Sign in to use this feature.

Years

Between: -

Subjects

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Journals

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Article Types

Countries / Regions

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Search Results (1,622)

Search Parameters:
Keywords = composite scaffolds

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
18 pages, 7009 KB  
Article
Engineered Porosity in Microcrystalline Diamond-Reinforced PLLA Composites: Effects of Particle Concentration on Thermal and Structural Properties
by Mateusz Ficek, Franciszek Skiba, Marcin Gnyba, Gabriel Strugała, Dominika Ferneza, Tomasz Seramak, Konrad Szustakiewicz and Robert Bogdanowicz
Materials 2025, 18(19), 4606; https://doi.org/10.3390/ma18194606 (registering DOI) - 4 Oct 2025
Abstract
This research explores microcrystalline diamond particles in poly(L-lactic acid) matrices to create structured porous composites for advanced biodegradable materials. While nanodiamond–polymer composites are well-documented, microcrystalline diamond particles remain unexplored for controlling hierarchical porosity in systems required by tissue engineering, thermal management, and filtration [...] Read more.
This research explores microcrystalline diamond particles in poly(L-lactic acid) matrices to create structured porous composites for advanced biodegradable materials. While nanodiamond–polymer composites are well-documented, microcrystalline diamond particles remain unexplored for controlling hierarchical porosity in systems required by tissue engineering, thermal management, and filtration industries. We investigate diamond–polymer composites with concentrations from 5 to 75 wt% using freeze-drying methodology, employing two particle sizes: 0.125 μm and 1.00 μm diameter particles. Systematic porosity control ranges from 11.4% to 32.8%, with smaller particles demonstrating reduction from 27.3% at 5 wt% to 11.4% at 75 wt% loading. Characterization through infrared spectroscopy, X-ray computed microtomography, and Raman analysis confirms purely physical diamond–polymer interactions without chemical bonding, validated by characteristic diamond lattice vibrations at 1332 cm−1. Thermal analysis reveals modified crystallization behavior with decreased melting temperatures from 180 to 181 °C to 172 °C. The investigation demonstrates a controllable transition from large-volume interconnected pores to numerous small-volume closed pores with increasing diamond content. These composites provide a quantitative framework for designing hierarchical structures applicable to tissue engineering scaffolds, thermal management systems, and specialized filtration technologies requiring biodegradable materials with engineered porosity and enhanced thermal conductivity. Full article
19 pages, 4472 KB  
Article
Electrospun Polycaprolactone/Collagen Scaffolds Enhance Manipulability and Influence the Composition of Self-Assembled Extracellular Matrix
by Saeed Farzamfar, Stéphane Chabaud, Julie Fradette, Yannick Rioux and Stéphane Bolduc
Bioengineering 2025, 12(10), 1077; https://doi.org/10.3390/bioengineering12101077 - 3 Oct 2025
Abstract
Cell-mediated extracellular matrix (ECM) self-assembly provides a biologically relevant approach for developing near-physiological tissue-engineered constructs by utilizing stromal cells to secrete and assemble ECM components in the presence of ascorbic acid. Despite its unique advantages, this method often results in scaffolds with limited [...] Read more.
Cell-mediated extracellular matrix (ECM) self-assembly provides a biologically relevant approach for developing near-physiological tissue-engineered constructs by utilizing stromal cells to secrete and assemble ECM components in the presence of ascorbic acid. Despite its unique advantages, this method often results in scaffolds with limited mechanical properties, depending on the cell type. This research aimed to enhance the mechanical properties of these constructs by culturing cells derived from various sources, including skin, bladder, urethra, vagina, and adipose tissue, on electrospun scaffolds composed of polycaprolactone and collagen (PCLCOL). The hybrid scaffolds were evaluated using various in vitro assays to assess their structural and functional properties. Results showed that different stromal cells could deposit ECM on the PCLCOL with distinct composition compared to the ECM that was self-assembled on tissue culture plates (TCP). Additionally, cells cultured on PCLCOL exhibited a different growth factor secretion profile compared to those on TCP. Mechanical testing demonstrated that the hybrid scaffolds exhibited high mechanical properties and superior manipulability. These findings suggest that PCLCOL could be a promising platform for developing biomimetic scaffolds that combine enhanced mechanical strength with integrated biological cues for tissue repair. Full article
Show Figures

Graphical abstract

46 pages, 1449 KB  
Review
MXenes in Solid-State Batteries: Multifunctional Roles from Electrodes to Electrolytes and Interfacial Engineering
by Francisco Márquez
Batteries 2025, 11(10), 364; https://doi.org/10.3390/batteries11100364 - 2 Oct 2025
Abstract
MXenes, a rapidly emerging family of two-dimensional transition metal carbides and nitrides, have attracted considerable attention in recent years for their potential in next-generation energy storage technologies. In solid-state batteries (SSBs), they combine metallic-level conductivity (>103 S cm−1), adjustable surface [...] Read more.
MXenes, a rapidly emerging family of two-dimensional transition metal carbides and nitrides, have attracted considerable attention in recent years for their potential in next-generation energy storage technologies. In solid-state batteries (SSBs), they combine metallic-level conductivity (>103 S cm−1), adjustable surface terminations, and mechanical resilience, which makes them suitable for diverse functions within the cell architecture. Current studies have shown that MXene-based anodes can deliver reversible lithium storage with Coulombic efficiencies approaching ~98% over 500 cycles, while their use as conductive additives in cathodes significantly improves electron transport and rate capability. As interfacial layers or structural scaffolds, MXenes effectively buffer volume fluctuations and suppress lithium dendrite growth, contributing to extended cycle life. In solid polymer and composite electrolytes, MXene fillers have been reported to increase Li+ conductivity to the 10−3–10−2 S cm−1 range and enhance Li+ transference numbers (up to ~0.76), thereby improving both ionic transport and mechanical stability. Beyond established Ti-based systems, double transition metal MXenes (e.g., Mo2TiC2, Mo2Ti2C3) and hybrid heterostructures offer expanded opportunities for tailoring interfacial chemistry and optimizing energy density. Despite these advances, large-scale deployment remains constrained by high synthesis costs (often exceeding USD 200–400 kg−1 for Ti3C2Tx at lab scale), restacking effects, and stability concerns, highlighting the need for greener etching processes, robust quality control, and integration with existing gigafactory production lines. Addressing these challenges will be crucial for enabling MXene-based SSBs to transition from laboratory prototypes to commercially viable, safe, and high-performance energy storage systems. Beyond summarizing performance, this review elucidates the mechanistic roles of MXenes in SSBs—linking lithiophilicity, field homogenization, and interphase formation to dendrite suppression at Li|SSE interfaces, and termination-assisted salt dissociation, segmental-motion facilitation, and MWS polarization to enhanced electrolyte conductivity—thereby providing a clear design rationale for practical implementation. Full article
(This article belongs to the Collection Feature Papers in Batteries)
25 pages, 1507 KB  
Review
Biochemical Programming of the Fungal Cell Wall: A Synthetic Biology Blueprint for Advanced Mycelium-Based Materials
by Víctor Coca-Ruiz
BioChem 2025, 5(4), 33; https://doi.org/10.3390/biochem5040033 - 1 Oct 2025
Abstract
The global transition to a circular bioeconomy is accelerating the demand for sustainable, high-performance materials. Filamentous fungi represent a promising solution, as they function as living foundries that transform low-value biomass into advanced, self-assembling materials. While mycelium-based composites have proven potential, progress has [...] Read more.
The global transition to a circular bioeconomy is accelerating the demand for sustainable, high-performance materials. Filamentous fungi represent a promising solution, as they function as living foundries that transform low-value biomass into advanced, self-assembling materials. While mycelium-based composites have proven potential, progress has been predominantly driven by empirical screening of fungal species and substrates. To unlock their full potential, a paradigm shift from empirical screening to rational design is required. This review introduces a conceptual framework centered on the biochemical programming of the fungal cell wall. Viewed through a materials science lens, the cell wall is a dynamic, hierarchical nanocomposite whose properties can be deliberately tuned. We analyze the contributions of its principal components—the chitin–glucan structural scaffold, the glycoprotein functional matrix, and surface-active hydrophobins—to the bulk characteristics of mycelium-derived materials. We then identify biochemical levers for controlling these properties. External factors such as substrate composition and environmental cues (e.g., pH) modulate cell wall architecture through conserved signaling pathways. Complementing these, an internal synthetic biology toolkit enables direct genetic and chemical intervention. Strategies include targeted engineering of biosynthetic and regulatory genes (e.g., CHS, AGS, GCN5), chemical genetics to dynamically adjust synthesis during growth, and modification of surface chemistry for specialized applications like tissue engineering. By integrating fungal cell wall biochemistry, materials science, and synthetic biology, this framework moves the field from incidental discovery toward the intentional creation of smart, functional, and sustainable mycelium-based materials—aligning material innovation with the imperatives of the circular bioeconomy. Full article
Show Figures

Figure 1

22 pages, 4897 KB  
Article
Fabrication of Next-Generation Skin Scaffolds: Integrating Human Dermal Extracellular Matrix and Microbiota-Derived Postbiotics via 3D Bioprinting
by Sultan Golpek Aymelek, Billur Sezgin Kizilok, Ahmet Ceylan and Fadime Kiran
Polymers 2025, 17(19), 2647; https://doi.org/10.3390/polym17192647 - 30 Sep 2025
Abstract
This study presents the development of an advanced three-dimensional (3D) bioprinted skin scaffold integrating sodium alginate (SA), gelatin (Gel), human skin-derived decellularized extracellular matrix (dECM), and microbiota-derived postbiotics. To ensure a biocompatible and functional ECM source, human skin samples collected during elective aesthetic [...] Read more.
This study presents the development of an advanced three-dimensional (3D) bioprinted skin scaffold integrating sodium alginate (SA), gelatin (Gel), human skin-derived decellularized extracellular matrix (dECM), and microbiota-derived postbiotics. To ensure a biocompatible and functional ECM source, human skin samples collected during elective aesthetic surgical procedures were utilized. Following enzymatic treatment, the dermal layer was carefully separated from the epidermis and subjected to four different decellularization protocols. Among them, Protocol IV emerged as the most suitable, achieving significant DNA removal while maintaining the structural and biochemical integrity of the ECM, as confirmed by Fourier-transform infrared spectroscopy. Building on this optimized dECM-4, microbiota-derived postbiotics from Limosilactobacillus reuteri EIR/Spx-2 were incorporated to further enhance the scaffold’s bioactivity. Hybrid scaffolds were then fabricated using 7% Gel, 2% SA, 1% dECM-4, and 40 mg/mL postbiotics in five-layered grid structures via 3D bioprinting technology. Although this composition resulted in reduced mechanical strength, it exhibited improved hydrophilicity and biodegradability. Moreover, antimicrobial assays demonstrated inhibition zones of 16 mm and 13 mm against methicillin-resistant Staphylococcus aureus (MRSA, ATCC 43300) and Pseudomonas aeruginosa (ATCC 27853), respectively. Importantly, biocompatibility was confirmed through in vitro studies using human keratinocyte (HaCaT) cells, which adhered, proliferated, and maintained normal morphology over a 7-day culture period. Taken together, these findings suggest that the engineered hybrid scaffold provides both regenerative support and antimicrobial protection, making it a strong candidate for clinical applications, particularly in the management of chronic wounds. Full article
(This article belongs to the Special Issue Polymers for Aesthetic Purposes)
Show Figures

Graphical abstract

25 pages, 9472 KB  
Article
Alterations in the Physicochemical and Structural Properties of a Ceramic–Polymer Composite Induced by the Substitution of Hydroxyapatite with Fluorapatite
by Leszek Borkowski, Krzysztof Palka and Lukasz Pajchel
Materials 2025, 18(19), 4538; https://doi.org/10.3390/ma18194538 - 29 Sep 2025
Abstract
In recent years, apatite-based materials have garnered significant interest, particularly for applications in tissue engineering. Apatite is most commonly employed as a coating for metallic implants, as a component in composite materials, and as scaffolds for bone and dental tissue regeneration. Among its [...] Read more.
In recent years, apatite-based materials have garnered significant interest, particularly for applications in tissue engineering. Apatite is most commonly employed as a coating for metallic implants, as a component in composite materials, and as scaffolds for bone and dental tissue regeneration. Among its various forms, hydroxyapatite (HAP) is the most widely used, owing to its natural occurrence in human and animal hard tissues. An emerging area of research involves the use of fluoride-substituted apatite, particularly fluorapatite (FAP), which can serve as a direct fluoride source at the implant site, potentially offering several biological and therapeutic advantages. However, substituting HAP with FAP may lead to unforeseen changes in material behavior due to the differing physicochemical properties of these two calcium phosphate phases. This study investigates the effects of replacing hydroxyapatite with fluorapatite in ceramic–polymer composite materials incorporating β-1,3-glucan as a bioactive polymeric binder. The β-1,3-glucan polysaccharide was selected for its proven biocompatibility, biodegradability, and ability to form stable hydrogels that promote cellular interactions. Nitrogen adsorption analysis revealed that FAP/glucan composites had a significantly lower specific surface area (0.5 m2/g) and total pore volume (0.002 cm3/g) compared to HAP/glucan composites (14.15 m2/g and 0.03 cm3/g, respectively), indicating enhanced ceramic–polymer interactions in fluoride-containing systems. Optical profilometry measurements showed statistically significant differences in profile parameters (e.g., Rp: 134 μm for HAP/glucan vs. 352 μm for FAP/glucan), although average roughness (Ra) remained similar (34.1 vs. 27.6 μm, respectively). Microscopic evaluation showed that FAP/glucan composites had smaller particle sizes (1 μm) than their HAP counterparts (2 μm), despite larger primary crystal sizes in FAP, as confirmed by TEM. XRD analysis indicated structural differences between the apatites, with FAP exhibiting a reduced unit cell volume (524.6 Å3) compared to HAP (528.2 Å3), due to substitution of hydroxyl groups with fluoride ions. Spectroscopic analyses (FTIR, Raman, 31P NMR) confirmed chemical shifts associated with fluorine incorporation and revealed distinct ceramic–polymer interfacial behaviors, including an upfield shift of PO43− bands (964 cm−1 in FAP vs. 961 cm−1 in HAP) and OH vibration shifts (3537 cm−1 in FAP vs. 3573 cm−1 in HAP). The glucan polymer showed different hydrogen bonding patterns when combined with FAP versus HAP, as evidenced by shifts in polymer-specific bands at 888 cm−1 and 1157 cm−1, demonstrating that fluoride substitution significantly influences ceramic–polymer interactions in these bioactive composite systems. Full article
Show Figures

Figure 1

30 pages, 1346 KB  
Review
Electrospun Bio-Scaffolds for Mesenchymal Stem Cell-Mediated Neural Differentiation: Systematic Review of Advances and Future Directions
by Luigi Ruccolo, Aleksandra Evangelista, Marco Benazzo, Bice Conti and Silvia Pisani
Int. J. Mol. Sci. 2025, 26(19), 9528; https://doi.org/10.3390/ijms26199528 - 29 Sep 2025
Abstract
Neural tissue injuries, including spinal cord damage and neurodegenerative diseases, pose a major clinical challenge due to the central nervous system’s limited regenerative capacity. Current treatments focus on stabilization and symptom management rather than functional restoration. Tissue engineering offers new therapeutic perspectives, particularly [...] Read more.
Neural tissue injuries, including spinal cord damage and neurodegenerative diseases, pose a major clinical challenge due to the central nervous system’s limited regenerative capacity. Current treatments focus on stabilization and symptom management rather than functional restoration. Tissue engineering offers new therapeutic perspectives, particularly through the combination of electrospun nanofibrous scaffolds and mesenchymal stem cells (MSCs). Electrospun fibers mimic the neural extracellular matrix, providing topographical and mechanical cues that enhance MSC adhesion, viability, and neural differentiation. MSCs are multipotent stem cells with robust paracrine and immunomodulatory activity, capable of supporting regeneration and, under proper stimuli, acquiring neural-like phenotypes. This systematic review, following the PRISMA 2020 method, analyzes 77 selected articles from the last ten years to assess the potential of electrospun biopolymer scaffolds for MSC-mediated neural repair. We critically examine the scaffold’s composition (synthetic and natural polymers), fiber architecture (alignment and diameter), structural and mechanical properties (porosity and stiffness), and biofunctionalization strategies. The influence of MSC tissue sources (bone marrow, adipose, and dental pulp) on neural differentiation outcomes is also discussed. The results of a literature search show both in vitro and in vivo enhanced neural marker expression, neurite extension, and functional recovery when MSCs are seeded onto optimized electrospun scaffolds. Therefore, integrating stem cell therapy with advanced biomaterials offers a promising route to bridge the gap between neural injury and functional regeneration. Full article
(This article belongs to the Special Issue Tissue Engineering Related Biomaterials: Progress and Challenges)
Show Figures

Figure 1

25 pages, 6099 KB  
Article
Marine Collagen from European Sea Bass (Dicentrarchus labrax) Waste for the Development of Chitosan/Collagen Scaffolds in Skin Tissue Engineering
by Alessandro Coppola, Maria Oliviero, Noemi De Cesare, Nello Russo, Noemi Nappo, Carmine Buonocore, Gerardo Della Sala, Pietro Tedesco, Fortunato Palma Esposito, Christian Galasso, Donatella de Pascale, Ugo D’Amora and Daniela Coppola
Mar. Drugs 2025, 23(10), 375; https://doi.org/10.3390/md23100375 - 25 Sep 2025
Abstract
Over the past years, with the growing interest in sustainable biomaterials, marine collagen has been emerging as an interesting alternative to bovine collagen. It is more easily absorbed by the body and has higher bioavailability. In this study, collagen was extracted from Dicentrarchus [...] Read more.
Over the past years, with the growing interest in sustainable biomaterials, marine collagen has been emerging as an interesting alternative to bovine collagen. It is more easily absorbed by the body and has higher bioavailability. In this study, collagen was extracted from Dicentrarchus labrax (sea bass) skin, a fishery by-product, thus valorizing waste streams while reducing environmental impact. To overcome the intrinsic weak mechanical of collagen, it was combined with chitosan to produce composite scaffolds for skin tissue engineering. The incorporation of collagen proved crucial for scaffold performance: (i) it promoted the formation of an open-pore architecture, favorable for cell infiltration and proliferation; (ii) it enhanced swelling behavior suitable for exudate absorption and maintenance of a moist wound environment; (iii) by tuning the chitosan/collagen ratio, it enabled us to control the degradation rate; (iv) it conferred antioxidant properties; and (iv) by adjusting collagen/chitosan concentrations, it allowed fine-tuning of mechanical properties, ensuring sufficient strength to resist stresses encountered during wound healing. In vitro assays demonstrated that the scaffolds were non-cytotoxic and effectively supported mouse adipose tissue fibroblasts’ adhesion and proliferation. Finally, all formulations exhibited marked bactericidal activity against the human pathogen Staphylococcus aureus and the methicillin-resistant Staphylococcus aureus, with a Log reduction greater than 3 (a reduction of at least 99.9% in bacterial growth) compared to the control. Collectively, these findings highlight collagen not only as a sustainable resource but also as a functional component that drives the structural, physicochemical, biological, and antimicrobial performance of chitosan/collagen scaffolds for skin tissue engineering. Full article
(This article belongs to the Special Issue Marine Collagen: From Biological Insights to Biomedical Breakthroughs)
Show Figures

Figure 1

18 pages, 3234 KB  
Article
Fabrication of Protein–Polysaccharide-Based Hydrogel Composites Incorporated with Magnetite Nanoparticles as Acellular Matrices
by Anet Vadakken Gigimon, Hatim Machrafi, Claire Perfetti, Patrick Hendrick and Carlo S. Iorio
Int. J. Mol. Sci. 2025, 26(19), 9338; https://doi.org/10.3390/ijms26199338 - 24 Sep 2025
Viewed by 25
Abstract
Hydrogels with protein–polysaccharide combinations are widely used in the field of tissue engineering, as they can mimic the in vivo environments of native tissues, specifically the extracellular matrix (ECM). However, achieving stability and mechanical properties comparable to those of tissues by employing natural [...] Read more.
Hydrogels with protein–polysaccharide combinations are widely used in the field of tissue engineering, as they can mimic the in vivo environments of native tissues, specifically the extracellular matrix (ECM). However, achieving stability and mechanical properties comparable to those of tissues by employing natural polymers remains a challenge due to their weak structural characteristics. In this work, we optimized the fabrication strategy of a hydrogel composite, comprising gelatin and sodium alginate (Gel-SA), by varying reaction parameters. Magnetite (Fe3O4) nanoparticles were incorporated to enhance the mechanical stability and structural integrity of the scaffold. The changes in hydrogel stiffness and viscoelastic properties due to variations in polymer mixing ratio, crosslinking time, and heating cycle, both before and after nanoparticle incorporation, were compared. FTIR spectra of crosslinked hydrogels confirmed physical interactions of Gel-SA, metal coordination bonds of alginate with Ca2+, and magnetite nanoparticles. Tensile and rheology tests confirmed that even at low magnetite concentration, the Gel-SA-Fe3O4 hydrogel exhibits mechanical properties comparable to soft tissues. This work has demonstrated enhanced resilience of magnetite-incorporated Gel-SA hydrogels during the heating cycle, compared to Gel-SA gel, as thermal stability is a significant concern for hydrogels containing gelatin. The interactions of thermoreversible gelatin, anionic alginate, and nanoparticles result in dynamic hydrogels, facilitating their use as viscoelastic acellular matrices. Full article
(This article belongs to the Special Issue Rational Design and Application of Functional Hydrogels)
Show Figures

Figure 1

19 pages, 307 KB  
Review
State of Research on Tissue Engineering with 3D Printing for Breast Reconstruction
by Gioacchino D. De Sario Velasquez, Yousef Tanas, Francesca Taraballi, Tanya Herzog and Aldona Spiegel
J. Clin. Med. 2025, 14(19), 6737; https://doi.org/10.3390/jcm14196737 - 24 Sep 2025
Viewed by 189
Abstract
Background: Three-dimensional (3-D) printing paired with tissue-engineering strategies promises to overcome the volume, contour, and donor-site limitations of traditional breast reconstruction. Patient-specific, bioabsorbable constructs could enable one-stage procedures that better restore aesthetics and sensation. Methods: A narrative review was conducted following a targeted [...] Read more.
Background: Three-dimensional (3-D) printing paired with tissue-engineering strategies promises to overcome the volume, contour, and donor-site limitations of traditional breast reconstruction. Patient-specific, bioabsorbable constructs could enable one-stage procedures that better restore aesthetics and sensation. Methods: A narrative review was conducted following a targeted PubMed search (inception—April 2025) using combinations of “breast reconstruction,” “tissue engineering,” “3-D printing,” and “scaffold.” Pre-clinical and clinical studies describing polymer-based chambers or scaffolds for breast mound or nipple regeneration were eligible. Data was extracted on scaffold composition, animal/human model, follow-up, and volumetric or histological outcomes. Results: Forty-three publications met inclusion criteria: 35 pre-clinical, six early-phase clinical, and two device reports. The predominant strategy (68% of studies) combined a vascularized fat flap with a custom 3-D-printed chamber to guide adipose expansion. Poly-lactic acid, poly-glyceric acid, poly-lactic-co-glycolic acid, poly-4-hydroxybutyrate, polycarbonate, and polycaprolactone were the principal polymers investigated; only poly-4-hydroxybutyrate and poly-lactic acid have been tested for nipple scaffolds. Bioabsorbable devices supported up to 140% volume gain in large-animal models, but even the best human series (≤18 months) achieved sub-mastectomy volumes and reported high seroma rates. Mechanical testing showed elastic moduli (5–80 MPa) compatible with native breast tissue, yet long-term load-bearing data are scarce. Conclusions: Current evidence demonstrates biocompatibility and incremental adipose regeneration, but clinical translation is constrained by small sample sizes, incomplete resorption profiles, and regulatory uncertainty. Standardized large-animal protocols, head-to-head polymer comparisons, and early human feasibility trials with validated outcome measures are essential next steps. Nevertheless, the convergence of 3-D printing and tissue engineering represents a paradigm shift that could ultimately enable bespoke, single-stage breast reconstruction with superior aesthetic and functional outcomes. Full article
15 pages, 4141 KB  
Article
Fabrication and Properties of Chitosan/Calcium Polyphosphate Fibre Composite Biological Scaffold
by Xiaohu Qiang, Zhu Hu, Wang Liu and Dajian Huang
Gels 2025, 11(10), 767; https://doi.org/10.3390/gels11100767 - 24 Sep 2025
Viewed by 51
Abstract
Natural biomaterials are widely used in the construction of cartilage tissue engineering due to their excellent biocompatibility, easy degradation, and ability to degrade products to be absorbed by the human body. However, due to their poor mechanical properties, it is usually necessary to [...] Read more.
Natural biomaterials are widely used in the construction of cartilage tissue engineering due to their excellent biocompatibility, easy degradation, and ability to degrade products to be absorbed by the human body. However, due to their poor mechanical properties, it is usually necessary to composite them with other materials to prepare biological scaffolds that meet the expected requirements. This study used freeze-drying technology to introduce calcium polyphosphate fibres (CPPFs) into a chitosan (CS) matrix to prepare composite scaffolds with better performance. CPPF was used as a filler and inorganic skeleton in the CS/CPPF composite to improve the properties of the CS-based scaffold. With little change in porosity, the compressive strength of the CS/CPPF composite scaffold increased from 0.172 MPa of chitosan to 0.332 MPa with the increase in CPPF addition. The water absorption rate of the composite scaffold decreased from 1297.42% to 935.37%. In vitro degradation experiments revealed that CPPF accelerated the degradation of the scaffold and generated calcium phosphate and nano-hydroxyapatite compounds during the degradation process. According to our cytotoxicity testing, the CS/CPPF composite scaffolds exhibited good biocompatibility and could enhance cell proliferation. This method of incorporating CPPF into CS provides important reference values for the application of CPPF in other natural bone tissue engineering scaffold materials. Full article
(This article belongs to the Special Issue Synthesis and Application of Aerogel (2nd Edition))
Show Figures

Graphical abstract

21 pages, 4703 KB  
Article
Development of Bioceramic Bone-Inspired Scaffolds Through Single-Step Melt-Extrusion 3D Printing for Segmental Defect Treatment
by Aikaterini Dedeloudi, Pietro Maria Bertelli, Laura Martinez-Marcos, Thomas Quinten, Imre Lengyel, Sune K. Andersen and Dimitrios A. Lamprou
J. Funct. Biomater. 2025, 16(10), 358; https://doi.org/10.3390/jfb16100358 - 23 Sep 2025
Viewed by 182
Abstract
The increasing demand for novel tissue engineering (TE) applications in bone tissue regeneration underscores the importance of exploring advanced manufacturing techniques and biomaterials for personalised treatment approaches. Three-dimensional printing (3DP) technology facilitates the development of implantable devices with intricate geometries, enabling patient-specific therapeutic [...] Read more.
The increasing demand for novel tissue engineering (TE) applications in bone tissue regeneration underscores the importance of exploring advanced manufacturing techniques and biomaterials for personalised treatment approaches. Three-dimensional printing (3DP) technology facilitates the development of implantable devices with intricate geometries, enabling patient-specific therapeutic solutions. Although Fused Filament Fabrication (FFF) and Direct Ink Writing (DIW) are widely utilised for fabricating bone-like implants, the need for multiple processing steps often prolongs the overall production time. In this study, a single-step melt-extrusion 3DP technique was performed to develop multi-material scaffolds including bioceramics, hydroxyapatite (HA), and β-tricalcium phosphate (TCP) in both their bioactive and calcined forms at 10% and 20% w/w, within polycaprolactone (PCL) matrices. Printing parameters were optimised, and physicochemical properties of all biomaterials and final forms were evaluated. Thermal degradation and surface morphology analyses assessed the consistency and distribution of the ceramics across the different formulations. The tensile testing of the scaffolds defined the impact of each ceramic type and wt% on scaffold flexibility performance, while in vitro cell studies determined the cytocompatibility efficiency. Hence, all 3D-printed PCL–ceramic composite scaffolds achieved structural integrity and physicochemical and thermal stability. The mechanical profile of extruded samples was relevant to the ceramic consistency, providing valuable insights for further mechanotransduction investigations. Notably, all materials showed high cell viability and proliferation, indicating strong biocompatibility. Therefore, this additive manufacturing (AM) process is a precise and fast approach for developing biomaterial-based scaffolds, with potential applications in surgical restoration and support of segmental bone defects. Full article
(This article belongs to the Section Synthesis of Biomaterials via Advanced Technologies)
Show Figures

Graphical abstract

13 pages, 250 KB  
Review
Nanocomposite Biomaterials for Tissue-Engineered Hernia Repair: A Review of Recent Advances
by Octavian Andronic, Alexandru Cosmin Palcau, Alexandra Bolocan, Alexandru Dinulescu, Daniel Ion and Dan Nicolae Paduraru
Biomolecules 2025, 15(9), 1348; https://doi.org/10.3390/biom15091348 - 22 Sep 2025
Viewed by 331
Abstract
Hernia repair is among the most frequent procedures in general surgery, traditionally performed with synthetic meshes such as polypropylene. While effective in reducing recurrence, these materials are biologically inert and often trigger chronic inflammation, fibrosis, pain, and impaired abdominal wall function, with a [...] Read more.
Hernia repair is among the most frequent procedures in general surgery, traditionally performed with synthetic meshes such as polypropylene. While effective in reducing recurrence, these materials are biologically inert and often trigger chronic inflammation, fibrosis, pain, and impaired abdominal wall function, with a significant impact on long-term quality of life. A comprehensive literature search was conducted in PubMed, Web of Science, and Scopus databases, and relevant preclinical, clinical, and review articles were synthesized within a narrative review framework. Recent advances in tissue engineering propose a shift from passive reinforcement to regenerative strategies based on biomimetic scaffolds, nanomaterials, and nanocomposites that replicate the extracellular matrix, enhance cell integration, and provide controlled drug delivery. Nanotechnology enables localized release of anti-inflammatory, antimicrobial, and pro-angiogenic agents, while electrospun nanofibers and composite scaffolds improve strength and elasticity. In parallel, 3D printing allows for patient-specific implants with tailored architecture and regenerative potential. Although preclinical studies show encouraging results, clinical translation remains limited by cost, regulatory constraints, and long-term safety uncertainties. Overall, these innovations highlight a transition toward personalized and regenerative hernia repair, aiming to improve durability, function, and patient quality of life. Full article
11 pages, 2071 KB  
Article
Composite Electroforming of a Binder-Free Porous Ni/S-PTh Electrode for Li–S Batteries by Combining 3D Printing, Pulse Plating, and Composite Electrodeposition
by Wassima El Mofid, Robin Arnet, Oliver Kesten and Timo Sörgel
Batteries 2025, 11(9), 343; https://doi.org/10.3390/batteries11090343 - 19 Sep 2025
Viewed by 318
Abstract
A novel process for the synthesis of binder-free, porous nickel/polythiophene-functionalized sulfur (Ni/S-PTh) composite cathodes for lithium–sulfur (Li–S) batteries is introduced in this paper. Initially, a polyvinyl butyl polymer scaffold is 3D printed, then coated with a graphite-based conducting layer, and, finally, it is [...] Read more.
A novel process for the synthesis of binder-free, porous nickel/polythiophene-functionalized sulfur (Ni/S-PTh) composite cathodes for lithium–sulfur (Li–S) batteries is introduced in this paper. Initially, a polyvinyl butyl polymer scaffold is 3D printed, then coated with a graphite-based conducting layer, and, finally, it is pulse-plated for nickel deposition to produce a high-surface-area, mechanically stable current collector. S-PTh particles are afterwards co-deposited into the Ni matrix through composite electrodeposition. After the dissolution of the polymer template, the resulting self-standing electrodes still maintain porous structure with uniform sulfur distribution and a distinct transition between the dense Ni layer and the Ni/S-PTh composite layer. Electrochemical characterization of the Ni/S-PTh composite cathodes by galvanostatic cycling at C/10 rate results in an initial specific discharge capacity of ~1120 mAh·g−1 and a specific capacity of ~910 mAh·g−1 after 200 cycles, resulting in a high capacity retention of ~81 %. For our novel approach, no steps at high temperatures or toxic solvents are involved and the need for polymer binders and conductive additives is avoided. These results demonstrate the potential of composite electrodeposition in combination with 3D printing for producing sustainable, high-performance sulfur cathodes with tunable architecture. Full article
Show Figures

Figure 1

19 pages, 4758 KB  
Article
Optimization of Gelatin-Based Scaffolds for Soft Tissue Regeneration: In Vitro and In Vivo Performance
by Zita Szűcs-Takács, Viktória Varga, Fanni Bán, Viktória Harcsa, Balázs Pinke, Róbert Várdai, Fatime Gajnut, Enikő Major and István Hornyák
Int. J. Mol. Sci. 2025, 26(18), 9106; https://doi.org/10.3390/ijms26189106 - 18 Sep 2025
Viewed by 246
Abstract
In this study, promising compositions of cross-linked gelatin-based scaffolds were tested in vitro and in vivo. Our aim was to utilize a solid matrix that is suitable for medical applications, and to be regulated as a medical device as a soft tissue implant. [...] Read more.
In this study, promising compositions of cross-linked gelatin-based scaffolds were tested in vitro and in vivo. Our aim was to utilize a solid matrix that is suitable for medical applications, and to be regulated as a medical device as a soft tissue implant. Three different cross-linkers were used in vitro, and the optimal composition was chosen for in vivo testing. The surfaces of the scaffolds were observed with SEM, and, in the case of divinyl sulfone (DVS), small cracks appeared, and the structure was rigid. With the use of poly(ethylene glycol) diglycidyl ether (PEGDE), the surface was found to be uneven, but generally, the appearance was similar in each case. The optimal scaffold contained 5 v/v % 1,4-butanediol diglycidyl ether (BDDE), and was implanted for either one month or three months in the back of BL6 mice. The explants were assessed using analytical techniques, including microscopic imaging and histological analysis, and it was found that cells, connective tissue, and extracellular matrix (ECM) were all able to successfully infiltrate the scaffolds and did not induce any inflammation. In summary, these novel implants seem to promote blood vessel formation and support the adherence of adipose tissue, as confirmed by optical microscopy and histological evaluations. Full article
(This article belongs to the Special Issue Collagen and Its Derivatives in Tissue Engineering)
Show Figures

Graphical abstract

Back to TopTop