Sign in to use this feature.

Years

Between: -

Subjects

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Journals

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Article Types

Countries / Regions

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Search Results (3,088)

Search Parameters:
Keywords = composite catalysts

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
22 pages, 3343 KB  
Article
Experimental Investigation of Nickel-Based Co-Catalysts for Photoelectrochemical Water Splitting Using Hematite and Cupric Oxide Nanostructured Electrodes
by Maria Aurora Mancuso, Rossana Giaquinta, Carmine Arnese, Patrizia Frontera, Anastasia Macario, Angela Malara and Stefano Trocino
Nanomaterials 2025, 15(20), 1551; https://doi.org/10.3390/nano15201551 - 11 Oct 2025
Viewed by 171
Abstract
Growing interest in sustainable hydrogen production has brought renewed attention to photoelectrochemical (PEC) water splitting as a promising route for direct solar-to-chemical energy conversion. This study explores how integrating hematite (α-Fe2O3) and cupric oxide (CuO) photoelectrodes with a series [...] Read more.
Growing interest in sustainable hydrogen production has brought renewed attention to photoelectrochemical (PEC) water splitting as a promising route for direct solar-to-chemical energy conversion. This study explores how integrating hematite (α-Fe2O3) and cupric oxide (CuO) photoelectrodes with a series of nickel-based co-catalysts can improve photoelectrochemical activity. Photoanodic (NiOx, NiFeOx, NiWO4) and photocathodic (Ni, NiCu, NiMo) co-catalysts were synthesized via co-precipitation and mechanochemical methods and characterized through X-ray Diffraction (XRD), X-ray Fluorescence (XRF), Transmission Electron Microscopy–Energy Dispersive X-ray Spectroscopy (TEM-EDX), Scanning Electron Microscopy–Energy Dispersive X-ray Spectroscopy (SEM-EDX), X-ray photoelectron spectroscopy (XPS) and Brunauer–Emmett–Teller (BET) gas-adsorption analyses to clarify their crystallographic, morphological, and compositional properties, as well as their surface chemistry and textural properties (surface area and porosity). Electrochemical tests under 1 SUN illumination showed that NiOx significantly improves the photocurrent of hematite photoanodes. Among the cathodic co-catalysts, NiMo demonstrated the best performance when combined with CuO photocathodes. For both photoelectrodes, an optimal co-catalyst loading was identified, beyond which performance declined due to potential charge transfer limitations and light attenuation. These findings highlight the critical role of co-catalyst composition and loading in optimizing the efficiency of PEC systems based on earth-abundant materials, offering a pathway toward scalable and cost-effective hydrogen production. Full article
(This article belongs to the Special Issue Hydrogen Production and Evolution Based on Nanocatalysts)
Show Figures

Graphical abstract

38 pages, 3007 KB  
Review
Calcium Oxide Nanoparticles as Green Nanocatalysts in Multicomponent Heterocyclic Synthesis: Mechanisms, Metrics, and Future Directions
by Surtipal Sharma, Ruchi Bharti, Monika Verma, Renu Sharma, Adília Januário Charmier and Manas Sutradhar
Catalysts 2025, 15(10), 970; https://doi.org/10.3390/catal15100970 (registering DOI) - 11 Oct 2025
Viewed by 144
Abstract
The growing demand for sustainable and efficient synthetic methodologies has brought nanocatalysis to the forefront of modern organic chemistry, particularly in the construction of heterocyclic compounds through multicomponent reactions (MCRs). Among various nanocatalysts, calcium oxide nanoparticles (CaO NPs) have gained significant attention because [...] Read more.
The growing demand for sustainable and efficient synthetic methodologies has brought nanocatalysis to the forefront of modern organic chemistry, particularly in the construction of heterocyclic compounds through multicomponent reactions (MCRs). Among various nanocatalysts, calcium oxide nanoparticles (CaO NPs) have gained significant attention because of their strong basicity, thermal stability, low toxicity, and cost-effectiveness. This review provides a comprehensive account of the recent strategies using CaO NPs as heterogeneous catalysts for the green synthesis of nitrogen- and oxygen-containing heterocycles through MCRs. Key reactions such as Biginelli, Hantzsch, and pyran annulations are discussed in detail, with emphasis on atom economy, reaction conditions, product yields, and catalyst reusability. In many instances, CaO NPs have enabled solvent-free or aqueous protocols with high efficiency and reduced reaction times, often under mild conditions. Mechanistic aspects are analyzed to highlight the catalytic role of surface basic sites in facilitating condensation and cyclization steps. The performance of CaO NPs is also compared with other oxide nanocatalysts, showcasing their benefits from green metrics evaluation like E-factor and turnover frequency. Despite significant progress, challenges remain in areas such as asymmetric catalysis, industrial scalability, and catalytic stability under continuous use. To address these gaps, future directions involving doped CaO nanomaterials, hybrid composites, and mechanochemical approaches are proposed. This review aims to provide a focused and critical perspective on CaO NP-catalyzed MCRs, offering insights that may guide further innovations in sustainable heterocyclic synthesis. Full article
Show Figures

Figure 1

19 pages, 11019 KB  
Article
Preparation and Enhanced Catalytic Performance of a Polyhedral BiVO4-Nanoparticle-Modified ZnO Flower-like Nanorod Structure Composite Material
by Yuanyuan Lv, Neng Li, Jin Liu, Quanhui Liu, Xueqi Hui and Qiang Li
Nanomaterials 2025, 15(19), 1536; https://doi.org/10.3390/nano15191536 - 9 Oct 2025
Viewed by 169
Abstract
Organic pollutants pose a significant threat to both the ecological environment and human health. In this study, BiVO4@ZnO heterojunction composites were synthesized via a two-step hydrothermal method. The incorporation of polyhedral BiVO4 onto the flower-like structure of ZnO effectively enhanced [...] Read more.
Organic pollutants pose a significant threat to both the ecological environment and human health. In this study, BiVO4@ZnO heterojunction composites were synthesized via a two-step hydrothermal method. The incorporation of polyhedral BiVO4 onto the flower-like structure of ZnO effectively enhanced the photocatalytic performance of the composite. Compared with ZnO flower-like nanorods, the BiVO4@ZnO heterojunction composite photocatalysts achieved degradation efficiencies of 93.18% (k = 0.09063) and 89.64% (k = 0.007661) for methylene blue (MB) within 30 min under ultraviolet and visible light irradiation, respectively. The photocatalytic activity of the BiVO4@ZnO composites was also evaluated against various organic dyes, including rhodamine B (RhB), Congo red (CR), methyl orange (MO), and methylene blue (MB). Under ultraviolet light, the catalysts showed particularly high activity toward MB and CR. The enhanced photocatalytic performance can be attributed to two main factors: firstly, the heterojunction facilitates the separation of photogenerated electron-hole pairs, thereby improving photocatalytic efficiency; secondly, the composite exhibits a broadened and enhanced light absorption range. Furthermore, the BiVO4@ZnO heterojunction composites demonstrate excellent cyclic catalytic stability and structural integrity. This study offers a clean and efficient strategy for the photocatalytic degradation of aqueous organic pollutants. Full article
Show Figures

Figure 1

28 pages, 8209 KB  
Article
Photocatalytic Enhancement of Anatase Supported on Mesoporous Modified Silica for the Removal of Carbamazepine
by Guillermo Cruz-Quesada, Beatriz Rosales-Reina, Inmaculada Velo-Gala, María del Pilar Fernández-Poyatos, Miguel A. Álvarez, Cristian García-Ruiz, María Victoria López-Ramón and Julián J. Garrido
Nanomaterials 2025, 15(19), 1533; https://doi.org/10.3390/nano15191533 - 8 Oct 2025
Viewed by 281
Abstract
TiO2 is the most used material for the photocatalytic removal of organic pollutants in aqueous media. TiO2, specifically its anatase phase, is well-known for its great performance under UV irradiation, high chemical stability, low cost and non-toxicity. Nevertheless, TiO2 [...] Read more.
TiO2 is the most used material for the photocatalytic removal of organic pollutants in aqueous media. TiO2, specifically its anatase phase, is well-known for its great performance under UV irradiation, high chemical stability, low cost and non-toxicity. Nevertheless, TiO2 presents two main drawbacks: its limited absorption of the visible spectrum; and its relatively low specific surface area and pore volume. Regarding the latter, several works in the literature have addressed the issue by developing new synthesis approaches in which anatase is dispersed and supported on the surface of porous materials. In the present work, two series of materials have been prepared where anatase has been supported on mesoporous silica (MSTiR%) in situ through a hydrothermal synthesis approach, where, in addition to using tetraethoxysilane (TEOS) as a silicon precursor, three organotriethoxysilanes [RTEOS, where R = methyl (M), propyl (P) or phenyl (Ph)] were used at a RTEOS:TEOS molar percentage of 10 and 30%. The materials were thoroughly characterized by several techniques to determine their morphological, textural, chemical, and UV-vis light absorption properties and then the most promising materials were used as photocatalysts in the photodegradation of the emerging contaminant and antiepileptic carbamazepine (CBZ) under UV irradiation. The materials synthesized using 10% molar percentage of RTEOS (MSTiR10) were able to almost completely degrade (~95%), 1 mg L−1 of CBZ after 1 h of irradiation using a 275 nm LED and 0.5 g L−1 of catalyst dose. Therefore, this new synthesis approach has proven useful to develop photoactive TiO2 composites with enhanced textural properties. Full article
Show Figures

Figure 1

17 pages, 2525 KB  
Article
Dry Reforming of Methane Using Gd-promoted Ni/SBA-16 Catalyst: Structure, Activity and Process Optimization with Response Surface Methodology
by Salma A. Al-Zahrani, Mohammed F. Alotibi, Ahmed I. Osman, Ahmed A. Bhran, Maha Awjan Alreshidi, Ahmed Al Otaibi, Hessah Difallah A. Al-Enazy, Nuha Othman S. Alsaif and Ahmed S. Al-Fatesh
Nanomaterials 2025, 15(19), 1527; https://doi.org/10.3390/nano15191527 - 6 Oct 2025
Viewed by 333
Abstract
This work examines the effect of gadolinium (Gd) promotion on nickel-based SBA-16 catalysts for the dry reforming of methane (DRM), with the goal of improving syngas production by optimizing catalyst composition and operating conditions. Catalysts with varying Gd loadings (0.5–3 wt.%) were synthesised [...] Read more.
This work examines the effect of gadolinium (Gd) promotion on nickel-based SBA-16 catalysts for the dry reforming of methane (DRM), with the goal of improving syngas production by optimizing catalyst composition and operating conditions. Catalysts with varying Gd loadings (0.5–3 wt.%) were synthesised using co-impregnation. XRD, N2 physisorption, FTIR, XPS, and H2-TPR–CO2-TPD–H2-TPR were used to examine the structural features, textural properties, surface composition, and redox behaviour of the catalysts. XPS indicated formation of enhanced metal–support interactions, while initial and post-treatment H2–TPR analyses showed that moderate Gd loadings (1–2 wt.%) maintained a balanced distribution of reducible Ni species. The catalysts were tested for DRM performance at 800 °C and a gas hourly space velocity (GHSV) of 42,000 mL g−1 h−1. 1–2 wt.% Gd-promoted catalysts achieved the highest H2 (~67%) and CO yield (~76%). Response surface methodology (RSM) was used to identify optimal reaction conditions for maximum H2 yield. RSM predicted 848.9 °C temperature, 31,283 mL g−1 h−1 GHSV, and a CH4/CO2 ratio of 0.61 as optimal, predicting a H2 yield of 96.64%, which closely matched the experimental value of H2 yield (96.66%). The 5Ni–2Gd/SBA-16 catalyst exhibited minimal coke deposition, primarily of a graphitic character, as evidenced by TGA–DSC and Raman analyses. These results demonstrate the synergy between catalyst design and process optimization in maximizing DRM efficiency. Full article
Show Figures

Figure 1

13 pages, 5074 KB  
Article
Interface Engineering of ZnO-Decorated ZnFe2O4 for Enhanced CO2 Reduction Performance
by Congyu Cai, Yufeng Sun, Yulan Xiao, Weiye Zheng, Minhui Pan and Weiwei Wang
Molecules 2025, 30(19), 3980; https://doi.org/10.3390/molecules30193980 - 4 Oct 2025
Viewed by 261
Abstract
Photocatalytic conversion of CO2 to hydrocarbon fuels offers a promising pathway for sustainable renewable energy production. In this study, a ZnO/ZnFe2O4 composite featuring a Type-II heterojunction was synthesized through a facile one-step hydrothermal approach, significantly enhancing visible-light-driven CO2 [...] Read more.
Photocatalytic conversion of CO2 to hydrocarbon fuels offers a promising pathway for sustainable renewable energy production. In this study, a ZnO/ZnFe2O4 composite featuring a Type-II heterojunction was synthesized through a facile one-step hydrothermal approach, significantly enhancing visible-light-driven CO2 reduction activity. The optimized catalyst exhibits CH4 and CO production rates that are 3.3 and 4.9 times higher, respectively, than those of pristine ZnFe2O4 over 6 h. This significant enhancement in photocatalytic performance is attributed to the Type-II band alignment, which not only broadens light absorption but also greatly promotes efficient charge separation. It is corroborated by a series of experimental evidence: a two-fold enhancement in photocurrent response, a 15.1% reduction in PL intensity, decreased electrochemical impedance, and an extended charge carrier lifetime. Furthermore, in situ FTIR spectroscopy confirms that the heterojunction facilitates the formation of key intermediates (specifically *COOH and HCOO). This study highlights the importance of precise interface design based on a Type-II heterojunction in heterostructured composite catalysts and provides mechanistic insights for developing highly efficient CO2 photoreduction systems. Full article
(This article belongs to the Section Materials Chemistry)
Show Figures

Graphical abstract

15 pages, 9213 KB  
Article
Facile Engineering of Pt-Rh Nanoparticles over Carbon for Composition-Dependent Activity and Durability Toward Glycerol Electrooxidation
by Marta Venancia França Rodrigues, Wemerson Daniel Correia dos Santos, Fellipe dos Santos Pereira, Augusto César Azevedo Silva, Liying Liu, Mikele Candida Sant’Anna, Eliane D’Elia, Roberto Batista de Lima and Marco Aurélio Suller Garcia
Hydrogen 2025, 6(4), 78; https://doi.org/10.3390/hydrogen6040078 - 3 Oct 2025
Viewed by 243
Abstract
In this study, we report the synthesis, characterization, and performance evaluation of a series of bimetallic PtxRhy/C electrocatalysts with systematically varied Rh content for glycerol electrooxidation in acidic and alkaline media. The catalysts were prepared via a polyol reduction [...] Read more.
In this study, we report the synthesis, characterization, and performance evaluation of a series of bimetallic PtxRhy/C electrocatalysts with systematically varied Rh content for glycerol electrooxidation in acidic and alkaline media. The catalysts were prepared via a polyol reduction method using ethylene glycol as both a solvent and reducing agent, with prior functionalization of Vulcan XC-72 carbon to enhance nanoparticles (NPs) dispersion. High-resolution transmission electron microscopy (HRTEM), energy-dispersive X-ray spectroscopy (EDS), and X-ray diffraction (XRD) analyses indicated the spatial co-location of Rh atoms alongside Pt atoms. Electrochemical studies revealed strong composition-dependent behavior, with Pt95Rh5/C exhibiting the highest activity toward glycerol oxidation. To elucidate the origin of raised results, density functional tight binding (DFTB) simulations were conducted to model atomic distributions and evaluate energetic parameters. The results showed that Rh atoms preferentially segregate to the surface at higher concentrations due to their lower surface energy, while at low concentrations, they remain confined within the Pt lattice. Among the series, Pt95Rh5/C exhibited a distinctively higher excess energy and less favorable binding energy, rationalizing its lower thermodynamic stability. These findings reveal a clear trade-off between catalytic activity and structural durability, highlighting the critical role of the composition and nanoscale architecture in optimizing Pt-based electrocatalysts for alcohol oxidation reactions. Full article
Show Figures

Figure 1

40 pages, 3691 KB  
Review
Catalytic Biomass Conversion into Fuels and Materials: Sustainable Technologies and Applications
by Francesco Nocito, Diana Daraselia and Angela Dibenedetto
Catalysts 2025, 15(10), 948; https://doi.org/10.3390/catal15100948 - 2 Oct 2025
Viewed by 766
Abstract
The production of fuels and materials from residual biomass through sustainable processes is one of the most challenging goals for science and technology. Such development is highly ambitious because of the complex composition of the feedstock (lipidic and lignocellulosic). To succeed, biomass conversion [...] Read more.
The production of fuels and materials from residual biomass through sustainable processes is one of the most challenging goals for science and technology. Such development is highly ambitious because of the complex composition of the feedstock (lipidic and lignocellulosic). To succeed, biomass conversion technologies must be able to compete economically with technologies based on fossil carbon. The use of specific and more available catalysts combined with improved reaction conditions can significantly reduce overall industrial costs and maximize efficiency. The synthesis and application of optimized catalytic systems are essential to modulate their activity, ensuring at the same time a high resistance to deactivation. For this reason, the study of multifunctional systems is gaining increasing interest alongside new industrial technologies. Here, we review significant recent advances in sustainable catalytic biomass conversion using emerging heterogeneous catalysts. Full article
Show Figures

Graphical abstract

25 pages, 6876 KB  
Article
Sustainable Synthesis of CoFe2O4/Fe2O3 Catalyst for Hydrogen Generation from Sodium Borohydride Hydrolysis
by Lucas Tonetti Teixeira, Marcos Medeiros, Liying Liu, Vinicius Novaes Park, Célio Valente-Rodriguez, Sonia Letichevsky, Humberto Vieira Fajardo, Rogério Navarro Correia de Siqueira, Marcelo Eduardo Huguenin Maia da Costa and Amilton Barbosa Botelho Junior
Catalysts 2025, 15(10), 943; https://doi.org/10.3390/catal15100943 - 1 Oct 2025
Viewed by 493
Abstract
Hydrogen has been explored as a greener alternative for greenhouse gas emissions reduction. Sodium borohydride (NaBH4) is a favorable hydrogen carrier due to its high hydrogen content, safe handling, and rapid hydrogen release. This work presents a novel synthesis of the [...] Read more.
Hydrogen has been explored as a greener alternative for greenhouse gas emissions reduction. Sodium borohydride (NaBH4) is a favorable hydrogen carrier due to its high hydrogen content, safe handling, and rapid hydrogen release. This work presents a novel synthesis of the catalyst CoFe2O4/Fe2O3 using nanocellulose fibers (TCNF) as reactive templates for metal adsorption and subsequent calcination. The resulting material was tested for H2 production from basic NaBH4 aqueous solutions (10–55 °C). The catalyst’s composition is 74.8 wt% CoFe2O4, 25 wt% Fe2O3, and 0.2 wt% Fe2(SO4)3 with agglomerated spheroidal particles (15–20 nm) and homogeneous Fe and Co distribution. The catalyst produced 1785 mL of H2 in 15 min at 25 °C (50 mg catalyst, 4.0% NaBH4, and 2.5 wt% NaOH), close to the stoichiometric maximum (2086 mL). The maximum H2 generation rate (HGR) reached 3.55 L min−1 gcat−1 at 40 °C. Activation energies were determined using empirical (38.4 ± 5.3 kJ mol−1) and Langmuir–Hinshelwood (L–H) models (42.2 ± 5.8 kJ mol−1), consistent with values for other Co-ferrite catalysts. Kinetic data fitted better to the L–H model, suggesting that boron complex adsorption precedes H2 evolution. Full article
Show Figures

Graphical abstract

46 pages, 6024 KB  
Review
Recent Advances in Transition Metal Selenide-Based Catalysts for Organic Pollutant Degradation by Advanced Oxidation Processes
by Donatos Manos and Ioannis Konstantinou
Catalysts 2025, 15(10), 938; https://doi.org/10.3390/catal15100938 - 1 Oct 2025
Viewed by 492
Abstract
In recent years, one of the major problems facing humanity has been the contamination of the environment by various organic pollutants, with some of them exhibiting environmental persistence or pseudo-persistence. For this reason, it is necessary today, more than ever, to find new [...] Read more.
In recent years, one of the major problems facing humanity has been the contamination of the environment by various organic pollutants, with some of them exhibiting environmental persistence or pseudo-persistence. For this reason, it is necessary today, more than ever, to find new and effective methods for degrading these persistent pollutants. Transition metal selenides (TMSes) have emerged as a versatile and promising class of catalysts for the degradation of organic pollutants through various advanced oxidation processes (AOPs). The widespread use of these materials lies in the desirable characteristics they offer, such as unique electronic structures, narrow band gaps, high electrical conductivity, and multi-valent redox behavior. This review comprehensively examines recent progress in the design, synthesis, and application of these TMSes—including both single- and composite systems, such as TMSes/g-C3N4, TMSes/TiO2, and heterojunctions. The catalytic performance of these systems is being highlighted, regarding the degradation of organic pollutants such as dyes, pharmaceuticals, antibiotics, personal care products, etc. Further analysis of the mechanistic insights, structure–activity relationships, and operational parameter effects are critically discussed. Emerging trends, such as hybrid AOPs combining photocatalysis with PMS or electro-activation, and the challenges of stability, scalability, and real wastewater applicability are explored in depth. Finally, future directions emphasize the integration of multifunctional activation methods for the degradation of organic pollutants. This review aims to provide a comprehensive analysis and pave the way for the utilization of TMSe catalysts in sustainable and efficient wastewater remediation technologies. Full article
(This article belongs to the Collection Catalysis in Advanced Oxidation Processes for Pollution Control)
Show Figures

Graphical abstract

34 pages, 4202 KB  
Review
Progress and Challenges in the Electrocatalytic Reduction of Nitrate to Ammonia
by Shupeng Yin and Yinglong Wang
Molecules 2025, 30(19), 3910; https://doi.org/10.3390/molecules30193910 - 28 Sep 2025
Viewed by 434
Abstract
The escalating problem of nitrate pollution, coupled with the environmental burden of the Haber-Bosch process, has spurred intense interest in the electrocatalytic nitrate reduction reaction (eNO3RR) as a sustainable route for simultaneous wastewater treatment and ammonia production. However, the efficiency and [...] Read more.
The escalating problem of nitrate pollution, coupled with the environmental burden of the Haber-Bosch process, has spurred intense interest in the electrocatalytic nitrate reduction reaction (eNO3RR) as a sustainable route for simultaneous wastewater treatment and ammonia production. However, the efficiency and selectivity of eNO3RR are hampered by the multi-step proton-coupled electron transfer process and the competing hydrogen evolution reaction. This review provides a comprehensive and critical overview of recent advances in understanding and designing catalysts for eNO3RR. We begin by elucidating the fundamental mechanisms and key reaction pathways, followed by a discussion on how critical parameters (e.g., electrolyte microenvironment, applied potential, reactor design) dictate performance. Further discussion of recent advances in catalysts, including single-metal catalysts, alloy catalysts, transition metal compounds, single-atom catalysts, carbon-based non-metal catalysts, and composite catalysts, highlights their significant roles in enhancing both the efficiency and selectivity. A distinctive feature of this review is its consistent critical assessment of catalysts through the dual lenses of practicality and sustainable development. Finally, we outline prevailing challenges and propose future research directions aimed at developing scalable and commercially viable electrocatalytic systems for green nitrogen management. Full article
Show Figures

Figure 1

14 pages, 5010 KB  
Article
Block Copolymer-Templated Synthesis of Fe–Ni–Co-Modified Nanoporous Alumina Films
by Chinemerem Ozoude, Vasanta Gurung, Khalil D. Omotosho, Elena V. Shevchenko and Diana Berman
Appl. Sci. 2025, 15(19), 10473; https://doi.org/10.3390/app151910473 - 27 Sep 2025
Viewed by 337
Abstract
Despite intense interest in the catalytic potential of transition metal oxide heterostructures, originating from their large surface area and tunable chemistry, the fabrication of well-defined multicomponent oxide coatings with controlled architectures remains challenging. Here, we demonstrate a simple and effective swelling-assisted sequential infiltration [...] Read more.
Despite intense interest in the catalytic potential of transition metal oxide heterostructures, originating from their large surface area and tunable chemistry, the fabrication of well-defined multicomponent oxide coatings with controlled architectures remains challenging. Here, we demonstrate a simple and effective swelling-assisted sequential infiltration synthesis (SIS) strategy to fabricate hierarchically porous multicomponent metal-oxide electrocatalysts with tunable bimetallic composition. A combination of solution-based infiltration (SBI) of transition metals, iron (Fe), nickel (Ni), and cobalt (Co), into a block copolymer (PS73-b-P4VP28) template, followed by vapor-phase infiltration of alumina using sequential infiltration synthesis (SIS), was employed to synthesize porous, robust, conformal and transparent multicomponent metal-oxide coatings like Fe/AlOx, Fe+Ni/AlOx, and Fe+Co/AlOx. Electrochemical assessments for the oxygen evolution reaction (OER) in a 0.1 M KOH electrolyte demonstrated that the Fe+Ni/AlOx composite exhibited markedly superior catalytic activity, achieving an impressive onset potential of 1.41 V and a peak current density of 3.29 mA/cm2. This superior activity reflects the well-known synergistic effect of alloying transition metals with a trace of Fe, which facilitates OER kinetics. Overall, our approach offers a versatile and scalable path towards the design of stable and efficient catalysts with tunable nanostructures, opening new possibilities for a wide range of electrochemical energy applications. Full article
Show Figures

Figure 1

29 pages, 8599 KB  
Review
Strategic Design of Ethanol Oxidation Catalysts: From Active Metal Selection to Mechanistic Insights and Performance Engineering
by Di Liu, Qingqing Lv, Dahai Zheng, Chenhui Zhou, Shuchang Chen, Kaiyang Zhang, Suqin Han, Hui-Zi Huang, Yufeng Zhang and Liwei Chen
Nanomaterials 2025, 15(19), 1477; https://doi.org/10.3390/nano15191477 - 26 Sep 2025
Viewed by 541
Abstract
The ethanol oxidation reaction (EOR) is a key process for direct ethanol fuel cells (DEFCs), offering a high-energy-density and carbon-neutral pathway for sustainable energy conversion. However, the practical implementation of DEFCs is significantly hindered by the EOR due to its sluggish kinetics, complex [...] Read more.
The ethanol oxidation reaction (EOR) is a key process for direct ethanol fuel cells (DEFCs), offering a high-energy-density and carbon-neutral pathway for sustainable energy conversion. However, the practical implementation of DEFCs is significantly hindered by the EOR due to its sluggish kinetics, complex multi-electron transfer pathways, and severe catalyst poisoning by carbonaceous intermediates. This review provides a comprehensive and mechanistically grounded overview of recent advances in EOR electrocatalysts, with a particular emphasis on the structure–activity relationships of noble metals (Pt, Pd, Rh, Au) and non-noble metals. The effects of catalyst composition, surface structure, and electronic configuration on C–C bond cleavage efficiency, product selectivity (C1 vs. C2), and CO tolerance are critically evaluated. Special attention is given to the mechanistic distinctions among different metal systems, highlighting how these factors influence reaction pathways and catalytic behavior. Key performance-enhancing strategies—including alloying, nanostructuring, surface defect engineering, and support interactions—are systematically discussed, with mechanistic insights supported by in situ characterization and theoretical modeling. Finally, this review identifies major challenges and emerging opportunities, outlining rational design principles for next-generation EOR catalysts that integrate high activity, durability, and scalability for real-world DEFC applications. Full article
(This article belongs to the Section Energy and Catalysis)
Show Figures

Graphical abstract

13 pages, 1662 KB  
Article
Loading of Ni2+ in Coal by Hydrothermal Treatment to Conduct Catalytic Pyrolysis Under the Context of In Situ Pyrolysis
by Li Xiao, Xiaodan Wu, Youwu Li, Ying Tang, Yue Zhang, Shixin Jiang, Jingyun Cui, Chao Wang and Zhibing Chang
Processes 2025, 13(10), 3086; https://doi.org/10.3390/pr13103086 - 26 Sep 2025
Viewed by 282
Abstract
Identifying suitable catalyst types and efficient loading methods remains a key research challenge for implementing the in situ catalytic pyrolysis of tar-rich coal. This study investigated a lignite and a gas coal, employing NiCl2 solution for Ni2+ catalyst loading via room-temperature [...] Read more.
Identifying suitable catalyst types and efficient loading methods remains a key research challenge for implementing the in situ catalytic pyrolysis of tar-rich coal. This study investigated a lignite and a gas coal, employing NiCl2 solution for Ni2+ catalyst loading via room-temperature impregnation and hydrothermal treatment on coal particles sized 6–13 mm. The efficiency of Ni2+ loading through hydrothermal treatment and the characteristics of pyrolysis product distribution and composition before and after treatment were examined. The results indicated that after NiCl2 solution impregnation, the Ni2+ content in lignite increased from nearly undetectable to over 20 mg/g, whereas in gas coal, it only rose to less than 2 mg/g. Ion exchange is hypothesized to be a primary pathway for Ni2+ loading into coal. After hydrothermal treatment at 170 °C, the Ni2+ loadings in lignite and gas coal reached 33.6 and 1.45 mg/g, respectively. The loaded Ni2+ exhibited distinct catalytic effects on the two coals. For lignite, Ni2+ catalyzed the deoxygenation of oxygen-containing compounds and the aromatization of aliphatic hydrocarbons. For gas coal, hydrothermal treatment with NiCl2 solution at 170 and 220 °C promoted hydrogen transfer reactions, resulting in an increase in tar yield from 10.67% to 11.30% and 11.64%, respectively. Also, the H2 yield decreased, accompanied by a decrease in aromatic hydrocarbons and an increase in phenolic compounds within the tar. Full article
(This article belongs to the Section Chemical Processes and Systems)
Show Figures

Figure 1

14 pages, 2557 KB  
Article
Composite Material Formation Based on Biochar and Nickel (II)-Copper (II) Ferrites
by Nina P. Shabelskaya, Alexandr V. Vyaltsev, Neonilla G. Sundukova, Vera A. Baranova, Sergej I. Sulima, Elena V. Sulima, Yulia A. Gaidukova, Asatullo M. Radzhbov, Elena V. Vasileva and Elena A. Yakovenko
Molecules 2025, 30(19), 3900; https://doi.org/10.3390/molecules30193900 - 26 Sep 2025
Viewed by 249
Abstract
This paper studies the formation process of a composite material based on an organic substance, biochar from sunflower husks, and an inorganic substance, nickel (II)-copper (II) ferrites of the composition CuxNi1−xFe2O4 (x = 0.0; 0.5; 1.0). [...] Read more.
This paper studies the formation process of a composite material based on an organic substance, biochar from sunflower husks, and an inorganic substance, nickel (II)-copper (II) ferrites of the composition CuxNi1−xFe2O4 (x = 0.0; 0.5; 1.0). The obtained materials were characterized by X-ray phase analysis, scanning electron microscopy, and FTIR spectroscopy. It is shown that when replacing copper (II) cations with nickel (II) cations, the average parameters and volume of the unit cell gradually decrease, and the cation–anion distances in both the tetrahedral and octahedral spinel grids also decrease with regularity. The oxide materials were found to form a film on the surface of biochar, repeating its porous structure. The obtained materials exhibit high catalytic activity in the methyl orange decomposition reaction under the action of hydrogen peroxide in an acidic medium; the degradation of methyl orange in an aqueous solution occurs 30 min after the start of the reaction. This result may be associated with the formation of the Fenton system during the oxidation–reduction process. A significant increase in the reaction rate in the system containing mixed nickel–copper ferrite as a catalyst may be associated with the formation of a more defective structure due to the Jahn–Teller effect manifestation, which creates additional active centers on the catalyst surface. Full article
Show Figures

Figure 1

Back to TopTop