Heinz Palkowski
Processes 2025, 13(9), 2774; https://doi.org/10.3390/pr13092774 - 29 Aug 2025
Viewed by 352
Abstract
This study investigates two-sided pulsed-periodic laser welding of three-layer metal–polymer–metal (MPM) composite sheets composed of galvanized dual-phase steel (DPK 30/50+ZE) as outer layers and a polypropylene–polyethylene (PP–PE) core. Welding was performed using a Rofin StarWeld Performance pulsed Nd:YAG laser with controlled parameters: pulse [...] Read more.
This study investigates two-sided pulsed-periodic laser welding of three-layer metal–polymer–metal (MPM) composite sheets composed of galvanized dual-phase steel (DPK 30/50+ZE) as outer layers and a polypropylene–polyethylene (PP–PE) core. Welding was performed using a Rofin StarWeld Performance pulsed Nd:YAG laser with controlled parameters: pulse energy (30–32 J), duration (6–8 ms), and frequency (up to 1 Hz). High-quality welds were achieved with penetration depths reaching 70% of the outer metal layer thickness and minimal defects. Microscopic analysis revealed distinct fusion and heat-affected zones (HAZ) with no evidence of cracks or porosity, indicating stable thermal conditions. Mechanical testing showed that the welded joints attained a tensile strength of approximately 470 MPa, about 80% of the ultimate tensile strength of the base metal, with an average elongation of 0.6 mm. These results confirm the structural integrity of the joints. The observed weld morphology and microstructural features suggest that thermal conditions during welding significantly affect joint quality and HAZ formation. The study demonstrates that strong, defect-free joints can be produced using basic beam-shaping optics and outlines a pathway for further improvement through the integration of diffractive optical elements (DOEs) to enhance spatial-energy control in multilayer structures. Full article
(This article belongs to the Special Issue Progress in Laser-Assisted Manufacturing and Materials Processing)
Show Figures

Figure 1

16 pages, 1205 KB  
Article
Design and Simulation of Cross-Medium Two-Hop Relaying Free-Space Optical Communication System Based on Multiple Diversity and Multiplexing Technologies
by Min Guo, Pengxiang Wang and Yan Wu
Photonics 2025, 12(9), 867; https://doi.org/10.3390/photonics12090867 - 28 Aug 2025
Viewed by 371
Abstract
To address the issues of link mismatch and channel impairment in wireless optical communication across atmospheric-oceanic media, this paper proposes a two-hop relay transmission architecture based on the multiple-input multiple-output (MIMO)-enhanced multi-level hybrid multiplexing. The system implements decode-and-forward operations via maritime buoy/ship relays, [...] Read more.
To address the issues of link mismatch and channel impairment in wireless optical communication across atmospheric-oceanic media, this paper proposes a two-hop relay transmission architecture based on the multiple-input multiple-output (MIMO)-enhanced multi-level hybrid multiplexing. The system implements decode-and-forward operations via maritime buoy/ship relays, achieving physical layer isolation between atmospheric and oceanic channels. The transmitter employs coherent orthogonal frequency division multiplexing technology with quadrature amplitude modulation to achieve frequency division multiplexing of baseband signals, combines with orthogonal polarization modulation to generate polarization-multiplexed signal beams, and finally realizes multi-dimensional signal transmission through MIMO spatial diversity. To cope with cross-medium environmental interference, a composite channel model is established, which includes atmospheric turbulence (Gamma–Gamma model), rain attenuation, and oceanic chlorophyll absorption and scattering effects. Simulation results show that the multi-level hybrid multiplexing method can significantly improve the data transmission rate of the system. Since the system adopts three channels of polarization-state data, the data transmission rate is increased by 200%; the two-hop relay method can effectively improve the communication performance of cross-medium optical communication and fundamentally solve the problem of light transmission in cross-medium planes; the use of MIMO technology has a compensating effect on the impacts of both atmospheric and marine environments, and as the number of light beams increases, the system performance can be further improved. This research provides technical implementation schemes and reference data for the design of high-capacity optical communication systems across air-sea media. Full article
(This article belongs to the Special Issue Emerging Technologies for 6G Space Optical Communication Networks)
Show Figures

Figure 1

33 pages, 14514 KB  
Article
Research on Seismic Performance of Assembled Steel–Concrete Composite Joints in the Top Layer of Subway Station Under High Axial Compression Ratio
by Haoxuan Li, Jisheng Qiu, Leilei Li, Qing Qin, Yuqing Zhang, Guanghong Xiong and Shurui Wang
Buildings 2025, 15(17), 3083; https://doi.org/10.3390/buildings15173083 - 28 Aug 2025
Viewed by 481
Abstract
In view of the adverse effect of the failure mode of the “strong beam and weak column” at the top-layer joint of subway stations on structural seismic performance under high axial compression ratio, a novel assembled steel–concrete composite (ASCC) beam–column joint for the [...] Read more.
In view of the adverse effect of the failure mode of the “strong beam and weak column” at the top-layer joint of subway stations on structural seismic performance under high axial compression ratio, a novel assembled steel–concrete composite (ASCC) beam–column joint for the top-layer is proposed in this paper, and its seismic performance is studied through cyclic loading tests and finite element analysis. The findings indicate that, in comparison to the reinforced concrete joint, the yield bearing capacity, ultimate bearing capacity, and ductility of the ASCC joint exhibit increases of approximately 46%, 13% and 40%, respectively, demonstrating superior seismic performance and a “strong column and weak beam” failure mode of the ASCC joint. The impact of parameters including the steel tube thickness, length of the lower steel tube, high axial compression ratio, and bolt quantity on the seismic performance of ASCC joints was further examined using a validated finite element model. Parametric investigations reveal that the ASCC joints with greater steel tube thickness, longer length of lower steel tube, and more bolts demonstrate significant improvements in load-bearing capacity, lateral displacement resistance, and energy dissipation capacity. A value of 0.80 can be recommended as the new high axial compression ratio upper limit of the current code. It is suggested that under the proposed new high axial compression ratio upper limit, the steel tube thickness should be 1–2% of the column diameter, while the length of the lower steel tube should be 1/3 of the length of the lower column, with more bolts restricting the deformation of the extended plates as the design and construction of joints better suit practical engineering applications. Full article
(This article belongs to the Section Building Structures)
Show Figures

Figure 1

12 pages, 2645 KB  
Article
Inference of Indium Competition on the Optical Characteristics of GaAs/InxGa1−xAs Core–Shell Nanowires with Reverse Type-I Band Alignment
by Puning Wang, Huan Liu, Yubin Kang, Jilong Tang, Qun Hao and Zhipeng Wei
Materials 2025, 18(17), 4030; https://doi.org/10.3390/ma18174030 - 28 Aug 2025
Viewed by 381
Abstract
One-dimensional GaAs/InGaAs core–shell nanowires (NWs) with reverse type-I band alignment are promising candidates for next-generation optoelectronic devices. However, the influence of composition gradients and atomic interdiffusion at the core–shell interface on their photoluminescence (PL) behavior remains to be clarified. In this work, GaAs/In [...] Read more.
One-dimensional GaAs/InGaAs core–shell nanowires (NWs) with reverse type-I band alignment are promising candidates for next-generation optoelectronic devices. However, the influence of composition gradients and atomic interdiffusion at the core–shell interface on their photoluminescence (PL) behavior remains to be clarified. In this work, GaAs/InxGa1−xAs NW arrays with different indium (In) compositions were prepared using molecular beam epitaxy (MBE), and their band alignment and optical responses were systematically investigated through power and temperature-dependent PL spectra. The experiments reveal that variations in the In concentration gradient modify the characteristics of potential wells within the composition graded layer (CGL), as reflected by distinct PL emission features and thermal activation energies. At elevated temperatures, carrier escape from these wells is closely related to the observed PL saturation and emission quenching. These results provide experimental insight into the relationship between composition gradients, carrier dynamics, and emission properties in GaAs/InGaAs core–shell NWs, making them promising candidates for high-performance nanoscale optoelectronic device design. Full article
(This article belongs to the Section Optical and Photonic Materials)
Show Figures

Figure 1

14 pages, 693 KB  
Brief Report
Two Decades of Outcomes and Quality of Life Following Pencil Beam Scanning Proton Therapy in Children and Adolescents with Rhabdomyosarcoma
by Dominic Leiser, Tobias Dantonello, Reinhardt Krcek, Leonie Grawehr, Jochen Rössler, Gabriele Calaminus and Damien Charles Weber
Cancers 2025, 17(17), 2771; https://doi.org/10.3390/cancers17172771 - 26 Aug 2025
Viewed by 522
Abstract
Background: RMS is the most common soft tissue sarcoma in children. Pencil beam scanning proton therapy (PBS PT) enables highly conformal dose delivery with reduced exposure to surrounding healthy structures, making it particularly suited for RMS in critical anatomical regions. Long-term clinical outcome [...] Read more.
Background: RMS is the most common soft tissue sarcoma in children. Pencil beam scanning proton therapy (PBS PT) enables highly conformal dose delivery with reduced exposure to surrounding healthy structures, making it particularly suited for RMS in critical anatomical regions. Long-term clinical outcome data for this new radiation technique are scarce. Purpose: This study reports long-term outcomes and quality of life after PBS PT in children and adolescents with rhabdomyosarcoma (RMS). Methods and Materials: We retrospectively reviewed 114 children and adolescents with RMS (mostly embryonal, n = 100; 87.7%) treated between 2000 and 2020. Their median age was 4.6 years (range, 0.3–18). All received systemic chemotherapy according to prospective protocols. The median total PT dose delivered was 52 Gy (RBE; range, 41.4–64.8). Results: After a median follow-up period of 7.1 years (range, 0.3 to 17 years), we observed 26 failures overall; 21 (80.8%) occurred in-field. The 5-year local control and overall survival were 81.2% and 81%, respectively. The composite endpoint (non-ocular grade ≥3 toxicity- and failure-free survival) counting the first occurrence of any failure (local or distant), death, or non-ocular CTCAE v5.0 grade ≥3 toxicity was 77.3% at 5 years. At the start of PT, parents and children reported a quality of life significantly worse than that of a German normative group, but during the follow-up period, their scores improved to normal values in nearly all domains within two years. Conclusions: Our two decades of experience with PBS PT provide data that reflect good local control rates and minimal late non-ocular grade 3 toxicity. We also show that quality of life returned to normal scores in nearly all domains within 2 years. Children and adolescents with RMS seem to benefit from PBS PT in terms of toxicity and quality of life, but further prospective, multi-institutional comparative trials are needed. Full article
Show Figures

Figure 1

Back to TopTop