Sign in to use this feature.

Years

Between: -

Subjects

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Journals

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Article Types

Countries / Regions

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Search Results (1,718)

Search Parameters:
Keywords = composite joint

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
12 pages, 9239 KB  
Article
Effects of Motion in Ultrashort Echo Time Quantitative Susceptibility Mapping for Musculoskeletal Imaging
by Sam Sedaghat, Jinil Park, Eddie Fu, Fang Liu, Youngkyoo Jung and Hyungseok Jang
J. Imaging 2025, 11(10), 347; https://doi.org/10.3390/jimaging11100347 - 6 Oct 2025
Abstract
Quantitative susceptibility mapping (QSM) is a powerful magnetic resonance imaging (MRI) technique for assessing tissue composition in the human body. For imaging short-T2 tissues in the musculoskeletal (MSK) system, ultrashort echo time (UTE) imaging plays a key role. However, UTE-based QSM (UTE-QSM) often [...] Read more.
Quantitative susceptibility mapping (QSM) is a powerful magnetic resonance imaging (MRI) technique for assessing tissue composition in the human body. For imaging short-T2 tissues in the musculoskeletal (MSK) system, ultrashort echo time (UTE) imaging plays a key role. However, UTE-based QSM (UTE-QSM) often involves repeated acquisitions, making it vulnerable to inter-scan motion. In this study, we investigate the effects of motion on UTE-QSM and introduce strategies to reduce motion-induced artifacts. Eight healthy male volunteers underwent UTE-QSM imaging of the knee joint, while an additional seven participated in imaging of the ankle joint. UTE-QSM was conducted using multiple echo acquisitions, including both UTE and gradient-recalled echoes, and processed using the iterative decomposition of water and fat with echo asymmetry and least-squares estimation (IDEAL) and morphology-enabled dipole inversion (MEDI) algorithms. To assess the impact of motion, datasets were reconstructed both with and without motion correction. Furthermore, we evaluated a two-step UTE-QSM approach that incorporates tissue boundary information. This method applies edge detection, excludes pixels near detected edges, and performs a two-step QSM reconstruction to reduce motion-induced streaking artifacts. In participants exhibiting substantial inter-scan motion, prominent streaking artifacts were evident. Applying motion registration markedly reduced these artifacts in both knee and ankle UTE-QSM. Additionally, the two-step UTE-QSM approach, which integrates tissue boundary information, further enhanced image quality by mitigating residual streaking artifacts. These results indicate that motion-induced errors near tissue boundaries play a key role in generating streaking artifacts in UTE-QSM. Inter-scan motion poses a fundamental challenge in UTE-QSM due to the need for multiple acquisitions. However, applying motion registration along with a two-step QSM approach that excludes tissue boundaries can effectively suppress motion-induced streaking artifacts, thereby improving the accuracy of musculoskeletal tissue characterization. Full article
(This article belongs to the Section Medical Imaging)
Show Figures

Figure 1

12 pages, 1300 KB  
Article
Morphology and Knee Joint Kinetics in National Football League Draft Prep Players: Implications for Osteoarthritis Development
by Monique Mokha, Jack Stensland, Andrew Schafer and Sean McBride
Biomechanics 2025, 5(4), 77; https://doi.org/10.3390/biomechanics5040077 - 4 Oct 2025
Abstract
Background/Objectives: National Football League (NFL) American football players are exposed to osteoarthritis risk factors of obesity and high joint loads. We sought to examine the association between total body mass (TBM), lean body mass (LBM), body fat percentage (BF%), and normalized compressive knee [...] Read more.
Background/Objectives: National Football League (NFL) American football players are exposed to osteoarthritis risk factors of obesity and high joint loads. We sought to examine the association between total body mass (TBM), lean body mass (LBM), body fat percentage (BF%), and normalized compressive knee joint reaction forces (JRFcomp), peak knee adductor moments (KAM), and vertical ground reaction forces (vGRF) in NFL draft-eligible players during a high-speed run. Methods: A total of 125 participants ran a single trial at 5.5–6.5 m/s for 5 s on an instrumented treadmill. Bilateral vGRF and knee joint kinetics were calculated using inverse dynamics. Body composition was assessed using bioelectrical impedance. Results: LBM demonstrated significant moderate associations with vGRF (left, r(123) = −0.56, p < 0.001; right, r(123) = −0.60, p < 0.001) and low-to-negligible associations with KAM (left, r(123) = −0.20, p = 0.026; right, r(123) = −0.30, p < 0.001) and JRFcomp (left, r(123) = −0.39, p = 0.020; right, r(123) = −0.38, p = 0.015), respectively. TBM showed significant moderate negative associations with vGRF (left, r(123) = −0.56, p < 0.001; right, r(123) = −0.61, p < 0.001) and low-to-negligible associations with KAM (left, r(123) = −0.21, p = 0.021; right, r(123) = −0.28, p = 0.002) and JRFcomp (left, r(123) = −0.39, p < 0.001; right, r(123) = −0.37, p < 0.001), respectively. BF% showed significant low-to-negligible negative associations with JRFcomp (left, r(123) = −0.21, p < 0.001; right, r(123) = −0.22, p < 0.001) and vGRF (left, r(123) = −0.39, p < 0.001; right, r(123) = −0.41, p < 0.001), respectively, and no significant associations with KAM, p > 0.05. The heavier group exhibited significantly lower normalized JRFcomp, and vGRF, p < 0.05. Conclusions: Heavier, but not fatter, players attenuate knee loads. Dampening may be a short-term protective strategy for joints of heavier players. Full article
(This article belongs to the Section Gait and Posture Biomechanics)
Show Figures

Figure 1

16 pages, 6351 KB  
Article
The Role of La–Ti–Al–O Complex Inclusions in Microstructure Refinement and Toughness Enhancement of the Coarse-Grained Heat-Affected Zone in High-Heat-Input Welding
by Qiuming Wang, Jiangli He, Qingfeng Wang and Riping Liu
Metals 2025, 15(10), 1105; https://doi.org/10.3390/met15101105 - 3 Oct 2025
Abstract
The low-temperature impact properties of high-heat-input steels, particularly low-carbon Nb–Ti steel, are significantly influenced by the coarse-grained heat-affected zone (CGHAZ) in welded joints. The microstructure predominantly consists of granular bainitic ferrite (GBF), ferrite side plate (FSP), degenerate pearlite (DP), coarse plate-like ferrite (PF), [...] Read more.
The low-temperature impact properties of high-heat-input steels, particularly low-carbon Nb–Ti steel, are significantly influenced by the coarse-grained heat-affected zone (CGHAZ) in welded joints. The microstructure predominantly consists of granular bainitic ferrite (GBF), ferrite side plate (FSP), degenerate pearlite (DP), coarse plate-like ferrite (PF), and limited acicular ferrite (AF). This study investigates the effect of lanthanum (La) addition to Nb–Ti steel, leading to the formation of composite inclusions with a LaAlO3·TiN core surrounded by MnS/MnC precipitates. Unlike conventional Al2O3·MnS inclusions in Nb–Ti steel, these La-modified inclusions promote enhanced AF nucleation. This not only refines prior austenite grains but also reduces detrimental microstructural constituents such as GBF and FSP. As a result, the impact energy at −40 °C significantly improves from 23 J (Nb–Ti steel) to 137 J (Nb–Ti–La steel). Moreover, the inclusions exhibit an increase in size but a decrease in number density. The Nb–Ti–La variant demonstrates a higher AF volume fraction and increased AF density within the CGHAZ. The refined grain structure, along with an increased proportion of high-angle grain boundaries, effectively impedes secondary crack propagation. These microstructural modifications contribute to a substantial improvement in the low-temperature impact toughness of welded joints. Full article
Show Figures

Figure 1

18 pages, 2770 KB  
Article
Distribution Characteristics and Enrichment Mechanisms of Fluoride in Alluvial–Lacustrine Facies Clayey Sediments in the Land Subsidence Area of Cangzhou Plain, China
by Juyan Zhu, Rui Liu, Haipeng Guo, Juan Chen, Di Ning and Xisheng Zang
Water 2025, 17(19), 2887; https://doi.org/10.3390/w17192887 - 3 Oct 2025
Abstract
Compression of clayey sediments not only causes land subsidence but also results in geogenic high fluoride groundwater. The distribution characteristics and enrichment mechanisms of fluoride in alluvial−lacustrine facies clayey sediments in the land subsidence area of Cangzhou Plain, China, were investigated using sample [...] Read more.
Compression of clayey sediments not only causes land subsidence but also results in geogenic high fluoride groundwater. The distribution characteristics and enrichment mechanisms of fluoride in alluvial−lacustrine facies clayey sediments in the land subsidence area of Cangzhou Plain, China, were investigated using sample collection, mineralogical research, and hydrogeochemical and isotopic analysis. The results show that F concentration of groundwater samples ranged from 0.31 to 5.54 mg/L in aquifers. The total fluoride content of clayey sediments ranged from 440 to 792 mg/kg and porewater F concentration ranged from 0.77 to 4.18 mg/L. Clay minerals containing fine particles, such as muscovite, facilitate the enrichment of fluoride in clayey sediments, resulting in higher total fluoride levels than those in sandy sediments. The clay porewater F predominantly originated from the dissolution of water-soluble F and the desorption of exchangeable F from sediments. The F concentration in porewater was further influenced by ionic interactions such as cation exchange. The stable sedimentary environment and intense compression promoted the dissolution of F–bearing minerals and the desorption of adsorbed F in deep clayey sediments. The similar composition feature of δ2H−δ18O in deep groundwater and clay porewater samples suggests a significant mixing effect. These findings highlight the joint effects of hydrogeochemical and mineralogical processes on F behavior in clayey sediments. Full article
Show Figures

Figure 1

21 pages, 1538 KB  
Article
SarcoNet: A Pilot Study on Integrating Clinical and Kinematic Features for Sarcopenia Classification
by Muthamil Balakrishnan, Janardanan Kumar, Jaison Jacob Mathunny, Varshini Karthik and Ashok Kumar Devaraj
Diagnostics 2025, 15(19), 2513; https://doi.org/10.3390/diagnostics15192513 - 3 Oct 2025
Abstract
Background and Objectives: Sarcopenia is a progressive loss of skeletal muscle mass and function in elderly adults, posing a significant risk of frailty, falls, and morbidity. The current study designs and evaluates SarcoNet, a novel artificial neural network (ANN)-based classification framework developed in [...] Read more.
Background and Objectives: Sarcopenia is a progressive loss of skeletal muscle mass and function in elderly adults, posing a significant risk of frailty, falls, and morbidity. The current study designs and evaluates SarcoNet, a novel artificial neural network (ANN)-based classification framework developed in order to classify Sarcopenic from non-Sarcopenic subjects using a comprehensive real-time dataset. Methods: This pilot study involved 30 subjects, who were divided into Sarcopenic and non-Sarcopenic groups based on physician assessment. The collected dataset consists of thirty-one clinical parameters like skeletal muscle mass, which is collected using various equipment such as Body Composition Analyser, along with ten kinetic features which are derived from video-based gait analysis of joint angles obtained during walking on three terrain types such as slope, steps, and parallel path. The performance of the designed ANN-based SarcoNet was benchmarked against the traditional machine learning classifiers utilised including Support Vector Machine (SVM), k-Nearest Neighbours (k-NN), and Random Forest (RF), as well as hard and soft voting ensemble classifiers. Results: SarcoNet achieved the highest overall classification accuracy of about 94%, with a specificity and precision of about 100%, an F1-score of about 92.4%, and an AUC of 0.94, outperforming all other models. The incorporation of lower-limb joint kinetics such as knee flexion, extension, ankle plantarflexion and dorsiflexion significantly enhanced predictive capability of the model and thus reflecting the functional deterioration characteristic of muscles in Sarcopenia. Conclusions: SarcoNet provides a promising AI-driven solution in Sarcopenia diagnosis, especially in low-resource healthcare settings. Future work will focus on improving the dataset, validating the model across diverse populations, and incorporating explainable AI to improve clinical adoption. Full article
(This article belongs to the Section Machine Learning and Artificial Intelligence in Diagnostics)
Show Figures

Figure 1

25 pages, 9736 KB  
Article
Experimental Study on Bidirectional Bending Performance of Steel-Ribbed Composite Slabs for Electrical Substations
by Lin Li, Zhenzhong Wei, Yong Liu, Yunan Jiang, Haomiao Chen, Yu Zhang, Kaifa Zhang, Kunjie Rong and Li Tian
Buildings 2025, 15(19), 3540; https://doi.org/10.3390/buildings15193540 - 1 Oct 2025
Abstract
This study investigates the bidirectional bending performance of double- and triple-spliced steel-ribbed composite slabs for substation applications. Full-scale experiments and numerical parametric analyses were conducted to evaluate ultimate load, ductility, stiffness, failure modes, and load-transfer mechanisms. Results indicate that double-spliced slabs exhibit better [...] Read more.
This study investigates the bidirectional bending performance of double- and triple-spliced steel-ribbed composite slabs for substation applications. Full-scale experiments and numerical parametric analyses were conducted to evaluate ultimate load, ductility, stiffness, failure modes, and load-transfer mechanisms. Results indicate that double-spliced slabs exhibit better performance than triple-spliced slabs, showing a 24.5% higher ultimate load and 65.3% greater ductility, with well-developed orthogonal cracks and yielding of both longitudinal prestressing steel and transverse reinforcement. Triple-spliced slabs display partial bidirectional behavior due to reduced transverse integrity, with stresses in edge slabs concentrated at the corners. Compared with monolithic slabs, spliced slabs show nearly identical stiffness at cracking onset but progressively reduced stiffness, load capacity, and ductility in the mid-to-late loading stages. Joint-crossing reinforcement is critical for transverse load transfer, and increasing its diameter is more effective than increasing its strength in preventing premature joint-controlled failure. These findings provide significant theoretical guidance and technical support for the prefabricated construction of high-voltage substation floor systems. Full article
(This article belongs to the Section Building Structures)
Show Figures

Figure 1

21 pages, 8188 KB  
Article
Experimental Study of the Actual Structural Behaviour of CLT and CLT–Concrete Composite Panels with Embedded Moment-Resisting Joint
by Matúš Farbák, Jozef Gocál and Peter Koteš
Buildings 2025, 15(19), 3534; https://doi.org/10.3390/buildings15193534 - 1 Oct 2025
Abstract
Timber structures and structural members have undergone rapid development in recent decades and are now fully competitive with traditional structures made of reinforced concrete or structural steel in many areas. Low self-weight, high durability, rapid construction assembly, and a favourable environmental footprint predispose [...] Read more.
Timber structures and structural members have undergone rapid development in recent decades and are now fully competitive with traditional structures made of reinforced concrete or structural steel in many areas. Low self-weight, high durability, rapid construction assembly, and a favourable environmental footprint predispose timber structures for wider future use. A persisting drawback is the often-complicated joining of individual elements, especially when moment resistance is required. For CLT panels, this issue is more urgent due to their relatively small thickness and cross-laminated lay-up. This paper presents experimental research investigating parameters related to the actual behaviour of a moment-resisting embedded joint of CLT panels. The test programme consisted of four series (12 specimens) loaded in four-point bending to failure. The proposed and tested joint consists of high-strength steel rods glued into the two connected parts of the CLT panel. In addition to a detailed investigation of the resistance and stiffness of the joint, this research evaluates the effect of composite action with a reinforced-concrete slab on the performance of this type of joint. The experimental results and their detailed analysis are also extended to propose a framework concept for creating a theoretical (mechanical) model based on the component method. Full article
(This article belongs to the Special Issue Advances and Applications in Timber Structures)
Show Figures

Figure 1

23 pages, 4283 KB  
Article
Quaternion-Based Velocity Scheduling for Robotic Systems
by Tzu-Yuan Huang, Jun Loong Wong and Ming-Yang Cheng
Electronics 2025, 14(19), 3869; https://doi.org/10.3390/electronics14193869 - 29 Sep 2025
Abstract
Finding the time-optimal parameterization of a given path subject to kinodynamic constraints is a critical topic in many robotic applications. However, designing a real-time motion planning algorithm for specified trajectories subject to physical constraints is challenging due to the high nonlinearity in robotic [...] Read more.
Finding the time-optimal parameterization of a given path subject to kinodynamic constraints is a critical topic in many robotic applications. However, designing a real-time motion planning algorithm for specified trajectories subject to physical constraints is challenging due to the high nonlinearity in robotic systems. Additionally, moving along a given path may include three types of motion—pure translation, pure orientation, and composite motion—which will further complicate finding the best solution in these applications. To cope with this difficulty, this paper proposes a complete, real-time quaternion-based velocity scheduling algorithm (QBVSA) that takes physical constraints such as joint velocity, joint acceleration, and joint torque into account. The proposed QBVSA is designed to efficiently handle various types of motion subject to physical constraints in real-time. The completeness of the proposed QBVSA is proved mathematically. By exploiting the idea of the initial velocity limit, the search for switching points—which is essential to the conventional numerical integration method—is not required in the proposed approach. Simulations and experiments are performed to validate the proposed motion planning approach. Full article
Show Figures

Figure 1

29 pages, 15318 KB  
Article
Experimental Study on Mechanical Performance of Basalt Fiber-Reinforced Polymer Plates with Different Bolted Connection Configurations
by Zhigang Gao, Dongzi Pan, Qing Qin, Chenghua Zhang, Jiachen He and Qi Lin
Polymers 2025, 17(19), 2627; https://doi.org/10.3390/polym17192627 - 28 Sep 2025
Abstract
Basalt fiber-reinforced polymer (BFRP) composites are increasingly utilized in photovoltaic mounting systems due to their excellent mechanical properties and durability. Bolted connections, valued for their simplicity, ease of installation, and effective load transfer, are widely employed for joining composite components. An orthogonal experimental [...] Read more.
Basalt fiber-reinforced polymer (BFRP) composites are increasingly utilized in photovoltaic mounting systems due to their excellent mechanical properties and durability. Bolted connections, valued for their simplicity, ease of installation, and effective load transfer, are widely employed for joining composite components. An orthogonal experimental design was adopted to investigate the effects of key parameters—including bolt end distance, number of bolts, bolt material, bolt diameter, preload, and connection length—on the load-bearing performance of three bolted BFRP plate configurations: lap joint (DJ), single lap joint (DP), and double lap joint (SP). Test results showed that the DJ connection exhibited the highest average tensile load capacity, exceeding those of the SP and DP connections by 45.3% and 50.2%, respectively. This superiority is attributed to the DJ specimen’s longer effective shear length and greater number of load-bearing bolts. Conversely, the SP connection demonstrated the largest average peak displacement, with increases of 29.7% and 52.9% compared to the DP and DJ connections. The double-sided constraint in the SP configuration promotes more uniform preload distribution and enhances shear deformation capacity. Orthogonal sensitivity analysis further revealed that the number of bolts and preload magnitude significantly influenced the ultimate tensile load capacity across all connection types. Finally, a calculation model for the tensile load capacity of bolted BFRP connections was established, incorporating a friction decay coefficient (α) and shear strength (τ). This model yields calculated errors under 15% and is applicable to shear slip-dominated failure modes, thereby providing a parametric basis for optimizing the tensile design of bolted BFRP joints. Full article
(This article belongs to the Section Polymer Analysis and Characterization)
Show Figures

Figure 1

47 pages, 12662 KB  
Review
Strength in Adhesion: A Multi-Mechanics Review Covering Tensile, Shear, Fracture, Fatigue, Creep, and Impact Behavior of Polymer Bonding in Composites
by Murat Demiral
Polymers 2025, 17(19), 2600; https://doi.org/10.3390/polym17192600 - 25 Sep 2025
Abstract
The growing demand for lightweight and reliable structures across aerospace, automotive, marine, and civil engineering has driven significant advances in polymer adhesive technology. These materials serve dual roles, functioning as matrices in composites and as structural bonding agents, where they must balance strength, [...] Read more.
The growing demand for lightweight and reliable structures across aerospace, automotive, marine, and civil engineering has driven significant advances in polymer adhesive technology. These materials serve dual roles, functioning as matrices in composites and as structural bonding agents, where they must balance strength, toughness, durability, and sometimes sustainability. Recent review efforts have greatly enriched understanding, yet most approach the topic from specialized angles—whether emphasizing nanoscale toughening, multifunctional formulations, sustainable alternatives, or microscopic failure processes in bonded joints. While such perspectives provide valuable insights, they often remain fragmented, leaving open questions about how nanoscale mechanisms translate into macroscopic reliability, how durability evolves under realistic service conditions, and how mechanical responses interact across different loading modes. To address this, the present review consolidates knowledge on the performance of polymer adhesives under tension, shear, fracture, fatigue, creep, and impact. By integrating experimental findings with computational modeling and emerging data-driven approaches, it situates localized mechanisms within a broader structure–performance framework. This unified perspective not only highlights persistent gaps—such as predictive modeling of complex failure, scalability of nanomodified systems, and long-term durability under coupled environments—but also outlines strategies for developing next-generation adhesives capable of delivering reliable, high-performance bonding solutions for demanding applications. Full article
(This article belongs to the Special Issue Polymer Composites: Design, Manufacture and Characterization)
Show Figures

Graphical abstract

37 pages, 2123 KB  
Review
Progress in Hyaluronan-Based Nanoencapsulation Systems for Smart Drug Release and Medical Applications
by Katarína Valachová, Mohamed E. Hassan, Tamer M. Tamer and Ladislav Šoltés
Molecules 2025, 30(19), 3883; https://doi.org/10.3390/molecules30193883 - 25 Sep 2025
Abstract
Hyaluronan (HA), a high-molecular-weight polysaccharide naturally found in vertebrate tissues such as skin, joints, and the vitreous body, plays a critical role in various biological processes. Its functionality is highly dependent on molecular weight, with high-molecular-weight HA exhibiting anti-inflammatory and immunosuppressive effects, while [...] Read more.
Hyaluronan (HA), a high-molecular-weight polysaccharide naturally found in vertebrate tissues such as skin, joints, and the vitreous body, plays a critical role in various biological processes. Its functionality is highly dependent on molecular weight, with high-molecular-weight HA exhibiting anti-inflammatory and immunosuppressive effects, while low-molecular-weight HA promotes inflammation, immunostimulation, and angiogenesis. Due to its biocompatibility, biodegradability, and tunable properties, HA has gained increasing attention in biomedical applications. This review summarizes recent advances in the encapsulation of HA with other polymers and therapeutic agents in nanosystems, particularly hydrogels and nanoparticles. HA-based formulations demonstrate improved therapeutic outcomes, including drug release sustained up to 7 days, wound closure rates exceeding 90% in animal models, particle size in the range of 50–300 nm, and enhanced bioavailability of encapsulated drugs by 2–3 fold compared with free drugs. Such properties have shown promise in enhancing therapeutic efficacy and targeted drug delivery in the treatment of skin wound healing, diabetes, osteoarthritis, rheumatoid arthritis, and ophthalmic diseases. The review emphasizes how HA’s modifications and composite systems optimize drug release profiles and biological interactions, thereby contributing to the development of next-generation biomedical therapies. Full article
(This article belongs to the Special Issue Application of Chitosan and Hyaluronan)
Show Figures

Graphical abstract

20 pages, 3429 KB  
Article
Localisation-Dependent Variations in Articular Cartilage ECM: Implications for Tissue Engineering and Cartilage Repair
by Laura Weimer, Luisa M. Schmidt, Gerhard Sengle, Marcus Krüger, Alan M. Smith, Ilona Brändlin and Frank Zaucke
Int. J. Mol. Sci. 2025, 26(19), 9331; https://doi.org/10.3390/ijms26199331 - 24 Sep 2025
Viewed by 23
Abstract
Articular cartilage (AC) is a specialised connective tissue covering joint surfaces. It enables smooth movement, distributes mechanical loads, and protects the underlying bone. In response to loading, AC adapts by modifying both its thickness and composition. AC is organised in different zones, with [...] Read more.
Articular cartilage (AC) is a specialised connective tissue covering joint surfaces. It enables smooth movement, distributes mechanical loads, and protects the underlying bone. In response to loading, AC adapts by modifying both its thickness and composition. AC is organised in different zones, with low cellularity and a high abundance of extracellular matrix (ECM). Mechanical overloading or immobilisation can lead to structural changes, potentially resulting in osteoarthritis (OA), for which no causal treatment currently exists. However, smaller defects can be treated using chondrocyte/cartilage transplantation or tissue engineering. A better understanding of the molecular composition of AC at different locations is essential to improve such therapeutic approaches. For this purpose, we performed a comprehensive analysis of porcine femoral knee cartilage at eight defined anatomical sites. Cartilage thickness and proteoglycan (PG) content were analysed histologically, while specific ECM proteins were assessed by proteomics and validated by immunohistochemistry and Western blot. Significant differences were identified, particularly between medial and lateral compartments, in terms of cartilage thickness, PG abundance, and ECM composition. Some proteins also showed zone-specific localisation patterns. These structural differences likely reflect adaptation to mechanical loading and should be considered to optimise future cartilage repair and tissue engineering strategies. Full article
(This article belongs to the Special Issue Ligament/Tendon and Cartilage Tissue Engineering and Reconstruction)
Show Figures

Figure 1

25 pages, 8517 KB  
Article
Development of an Optical–Radar Fusion Method for Riparian Vegetation Monitoring and Its Application to Representative Rivers in Japan
by Han Li, Hiroki Kurusu, Yuzuna Suzuki and Yuji Kuwahara
Remote Sens. 2025, 17(19), 3281; https://doi.org/10.3390/rs17193281 - 24 Sep 2025
Viewed by 124
Abstract
Riparian vegetation plays a critical role in maintaining ecosystem function, ensuring drainage capacity, and enhancing disaster prevention and mitigation. However, existing ground-based survey methods are limited in both spatial coverage and temporal resolution, which increases the difficulty of meeting the growing demand for [...] Read more.
Riparian vegetation plays a critical role in maintaining ecosystem function, ensuring drainage capacity, and enhancing disaster prevention and mitigation. However, existing ground-based survey methods are limited in both spatial coverage and temporal resolution, which increases the difficulty of meeting the growing demand for rapid, dynamic, and fine-scale monitoring of riverine vegetation. To address this challenge, this study proposes a remote sensing approach that integrates Sentinel-1 synthetic aperture radar imagery with Sentinel-2 optical data. A composite vegetation index was developed by combining the normalized difference vegetation index and synthetic aperture radar backscatter coefficients, thereby enabling the joint characterization of horizontal and vertical vegetation activity. The method was first tested in the Kuji River Basin in Japan and subsequently validated across eight representative river systems nationwide using 16 sets of satellite images acquired between 2016 and 2023. The results demonstrate that the proposed method achieves an average geometric correction error of less than three pixels and yields a spatial distribution of the composite index that closely aligns with the actual vegetation conditions. Moreover, the difference rate between sparse and dense vegetation exceeded 90% across all rivers, indicating a strong discriminative capability and temporal sensitivity. Overall, this method is well-suited for the multiregional and multitemporal monitoring of riparian vegetation and offers a reliable quantitative tool for water environment management and ecological assessment. Full article
Show Figures

Figure 1

17 pages, 1980 KB  
Article
Occurrence Characteristics and Ecological Risk Assessment of Microplastics in Aquatic Environments of Cascade Reservoirs Along the Middle-Lower Han River
by Ruining Zhang, Ziwei Guo, Li Lin, Xiong Pan, Yu Gao and Yuqiang Liu
Water 2025, 17(19), 2793; https://doi.org/10.3390/w17192793 - 23 Sep 2025
Viewed by 195
Abstract
The presence and accumulation of microplastics (MPs) in riverine waters have been widely documented. The sustained operation of cascade reservoirs has altered the retention characteristics of MPs in the Han River basin. In this study, the composition, sources, and ecological risks of MPs [...] Read more.
The presence and accumulation of microplastics (MPs) in riverine waters have been widely documented. The sustained operation of cascade reservoirs has altered the retention characteristics of MPs in the Han River basin. In this study, the composition, sources, and ecological risks of MPs in the water column and sediments of the Han River mainstream across different periods were investigated. Results showed that the MP abundances in the water column and sediments were higher during the flood season than in the non-flood season. Additionally, MPs in the water column exhibited an increasing trend along the operational sequence of cascade reservoirs. During the flood season, polyamide (PA), polyethylene (PE), and polypropylene (PP) were the dominant MP types in the water column, while polycarbonate (PC) and PP prevailed in sediments. In the non-flood season, polyethylene terephthalate (PET) was the dominant MP type in the water column, whereas PC and PET dominated in sediments. Overall, the distribution characteristics of MPs conformed to the “upstream input-reservoir accumulation-downstream output” pattern. The pollution risk of MPs in both the water column and sediments ranged from low to moderate. These findings provide a basis for exploring the impacts of cascade reservoir operation on the characteristics of MP in water and sediments. Future research will focus on migration mechanisms of MP under the joint operation of cascade reservoirs. Full article
(This article belongs to the Section Water Quality and Contamination)
Show Figures

Figure 1

17 pages, 10023 KB  
Article
Research on Hybrid Blue Diode-Fiber Laser Welding Process of T2 Copper
by Xiangkuan Wu, Na Qi, Shengxiang Liu, Qiqi Lv, Qian Fu, Yue Kang, Min Jin and Miaosen Yang
Metals 2025, 15(9), 1058; https://doi.org/10.3390/met15091058 - 22 Sep 2025
Viewed by 218
Abstract
This research proposes a non-penetration lap welding process for joining T2 copper power module terminals in high-frequency and high-power electronic applications, using a hybrid laser system combining a 445 nm blue diode laser and a 1080 nm fiber laser. The composite laser beam, [...] Read more.
This research proposes a non-penetration lap welding process for joining T2 copper power module terminals in high-frequency and high-power electronic applications, using a hybrid laser system combining a 445 nm blue diode laser and a 1080 nm fiber laser. The composite laser beam, formed by coupling a circular blue laser beam with a spot-shaped fiber laser beam, was oscillated along circular, sinusoidal, and 8-shaped trajectories to control weld geometry and joint quality. Results indicate that all trajectories produced U-shaped weld cross-sections with smooth toe transitions and good surface quality. Specifically, the circular trajectory provided uniform energy distribution and stable weld formation; the 8-shaped trajectory achieved a balanced width-to-depth ratio; and the sinusoidal trajectory exhibited sensitivity to welding speed, often resulting in uneven fusion width. Increased welding speed promoted grain refinement, but excessive speed led to porosity and poor surface quality in both 8-shaped and sinusoidal trajectories. Oscillating laser welding facilitated equiaxed grain formation, with the circular and 8-shaped trajectories yielding more uniform microstructures. The circular trajectory maintained consistent weld dimensions and hardness distribution, while the 8-shaped trajectory exhibited superior tensile strength. This work highlights the potential of circular and 8-shaped trajectories in hybrid laser welding for regulating weld microstructure, enhancing mechanical performance and ensuring weld stability. Full article
(This article belongs to the Special Issue Advanced Laser Welding and Joining of Metallic Materials)
Show Figures

Figure 1

Back to TopTop