Sign in to use this feature.

Years

Between: -

Subjects

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Journals

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Article Types

Countries / Regions

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Search Results (1,317)

Search Parameters:
Keywords = condensed phase

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
18 pages, 334 KB  
Review
Neuronal Death and Biomolecular Condensates: Are There Any New Treatment Options for Alzheimer’s Disease?
by Urszula Kochman, Hanna Sitka, Julia Kuźniar, Magdalena Czaja, Patrycja Kozubek, Jan Aleksander Beszłej and Jerzy Leszek
Cells 2025, 14(17), 1356; https://doi.org/10.3390/cells14171356 (registering DOI) - 30 Aug 2025
Abstract
Alzheimer’s disease (AD) is marked by the pathological aggregation of amyloid β (Aβ) and tau proteins. Emerging research reveals that these proteins undergo liquid–liquid phase separation (LLPS), forming biomolecular condensates that promote aggregation and neurotoxicity. These phase-separated structures reshape the intracellular environment, facilitating [...] Read more.
Alzheimer’s disease (AD) is marked by the pathological aggregation of amyloid β (Aβ) and tau proteins. Emerging research reveals that these proteins undergo liquid–liquid phase separation (LLPS), forming biomolecular condensates that promote aggregation and neurotoxicity. These phase-separated structures reshape the intracellular environment, facilitating protein misfolding and spreading. This review highlights recent advances in understanding the role of condensates in AD pathogenesis and explores novel therapeutic strategies targeting condensate dynamics. Promising approaches include small molecules that disrupt LLPS, epigenetic drugs influencing nuclear condensates, and compounds like DDL 920 and RI AG03 that modulate tau phase separation and neuroinflammation, respectively. Additionally, anti-inflammatory agents, such as nucleotide reverse transcriptase inhibitors (NRTIs), offer potential for upstream intervention. Targeting biomolecular condensates presents a next-generation strategy for AD treatment. Future research should focus on in vivo profiling of condensate composition, biomarker development, and the development of patient-specific therapies to enable early, disease-modifying interventions. Full article
14 pages, 1806 KB  
Article
Release and Cytocompatibility Study of New Hybrid Materials Based on Ferulic Acid for Biomedical Use
by Federico Barrino, Federica Giuliano and Clelia Dispenza
Int. J. Mol. Sci. 2025, 26(17), 8450; https://doi.org/10.3390/ijms26178450 (registering DOI) - 30 Aug 2025
Abstract
In recent years, research into the synthesis of innovative biomaterials for prosthetic applications has been increasingly growing. In particular, there is a demand for biomaterials with an excellent biocompatibility that can interact with biological fluids. This study involved the development of new silica [...] Read more.
In recent years, research into the synthesis of innovative biomaterials for prosthetic applications has been increasingly growing. In particular, there is a demand for biomaterials with an excellent biocompatibility that can interact with biological fluids. This study involved the development of new silica (SiO2)-based composite materials using the sol–gel technique and functionalization with ferulic acid (FA), a natural phenolic compound renowned for its biological properties. The synthesis involved controlling the hydrolysis and condensation of tetraethyl orthosilicate (TEOS) in acidic and alcoholic environments to incorporate ferulic acid into the sol phase matrix at different weight compositions (5, 10, 15, and 20 wt%). Fourier transform infrared spectroscopy analyses (FTIR) confirmed the successful incorporation of the bioactive compound, and in vitro tests revealed a good cytocompatibility and controlled ferulic acid release over time. These results demonstrate that the developed material shows promise as a bioactive coating for orthopedic prostheses, improving bone integration and reducing undesirable post-operative phenomena. Full article
(This article belongs to the Special Issue Emerging Biomaterials for Cartilage Regeneration)
Show Figures

Figure 1

28 pages, 1198 KB  
Review
A Perspective on the Role of Mitochondrial Biomolecular Condensates (mtBCs) in Neurodegenerative Diseases and Evolutionary Links to Bacterial BCs
by Matteo Calcagnile, Pietro Alifano, Fabrizio Damiano, Paola Pontieri and Luigi Del Giudice
Int. J. Mol. Sci. 2025, 26(17), 8216; https://doi.org/10.3390/ijms26178216 - 24 Aug 2025
Viewed by 555
Abstract
Biomolecular condensates (BCs), formed through liquid–liquid phase separation (LLPS), are membraneless compartments that dynamically regulate key cellular processes. Beyond their canonical roles in energy metabolism and apoptosis, Mitochondria harbor distinct BCs, including mitochondrial RNA granules (MRGs), nucleoids, and degradasomes, that coordinate RNA processing, [...] Read more.
Biomolecular condensates (BCs), formed through liquid–liquid phase separation (LLPS), are membraneless compartments that dynamically regulate key cellular processes. Beyond their canonical roles in energy metabolism and apoptosis, Mitochondria harbor distinct BCs, including mitochondrial RNA granules (MRGs), nucleoids, and degradasomes, that coordinate RNA processing, genome maintenance, and protein homeostasis. These structures rely heavily on proteins with intrinsically disordered regions (IDRs), which facilitate the transient and multivalent interactions necessary for LLPS. In this review, we explore the composition and function of mitochondrial BCs and their emerging involvement in neurodegenerative diseases such as Alzheimer’s disease, Parkinson’s disease, Amyotrophic lateral sclerosis, and Huntington’s disease. We provide computational evidence identifying IDR-containing proteins within the mitochondrial proteome and demonstrate their enrichment in BC-related functions. Many of these proteins are also implicated in mitochondrial stress responses, apoptosis, and pathways associated with neurodegeneration. Moreover, the evolutionary conservation of phase-separating proteins from bacteria to mitochondria underscores the ancient origin of LLPS-mediated compartmentalization. Comparative analysis reveals functional parallels between mitochondrial and prokaryotic IDPs, supporting the use of bacterial models to study mitochondrial condensates. Overall, this review underscores the critical role of mitochondrial BCs in health and disease and highlights the potential of targeting LLPS mechanisms in the development of therapeutic strategies. Full article
(This article belongs to the Special Issue Molecular Mechanisms of Mitochondrial Neurodegenerative Diseases)
Show Figures

Figure 1

15 pages, 997 KB  
Review
Surface-Coated Nano-Sized Aluminum Powder’s Applications in Explosives and Propellants: A Review
by Weipeng Zhang, Huili Guo and Weiqiang Pang
Nanomaterials 2025, 15(17), 1295; https://doi.org/10.3390/nano15171295 - 22 Aug 2025
Viewed by 340
Abstract
Aluminum powder has the advantages of high calorific value, high density and convenient source, and is a commonly used metal fuel in the explosives and propellants industry. Nanometer aluminum powder (nAl) has higher reactivity and higher reaction completeness than micron aluminum powder (μAl), [...] Read more.
Aluminum powder has the advantages of high calorific value, high density and convenient source, and is a commonly used metal fuel in the explosives and propellants industry. Nanometer aluminum powder (nAl) has higher reactivity and higher reaction completeness than micron aluminum powder (μAl), which can improve the energy performance of mixed explosives and the burning rate of propellant. However, nAl has some disadvantages, such as easy oxidation and deterioration of the preparation process, which seriously affect its application efficiency. In order to improve these shortcomings, suitable surface coating treatment is needed. The effects of surface coating on the characteristics of nAl and on the energy and safety of explosives are summarized in this paper. The results show that surface coating of nAl can not only improve the compatibility between nAl and energetic materials, reduce the hygroscopicity of energetic composites, mitigate the easy oxidation of nAl, and protect the preparation process, but also improve the energy performance of explosives and the burning rate of propellant, increase the reaction characteristics of energetic mixtures, and reduce the mechanical sensitivity of those mixtures. In addition, the surface coating modification of nAl can obviously reduce the agglomeration of condensed-phase combustion products, thus reducing the loss of propulsion efficiency caused by agglomeration. This study is expected to provide reference for the surface coating of nAl and its application in explosives. Full article
Show Figures

Graphical abstract

16 pages, 2412 KB  
Article
Coupling of Ammonium Dihydrogen Phosphate Additives with LiPF6 Electrolytes for Improving Thermal Stability and Performance of Lithium-Ion Batteries
by M. Thien Phung, T. Thu Phuong Vu, Seung Beop Lee, Ing Kong, Min Kim, Mohammad Shaheer Akhtar and O-Bong Yang
Micromachines 2025, 16(9), 966; https://doi.org/10.3390/mi16090966 - 22 Aug 2025
Viewed by 308
Abstract
The flammability and volatility of conventional lithium hexafluorophosphate (LiPF6)-based electrolytes with organic carbonate solvents remain critical issues to the safety and thermal stability of lithium-ion batteries (LIBs). This study investigates the incorporation of phosphate-based additives including ammonium dihydrogen phosphate (ADP), trimethyl [...] Read more.
The flammability and volatility of conventional lithium hexafluorophosphate (LiPF6)-based electrolytes with organic carbonate solvents remain critical issues to the safety and thermal stability of lithium-ion batteries (LIBs). This study investigates the incorporation of phosphate-based additives including ammonium dihydrogen phosphate (ADP), trimethyl phosphate (TMP), and trimethyl phosphite (TMPi) into LiPF6 electrolytes for improving the ionic conductivity, safety, and electrochemical performance of LIBs. Self-extinguishing time (SET) measurements demonstrated that the ADP-based LiPF6 electrolyte significantly reduced flammability, achieving a shorter SET of 04 min 53 s, compared to 12 min for the pristine LiPF6 electrolyte. The ADP-based LiPF6 electrolyte possessed the highest ionic conductivity (14.08 mS·cm−1) with an excellent lithium-ion transference number of 0.0076. Electrochemical impedance spectroscopy (EIS) and cyclic voltammetry (C-V) analyses demonstrated that ADP lowered interfacial resistance and stabilized long-term cycling behavior. In particular, the 1% ADP-based LiPF6 electrolyte maintained improved charge-discharge profiles and Coulombic efficiency over 200 cycles. These results highlight ADP’s dual functionality in suppressing gas-phase flammability and enhancing condensed-phase electrochemical stability, making it a promising candidate for next-generation, high-safety, high-performance LIB electrolytes. Full article
Show Figures

Figure 1

25 pages, 20084 KB  
Article
Phase Evolution History of Deep-Seated Hydrocarbon Fluids in the Western Junggar Basin: Insights from Geochemistry, PVT, and Basin Modeling
by Maoguo Hou, Xiujian Ding, Chenglin Chu, Jie Wang, Jiwen Huang, Hailei Liu, Wenlong Jiang, Ming Zha, Gang Yue and Keshun Liu
Processes 2025, 13(8), 2667; https://doi.org/10.3390/pr13082667 - 21 Aug 2025
Viewed by 283
Abstract
Clarifying the phase evolution history of hydrocarbon fluids helps formulate exploration and development strategies. The discovery of the Xinguang Gas Field marks a significant breakthrough in the Western Junggar Basin. However, the phase evolution history of this gas field remains unclear, which hinders [...] Read more.
Clarifying the phase evolution history of hydrocarbon fluids helps formulate exploration and development strategies. The discovery of the Xinguang Gas Field marks a significant breakthrough in the Western Junggar Basin. However, the phase evolution history of this gas field remains unclear, which hinders the formulation of subsequent exploration strategies. This study employs a comprehensive approach, combining organic geochemistry, fluid inclusions, basin modeling, and PVT testing and simulation, to investigate the characteristics and phase behavior of deep-seated hydrocarbon fluids in this gas field. It also examines the charging history, compositional evolution, and temperature and pressure histories of the reservoir, thereby clarifying the phase transition process of hydrocarbon fluids in the Xinguang Gas Field. This study finds that the deep-seated reservoir fluids in the Jiamuhe Formation (Fm.) of the Xinguang Gas Field exhibit low densities of 0.77 to 0.83 g/cm3, high gas-to-oil ratios (GORs) of 1014.41 to 13,054.77 m3/m3, high methane contents of 91.16% to 92.74%, and retrograde condensation characteristics. Additionally, the reservoir temperature and pressure exceed the critical point and the saturation pressure at reservoir temperature, indicating a supercritical condensate gas phase. The present condensate gas in the Xinguang Gas Field is a mixed hydrocarbon from two charging events. Initially, during the Middle–Late Triassic period, both Block 1 and the Xinguang Gas Field were charged with mature oil. Later, from the Late Cretaceous to Early Neogene periods, a secondary charging of highly mature oil and gas occurred in the Xinguang Gas Field, while the reservoir in Block 1 remained largely unchanged. In the co-evolution of reservoir fluid composition, temperature, and pressure, the phase transitions of the hydrocarbon fluids in the Xinguang Gas Field passed through several stages, including liquid black oil (231.9–80.3 Ma), liquid volatile oil (80.3–79.1 Ma), vapor–liquid two-phase volatile oil (79.1–78.3 Ma), vapor–liquid two-phase condensate gas (78.3–69.1 Ma), and supercritical condensate gas (69.1 Ma–present). Full article
(This article belongs to the Section Energy Systems)
Show Figures

Figure 1

9 pages, 306 KB  
Article
Description of the Condensed Phases of Water in Terms of Quantum Condensates
by François Fillaux
Entropy 2025, 27(8), 885; https://doi.org/10.3390/e27080885 - 21 Aug 2025
Viewed by 287
Abstract
The “abnormal” properties of ice and liquid water can be explained by a hybrid quantum/classical framework based on objective facts. Internal decoherence due to the low dissociation energy of the H-bond and the strong electric dipole moment lead to a quantum condensate of [...] Read more.
The “abnormal” properties of ice and liquid water can be explained by a hybrid quantum/classical framework based on objective facts. Internal decoherence due to the low dissociation energy of the H-bond and the strong electric dipole moment lead to a quantum condensate of O atoms dressed with classical oscillators and a degenerate electric field. These classical oscillators are either subject to equipartition in the liquid or enslaved to the field interference in the ice. A set of four observables and the degeneracy entropy explain the heat capacities, temperatures, and latent heats of the quantum phase transition; the super-thermal-insulator state of the ice; the transition between high- and low-density liquids by supercooling; AND the temperature of the liquid’s maximum density. The condensate also describes an aerosol of water droplets. In conclusion, quantum condensates turn out to be an essential part of our everyday environment. Full article
(This article belongs to the Special Issue Entanglement Entropy and Quantum Phase Transition)
Show Figures

Figure 1

22 pages, 10063 KB  
Review
Flame-Retardant Polyurea Coatings: Mechanisms, Strategies, and Multifunctional Enhancements
by Danni Pan, Dehui Jia, Yao Yuan, Ying Pan, Wei Wang and Lulu Xu
Fire 2025, 8(8), 334; https://doi.org/10.3390/fire8080334 - 21 Aug 2025
Viewed by 527
Abstract
The imperative for high-performance protective materials has catalyzed the rapid evolution of polyurea (PUA) coatings, widely recognized for their mechanical robustness, chemical resistance, and rapid-curing properties. However, their inherent flammability and harmful combustion byproducts pose significant challenges for safe use in applications where [...] Read more.
The imperative for high-performance protective materials has catalyzed the rapid evolution of polyurea (PUA) coatings, widely recognized for their mechanical robustness, chemical resistance, and rapid-curing properties. However, their inherent flammability and harmful combustion byproducts pose significant challenges for safe use in applications where fire safety is a critical concern. In response, significant efforts focus on improving the fire resistance of PUA materials through chemical modifications and the use of functional additives. The review highlights progress in developing flame-retardant approaches for PUA coatings, placing particular emphasis on the underlying combustion mechanisms and the combined action of condensed-phase, gas-phase, and interrupted heat feedback pathways. Particular emphasis is placed on phosphorus-based, intumescent, and nano-enabled flame retardants, as well as hybrid systems incorporating two-dimensional nanomaterials and metal–organic frameworks, with a focus on exploring their synergistic effects in enhancing thermal stability, reducing smoke production, and maintaining mechanical integrity. By evaluating current strategies and recent progress, this work identifies key challenges and outlines future directions for the development of high-performance and fire-safe PUA coatings. These insights aim to guide the design of next-generation protective materials that meet the growing demand for safety and sustainability in advanced engineering applications. Full article
(This article belongs to the Special Issue Fire, Polymers, and Retardants: Innovations in Fire Safety)
Show Figures

Figure 1

24 pages, 4816 KB  
Article
Formulation of Honokiol- and Magnolol-Loaded Nanoemulsions for Head and Neck Cancer Adjuvant Therapy: Evaluation of Radiation Sterilization Effects on Active Substance Properties
by Katarzyna Dominiak, Aleksandra Gostyńska-Stawna, Agnieszka Sobczak, Jarosław Paluszczak, Aneta Woźniak-Braszak, Mikołaj Baranowski, Paweł Bilski, Barbara Wicher, Ewa Tykarska, Anna Jelińska and Maciej Stawny
Int. J. Mol. Sci. 2025, 26(16), 8032; https://doi.org/10.3390/ijms26168032 - 20 Aug 2025
Viewed by 298
Abstract
Honokiol (HON) and magnolol (MAG), structural isomers from Magnolia officinalis, exhibit notable anticancer activity, particularly against head and neck squamous cell carcinoma (HNSCC). However, due to their high lipophilicity, their intravenous administration is challenging. This study aimed to develop HON- and MAG-loaded [...] Read more.
Honokiol (HON) and magnolol (MAG), structural isomers from Magnolia officinalis, exhibit notable anticancer activity, particularly against head and neck squamous cell carcinoma (HNSCC). However, due to their high lipophilicity, their intravenous administration is challenging. This study aimed to develop HON- and MAG-loaded intravenous (IV) nanoemulsions using commercial lipid preparations with varying fatty acid compositions. The formulations were physicochemically characterized and evaluated in vitro using FaDu and SCC-040 HNSCC cell lines. HON and MAG were sterilized via ionizing radiation at doses of 25, 100, and 400 kGy. Their suitability for IV use was assessed through PXRD, DSC, TGA, EPR, FT-IR, NMR, and HPLC analyses. All formulations met safety criteria for IV administration, with mean droplet diameters below 241 nm and encapsulation efficiencies exceeding 95%. They significantly reduced cancer cell viability, with a synergistic effect observed in combined HON and MAG formulations compared to single-compound nanoemulsions. Clinoleic-based formulations showed enhanced anticancer efficacy, likely due to the pro-apoptotic properties of oleic acid. Notably, radiation sterilization at the standard 25 kGy dose preserved the thermal, crystalline, and structural stability of HON and MAG, whereas higher doses (400 kGy) induced degradation. Although free radicals were detected via EPR, their transient nature and rapid decay confirmed the method’s safety. HON/MAG-loaded nanoemulsions exhibited strong anticancer potential, while radiation sterilization at 25 kGy ensured sterility without compromising stability. These findings provide a preliminary in vitro basis for future in vivo studies investigating HON and MAG as potential adjuvant therapies for HNSCC. Full article
(This article belongs to the Special Issue Drug Discovery: Natural Products and Compounds)
Show Figures

Figure 1

19 pages, 11203 KB  
Article
In Situ TEM Observation of Electric Field-Directed Self-Assembly of PbS and PbSe Nanoparticles
by Iryna Zelenina, Harald Böttner, Marcus Schmidt, Yuri Grin and Paul Simon
Nanomaterials 2025, 15(16), 1275; https://doi.org/10.3390/nano15161275 - 18 Aug 2025
Viewed by 428
Abstract
Nano-sized particles of semiconducting lead sulfide and selenide and their 2D thin layers show high potential in applications, such as field-effect transistors, photodetectors, solar cells, and thermoelectric devices. The generation of PbS and PbSe nanobars and nanocubes is evoked by in situ electron [...] Read more.
Nano-sized particles of semiconducting lead sulfide and selenide and their 2D thin layers show high potential in applications, such as field-effect transistors, photodetectors, solar cells, and thermoelectric devices. The generation of PbS and PbSe nanobars and nanocubes is evoked by in situ electron beam treatment, leading to the formation of thin, extended 2D nanolayers. The initial single crystals are decomposed via sublimation of PbS and PbSe in terms of molecular and atomic fragments, which finally condense on the cold substrate to form nanostructures. The fragments in the gas phase were proven using mass spectrometry. In the case of PbS, Pb+ and PbS+ species could were detected, whereas PbSe disintegrated into Pb+, Se2+, and PbSe+. The threshold current that initiates fragmentation increases from PbTe via PbSe up to PbS, which is in line with the increasing crystal formation energies. The uniform orientation of independently formed nanoparticles on the macroscopic scale can be explained by an external electric field acting on emerging dipolar nanospecies. The external dipole field originates from the sputtered mother crystal, where the electron flux is initiated; thus, a current arises between the crystal’s hot and cold ends. On the contrary, in small single crystals, due to the lack of sufficient charge carriers, only local material excavation is detected instead of extended depletion and subsequent nanoparticle deposition. This fragmentation process may represent a new preparation route that provides lead chalcogenide nanofilms that are free of contamination or surfactant participation, which are typical drawbacks associated with the application of wet chemical methods. Full article
Show Figures

Figure 1

51 pages, 29464 KB  
Review
Impact of Aerosols on Cloud Microphysical Processes: A Theoretical Review
by Kécia Maria Roberto da Silva, Dirceu Luís Herdies, Paulo Yoshio Kubota, Caroline Bresciani and Silvio Nilo Figueroa
Geosciences 2025, 15(8), 312; https://doi.org/10.3390/geosciences15080312 - 11 Aug 2025
Viewed by 418
Abstract
The direct relationship between aerosols and clouds strongly influences the effects of clouds on the global climate. Aerosol particles act as cloud condensation nuclei (CCN) and ice nuclei (IN), affecting cloud formation, microphysics, and precipitation, as well as increasing the reflection of solar [...] Read more.
The direct relationship between aerosols and clouds strongly influences the effects of clouds on the global climate. Aerosol particles act as cloud condensation nuclei (CCN) and ice nuclei (IN), affecting cloud formation, microphysics, and precipitation, as well as increasing the reflection of solar radiation at the cloud tops. Processes such as gas-to-particle conversion and new particle formation (NPF) control aerosol properties that, together with meteorological conditions, regulate cloud droplet nucleation through Köhler theory and related effects. The indirect aerosol effects described by Twomey and Albrecht demonstrate how changes in aerosols impact droplet number, cloud lifetime, and precipitation efficiency. Cloud microphysical processes, including droplet growth, collision-coalescence, and solid-phase mechanisms such as riming, vapor diffusion, and aggregation, shape precipitation development in warm, cold, and mixed-phase clouds. Ice nucleation remains a significant uncertainty due to the diversity of aerosol types and nucleation modes. This work synthesizes these physical interactions to better understand how the chemical and physical properties of aerosols influence cloud and precipitation processes, supporting improvements in weather and climate prediction models despite numerical challenges arising from the complexity of aerosol–cloud interactions. Full article
(This article belongs to the Section Climate and Environment)
Show Figures

Figure 1

16 pages, 2714 KB  
Article
A Study on Phosphorous-Based Flame Retardants for Transparent PET Composites: Fire, Mechanical, and Optical Performance
by Sara Villanueva-Díez and Alberto Sánchez-de-Andrés
Polymers 2025, 17(16), 2191; https://doi.org/10.3390/polym17162191 - 11 Aug 2025
Viewed by 584
Abstract
Flame-retardant poly (ethylene terephthalate) composites (FR PET) have been developed with the potential to be used as substrates in applications where flexibility and transparency are required. Several phosphorous-based flame retardants of a different nature were selected here for compounding by melt blending with [...] Read more.
Flame-retardant poly (ethylene terephthalate) composites (FR PET) have been developed with the potential to be used as substrates in applications where flexibility and transparency are required. Several phosphorous-based flame retardants of a different nature were selected here for compounding by melt blending with a low-molecular-weight PET polymer. The fire reaction, transparency, and mechanical properties were analyzed. TGA and cone calorimetry were used to elucidate the gas-phase and condensed-phase actions of flame retardants and their effectivity. Cone calorimeters showed an improved performance with the addition of flame retardants, particularly a reduction in generated heat, improving the FGI (fire growth index) value. However, a V0 classification (following the UL94 standard) was achieved only with the addition of an organic phosphonate, Aflammit PCO900, to the PET matrix. This behavior was linked to the early reaction of this flame retardant in the gas phase, in addition to a plastification effect that causes the removal of the polymer from the incident flame. The presence of flame retardants reduced the transparency of composites over the neat PET, but, nevertheless, a good optical performance remained. No special effect was observed on the crystallization parameters. Therefore, the increase in opacity can be attributed to the poor miscibility of flame retardants and/or differences in the diffraction index of the polymer and FR additives. Full article
(This article belongs to the Special Issue Flame-Retardant Polymer Composites II)
Show Figures

Figure 1

42 pages, 2191 KB  
Review
Photochemical Haze Formation on Titan and Uranus: A Comparative Review
by David Dubois
Int. J. Mol. Sci. 2025, 26(15), 7531; https://doi.org/10.3390/ijms26157531 - 4 Aug 2025
Viewed by 509
Abstract
The formation and evolution of haze layers in planetary atmospheres play a critical role in shaping their chemical composition, radiative balance, and optical properties. In the outer solar system, the atmospheres of Titan and the giant planets exhibit a wide range of compositional [...] Read more.
The formation and evolution of haze layers in planetary atmospheres play a critical role in shaping their chemical composition, radiative balance, and optical properties. In the outer solar system, the atmospheres of Titan and the giant planets exhibit a wide range of compositional and seasonal variability, creating environments favorable for the production of complex organic molecules under low-temperature conditions. Among them, Uranus—the smallest of the ice giants—has, since Voyager 2, emerged as a compelling target for future exploration due to unanswered questions regarding the composition and structure of its atmosphere, as well as its ring system and diverse icy moon population (which includes four possible ocean worlds). Titan, as the only moon to harbor a dense atmosphere, presents some of the most complex and unique organics found in the solar system. Central to the production of these organics are chemical processes driven by low-energy photons and electrons (<50 eV), which initiate reaction pathways leading to the formation of organic species and gas phase precursors to high-molecular-weight compounds, including aerosols. These aerosols, in turn, remain susceptible to further processing by low-energy UV radiation as they are transported from the upper atmosphere to the lower stratosphere and troposphere where condensation occurs. In this review, I aim to summarize the current understanding of low-energy (<50 eV) photon- and electron-induced chemistry, drawing on decades of insights from studies of Titan, with the objective of evaluating the relevance and extent of these processes on Uranus in anticipation of future observational and in situ exploration. Full article
(This article belongs to the Special Issue Chemistry Triggered by Low-Energy Particles)
Show Figures

Figure 1

16 pages, 19172 KB  
Communication
DEAD-Box Helicase 3 Modulates the Non-Coding RNA Pool in Ribonucleoprotein Condensates During Stress Granule Formation
by Elizaveta Korunova, B. Celia Cui, Hao Ji, Aliaksandra Sikirzhytskaya, Srestha Samaddar, Mengqian Chen, Vitali Sikirzhytski and Michael Shtutman
Non-Coding RNA 2025, 11(4), 59; https://doi.org/10.3390/ncrna11040059 - 1 Aug 2025
Viewed by 531
Abstract
Stress granule formation is a type of liquid–liquid phase separation in the cytoplasm, leading to RNA–protein condensates that are associated with various cellular stress responses and implicated in numerous pathologies, including cancer, neurodegeneration, inflammation, and cellular senescence. One of the key components of [...] Read more.
Stress granule formation is a type of liquid–liquid phase separation in the cytoplasm, leading to RNA–protein condensates that are associated with various cellular stress responses and implicated in numerous pathologies, including cancer, neurodegeneration, inflammation, and cellular senescence. One of the key components of mammalian stress granules is the DEAD-box RNA helicase DDX3, which unwinds RNA in an ATP-dependent manner. DDX3 is involved in multiple steps of RNA metabolism, facilitating gene transcription, splicing, and nuclear export and regulating cytoplasmic translation. In this study, we investigate the role of the RNA helicase DDX3’s enzymatic activity in shaping the RNA content of ribonucleoprotein (RNP) condensates formed during arsenite-induced stress by inhibiting DDX3 activity with RK-33, a small molecule previously shown to be effective in cancer clinical studies. Using the human osteosarcoma U2OS cell line, we purified the RNP granule fraction and performed RNA sequencing to assess changes in the RNA pool. Our results reveal that RK-33 treatment alters the composition of non-coding RNAs within the RNP granule fraction. We observed a DDX3-dependent increase in circular RNA (circRNA) content and alterations in the granule-associated intronic RNAs, suggesting a novel role for DDX3 in regulating the cytoplasmic redistribution of non-coding RNAs. Full article
Show Figures

Figure 1

21 pages, 3327 KB  
Article
Numerical Analysis of Heat Transfer and Flow Characteristics in Porous Media During Phase-Change Process of Transpiration Cooling for Aerospace Thermal Management
by Junhyeon Bae, Jukyoung Shin and Tae Young Kim
Energies 2025, 18(15), 4070; https://doi.org/10.3390/en18154070 - 31 Jul 2025
Viewed by 411
Abstract
Transpiration cooling that utilizes the phase change of a liquid coolant is recognized as an effective thermal protection technique for extreme environments. However, the introduction of phase change within the porous structure brings about challenges, such as vapor blockage, pressure fluctuations, and temperature [...] Read more.
Transpiration cooling that utilizes the phase change of a liquid coolant is recognized as an effective thermal protection technique for extreme environments. However, the introduction of phase change within the porous structure brings about challenges, such as vapor blockage, pressure fluctuations, and temperature inversion, which critically influence system reliability. This study conducts numerical analyses of coupled processes of heat transfer, flow, and phase change in transpiration cooling using a Two-Phase Mixture Model. The simulation incorporates a Local Thermal Non-Equilibrium approach to capture the distinct temperature fields of the solid and fluid phases, enabling accurate prediction of the thermal response within two-phase and single-phase regions. The results reveal that under low heat flux, dominant capillary action suppresses dry-out and expands the two-phase region. Conversely, high heat flux causes vaporization to overwhelm the capillary supply, forming a superheated vapor layer and constricting the two-phase zone. The analysis also explains a paradoxical pressure drop, where an initial increase in flow rate reduces pressure loss by suppressing the high-viscosity vapor phase. Furthermore, a local temperature inversion, where the fluid becomes hotter than the solid matrix, is identified and attributed to vapor counterflow and its subsequent condensation. Full article
(This article belongs to the Section J1: Heat and Mass Transfer)
Show Figures

Figure 1

Back to TopTop