Sign in to use this feature.

Years

Between: -

Subjects

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Journals

Article Types

Countries / Regions

Search Results (4)

Search Parameters:
Keywords = concanamycin

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
37 pages, 5647 KB  
Article
Vacuolar ATPase Is a Possible Therapeutic Target in Acute Myeloid Leukemia: Focus on Patient Heterogeneity and Treatment Toxicity
by Sushma Bartaula-Brevik, Calum Leitch, Maria Hernandez-Valladares, Elise Aasebø, Frode S. Berven, Frode Selheim, Annette K. Brenner, Kristin Paulsen Rye, Marie Hagen, Håkon Reikvam, Emmet McCormack, Øystein Bruserud and Tor Henrik Anderson Tvedt
J. Clin. Med. 2023, 12(17), 5546; https://doi.org/10.3390/jcm12175546 - 25 Aug 2023
Cited by 7 | Viewed by 2833
Abstract
Vacuolar ATPase (V-ATPase) is regarded as a possible target in cancer treatment. It is expressed in primary acute myeloid leukemia cells (AML), but the expression varies between patients and is highest for patients with a favorable prognosis after intensive chemotherapy. We therefore investigated [...] Read more.
Vacuolar ATPase (V-ATPase) is regarded as a possible target in cancer treatment. It is expressed in primary acute myeloid leukemia cells (AML), but the expression varies between patients and is highest for patients with a favorable prognosis after intensive chemotherapy. We therefore investigated the functional effects of two V-ATPase inhibitors (bafilomycin A1, concanamycin A) for primary AML cells derived from 80 consecutive patients. The V-ATPase inhibitors showed dose-dependent antiproliferative and proapoptotic effects that varied considerably between patients. A proteomic comparison of primary AML cells showing weak versus strong antiproliferative effects of V-ATPase inhibition showed a differential expression of proteins involved in intracellular transport/cytoskeleton functions, and an equivalent phosphoproteomic comparison showed a differential expression of proteins that regulate RNA processing/function together with increased activity of casein kinase 2. Patients with secondary AML, i.e., a heterogeneous subset with generally adverse prognosis and previous cytotoxic therapy, myeloproliferative neoplasia or myelodysplastic syndrome, were characterized by a strong antiproliferative effect of V-ATPase inhibition and also by a specific mRNA expression profile of V-ATPase interactome proteins. Furthermore, the V-ATPase inhibition altered the constitutive extracellular release of several soluble mediators (e.g., chemokines, interleukins, proteases, protease inhibitors), and increased mediator levels in the presence of AML-supporting bone marrow mesenchymal stem cells was then observed, especially for patients with secondary AML. Finally, animal studies suggested that the V-ATPase inhibitor bafilomycin had limited toxicity, even when combined with cytarabine. To conclude, V-ATPase inhibition has antileukemic effects in AML, but this effect varies between patients. Full article
(This article belongs to the Special Issue Recent Progress in Leukemia: Where Do We Stand?)
Show Figures

Figure 1

31 pages, 5851 KB  
Article
Sugar Starvation Disrupts Lipid Breakdown by Inducing Autophagy in Embryonic Axes of Lupin (Lupinus spp.) Germinating Seeds
by Sławomir Borek, Szymon Stefaniak, Katarzyna Nuc, Łukasz Wojtyla, Ewelina Ratajczak, Ewa Sitkiewicz, Agata Malinowska, Bianka Świderska, Karolina Wleklik and Małgorzata Pietrowska-Borek
Int. J. Mol. Sci. 2023, 24(14), 11773; https://doi.org/10.3390/ijms241411773 - 21 Jul 2023
Cited by 6 | Viewed by 2833
Abstract
Under nutrient deficiency or starvation conditions, the mobilization of storage compounds during seed germination is enhanced to primarily supply respiratory substrates and hence increase the potential of cell survival. Nevertheless, we found that, under sugar starvation conditions in isolated embryonic axes of white [...] Read more.
Under nutrient deficiency or starvation conditions, the mobilization of storage compounds during seed germination is enhanced to primarily supply respiratory substrates and hence increase the potential of cell survival. Nevertheless, we found that, under sugar starvation conditions in isolated embryonic axes of white lupin (Lupinus albus L.) and Andean lupin (Lupinus mutabilis Sweet) cultured in vitro for 96 h, the disruption of lipid breakdown occurs, as was reflected in the higher lipid content in the sugar-starved (-S) than in the sucrose-fed (+S) axes. We postulate that pexophagy (autophagic degradation of the peroxisome—a key organelle in lipid catabolism) is one of the reasons for the disruption in lipid breakdown under starvation conditions. Evidence of pexophagy can be: (i) the higher transcript level of genes encoding proteins of pexophagy machinery, and (ii) the lower content of the peroxisome marker Pex14p and its increase caused by an autophagy inhibitor (concanamycin A) in -S axes in comparison to the +S axes. Additionally, based on ultrastructure observation, we documented that, under sugar starvation conditions lipophagy (autophagic degradation of whole lipid droplets) may also occur but this type of selective autophagy seems to be restricted under starvation conditions. Our results also show that autophagy occurs at the very early stages of plant growth and development, including the cells of embryonic seed organs, and allows cell survival under starvation conditions. Full article
(This article belongs to the Special Issue New Insight into Signaling and Autophagy in Plants 3.0)
Show Figures

Figure 1

20 pages, 5932 KB  
Article
Disruption of pH Dynamics Suppresses Proliferation and Potentiates Doxorubicin Cytotoxicity in Breast Cancer Cells
by Diana Tavares-Valente, Bárbara Sousa, Fernando Schmitt, Fátima Baltazar and Odília Queirós
Pharmaceutics 2021, 13(2), 242; https://doi.org/10.3390/pharmaceutics13020242 - 9 Feb 2021
Cited by 16 | Viewed by 3609
Abstract
The reverse pH gradient is a major feature associated with cancer cell reprogrammed metabolism. This phenotype is supported by increased activity of pH regulators like ATPases, carbonic anhydrases (CAs), monocarboxylate transporters (MCTs) and sodium–proton exchangers (NHEs) that induce an acidic tumor microenvironment, responsible [...] Read more.
The reverse pH gradient is a major feature associated with cancer cell reprogrammed metabolism. This phenotype is supported by increased activity of pH regulators like ATPases, carbonic anhydrases (CAs), monocarboxylate transporters (MCTs) and sodium–proton exchangers (NHEs) that induce an acidic tumor microenvironment, responsible for the cancer acid-resistant phenotype. In this work, we analyzed the expression of these pH regulators and explored their inhibition in breast cancer cells as a strategy to enhance the sensitivity to chemotherapy. Expression of the different pH regulators was evaluated by immunofluorescence and Western blot in two breast cancer cell lines (MDA-MB-231 and MCF-7) and by immunohistochemistry in human breast cancer tissues. Cell viability, migration and invasion were evaluated upon exposure to the pH regulator inhibitors (PRIs) concanamycin-A, cariporide, acetazolamide and cyano-4-hydroxycinnamate. Additionally, PRIs were combined with doxorubicin to analyze the effect of cell pH dynamic disruption on doxorubicin sensitivity. Both cancer cell lines expressed all pH regulators, except for MCT1 and CAXII, only expressed in MCF-7 cells. There was higher plasma membrane expression of the pH regulators in human breast cancer tissues than in normal breast epithelium. Additionally, pH regulator expression was significantly associated with different molecular subtypes of breast cancer. pH regulator inhibition decreased cancer cell aggressiveness, with a higher effect in MDA-MB-231. A synergistic inhibitory effect was observed when PRIs were combined with doxorubicin in the breast cancer cell line viability. Our results support proton dynamic disruption as a breast cancer antitumor strategy and the use of PRIs to boost the activity of conventional therapy. Full article
(This article belongs to the Collection Women in Pharmaceutics)
Show Figures

Figure 1

13 pages, 5668 KB  
Article
Niclosamide Triggers Non-Canonical LC3 Lipidation
by Yajun Liu, Xia Luo, Hao Shan, Yuanyuan Fu, Qianqian Gu, Xueping Zheng, Qi Dai, Fan Xia, Zhihua Zheng, Peiqing Liu, Xiao-Ming Yin, Liang Hong and Min Li
Cells 2019, 8(3), 248; https://doi.org/10.3390/cells8030248 - 15 Mar 2019
Cited by 18 | Viewed by 6316
Abstract
Autophagy is a highly- evolutionarily-conserved catabolic pathway activated by various cellular stresses. Recently, non-canonical autophagy (NCA), which does not require all of the ATG proteins to form autophagosome or autophagosome-like structures, has been found in various conditions. Moreover, mounting evidence has indicated that [...] Read more.
Autophagy is a highly- evolutionarily-conserved catabolic pathway activated by various cellular stresses. Recently, non-canonical autophagy (NCA), which does not require all of the ATG proteins to form autophagosome or autophagosome-like structures, has been found in various conditions. Moreover, mounting evidence has indicated that non-canonical LC3 lipidation (NCLL) may reflect NCA. We and others have reported that niclosamide (Nic), an anti-helminthic drug approved by the Food and Drug Administration, could induce canonical autophagy via a feedback downregulation of mTOR complex 1. In this study, we found that Nic could also induce NCLL, which is independent of the ULK1 complex and Beclin 1 complex, but dependent on ubiquitin-like conjugation systems. Although bafilomycin A1 and concanamycin A, two known V-ATPase inhibitors, significantly inhibited Nic-induced NCLL, Nic-induced NCLL was demonstrated to be independent of V-ATPase. In addition, the Golgi complex and vimentin were involved in Nic-induced NCLL, which might be a platform or membrane source for Nic-induced LC3-positive structures. These results would be helpful to broaden our understanding of the working mechanisms of Nic and evaluate its pharmacological activities in diseases. Full article
(This article belongs to the Section Autophagy)
Show Figures

Figure 1

Back to TopTop