Sign in to use this feature.

Years

Between: -

Subjects

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Journals

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Article Types

Countries / Regions

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Search Results (946)

Search Parameters:
Keywords = cone development

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
20 pages, 10068 KB  
Article
A Semi-Empirical Method for Predicting Soil Void Ratio from CPTu Data via Soil Density Correlation
by Xiang Meng, Hongfei Duan, Mingyu Liu, Gaoshan Li, Zhongnian Yang, Wei Shi and Xianzhang Ling
Appl. Sci. 2025, 15(16), 9167; https://doi.org/10.3390/app15169167 - 20 Aug 2025
Viewed by 178
Abstract
Soil void ratio is a key parameter in geotechnical engineering design and geological hazard prevention. However, existing methods for determining void ratio are plagued by issues such as difficulty in sampling, susceptibility of samples to disturbance, and heavy experimental workload. The cone penetration [...] Read more.
Soil void ratio is a key parameter in geotechnical engineering design and geological hazard prevention. However, existing methods for determining void ratio are plagued by issues such as difficulty in sampling, susceptibility of samples to disturbance, and heavy experimental workload. The cone penetration test, with its advantages of simple operation, high survey efficiency, and high accuracy, has gradually become a commonly used in situ testing method in engineering investigations. Based on data from the Yellow River Delta, this paper evaluates the applicability of several models related to void ratio. Combined with the Robertson density prediction model, a semi-empirical model for predicting void ratio based on the piezocone penetration test (CPTu), in situ testing is proposed, which enables efficient evaluation by establishing a conversion mechanism between soil density and void ratio. Verification using a database built from six types of nearly saturated sedimentary soil data shows that underestimation of predicted density will amplify the error of soil void ratio. The prediction accuracy is significantly improved after coefficient correction. Finally, a simple model for predicting void ratio that only requires CPTu data is developed, providing a sampling-free evaluation tool for estuarine and marine sedimentary areas. Full article
Show Figures

Figure 1

23 pages, 1138 KB  
Article
Phytochemical Profile, Antioxidant Capacity, and Photoprotective Potential of Brazilian Humulus Lupulus
by Gabriela Catuzo Canonico Silva, Fabiana Pereira Alves da Silva, Gabriel Augusto Rodrigues Beirão, José Júnior Severino, Mariane de Almeida Machado, Marina Pereira da Silva Bocchio Barbosa, Giulia Boito Reyes, Max Emerson Rickli, Ana Daniela Lopes, Ezilda Jacomassi, Maria Graciela Iecher Faria Nunes, João Paulo Francisco, Beatriz Cervejeira Bolanho Barros, Juliana Silveira do Valle, José Eduardo Gonçalves and Zilda Cristiani Gazim
Pharmaceuticals 2025, 18(8), 1229; https://doi.org/10.3390/ph18081229 - 20 Aug 2025
Viewed by 197
Abstract
Background and Objectives: The cultivation of Humulus lupulus has been encouraged in Brazil, despite the country’s climate generally being unfavorable for its development. This study aimed to evaluate the chemical composition, antioxidant activity, and photoprotective potential of four H. lupulus varieties, Cascade, [...] Read more.
Background and Objectives: The cultivation of Humulus lupulus has been encouraged in Brazil, despite the country’s climate generally being unfavorable for its development. This study aimed to evaluate the chemical composition, antioxidant activity, and photoprotective potential of four H. lupulus varieties, Cascade, Columbus, Comet, and Nugget, cultivated in the northwestern region of Paraná State, Brazil. Methods: The varieties were grown in experimental plots. Crude extracts (CEs) of cones and leaves were obtained through dynamic maceration with solvent renewal (96% ethanol), followed by concentration in a rotary evaporator. Assays for sun protection factor (SPF), total phenolic content (TPC), total flavonoid content (TFC), ferric reducing antioxidant power (FRAP), 2.2-diphenyl-1-picrylhydrazyl (DPPH) radical scavenging activity, and 2.2′-azinobis-(3-ethylbenzothiazoline-6-sulfonic acid) (ABTS⁺) were performed to assess antioxidant activity. Chemical profiling was performed using UHPLC-MS/MS. Results: UHPLC-MS/MS analysis revealed the presence of phenolic and organic acids, flavonoids, phenolic aldehydes, alkaloids, and α-benzopyrone-type lactones, with high concentrations of rutin (>500 µg/g) in both cones and leaves. Total phenolic content ranged from 69.70 to 95.95 µg gallic acid equivalent/mg CE; flavonoids from 170.53 to 696.67 µg quercetin equivalent/mg CE; DPPH EC50 values ranged from 1.34 to 3.13 mg/mL; FRAP from 1.19 to 2.52 µM ferrous sulfate/mg; ABTS⁺ from 5.11 to 22.60 mM Trolox/mg CE; and SPF ranged from 16.02 to 39.48 in the CE of H. lupulus cones and leaves. Conclusions: These findings demonstrate that the cultivated varieties possess antioxidant and photoprotective properties, encouraging further studies to explore their potential applications. Full article
Show Figures

Graphical abstract

15 pages, 3768 KB  
Article
Application of MWD Sensor System in Auger for Real-Time Monitoring of Soil Resistance During Pile Drilling
by Krzysztof Trojnar and Aleksander Siry
Sensors 2025, 25(16), 5095; https://doi.org/10.3390/s25165095 - 16 Aug 2025
Viewed by 343
Abstract
Measuring-while-drilling (MWD) techniques have great potential for use in geotechnical engineering research. This study first addresses the current use of MWD, which consists of recording data using sensors in a drilling machine operating on site. It then addresses the currently unsolved problems of [...] Read more.
Measuring-while-drilling (MWD) techniques have great potential for use in geotechnical engineering research. This study first addresses the current use of MWD, which consists of recording data using sensors in a drilling machine operating on site. It then addresses the currently unsolved problems of quality control in drilled piles and assessments of their interaction with the soil under load. Next, an original method of drilling displacement piles using a special EGP auger (Electro-Geo-Probe) is presented. The innovation of this new drilling system lies in the placement of the sensors inside the EGP auger in the soil. These innovative sensors form an integrated measurement system, enabling improved real-time control during pile drilling. The most original idea is the use of a Cone Penetration Test (CPT) probe that can be periodically and remotely inserted at a specific depth below the pile base being drilled. This new MWD-EGP system with cutting-edge sensors to monitor the soil’s impact on piles during drilling revolutionizes pile drilling quality control. Furthermore, implementing this in-auger sensor system is a step towards the development of digital drilling rigs, which will provide better pile quality thanks to solutions based on the results of real-time, on-site soil testing. Finally, examples of measurements taken with the new sensor-equipped auger and a preliminary interpretation of the results in non-cohesive soils are presented. The obtained data confirm the usefulness of the new drilling system for improving the quality of piles and advancing research in geotechnical engineering. Full article
Show Figures

Figure 1

22 pages, 3845 KB  
Review
Improving Biodiesel Atomization Performance in CI Engines: A Review of Spray Behavior, Droplet Impingement, and Advanced Techniques
by Zehao Feng, Junlong Zhang, Jiechong Gu, Xianyin Leng, Zhixia He and Keiya Nishida
Processes 2025, 13(8), 2527; https://doi.org/10.3390/pr13082527 - 11 Aug 2025
Viewed by 381
Abstract
The escalating challenges of greenhouse gas emissions, coupled with the severe depletion of oil reserves and the surging global energy demand, have emerged as critical concerns requiring urgent attention. Against this backdrop, biodiesel has been recognized as a viable alternative fuel for compression [...] Read more.
The escalating challenges of greenhouse gas emissions, coupled with the severe depletion of oil reserves and the surging global energy demand, have emerged as critical concerns requiring urgent attention. Against this backdrop, biodiesel has been recognized as a viable alternative fuel for compression ignition (CI) engines. The primary objective of this research is to review the application of biodiesel in CI engines, with a focus on enhancing fuel properties and improving atomization performance. This article examines the spray and atomization characteristics of biodiesel fuels and conducts a comparative analysis with diesel fuel. The results show that biodiesel has a longer spray tip penetration, smaller spray cone angle, larger Sauter mean diameter (SMD) and faster droplet velocity due to its higher viscosity and surface tension. Blending with other fuels, such as ethanol, butanol, dimethyl ether (DME) and di-n-butyl ether, results in reduced viscosity and surface tension in these mixed fuels, representing a simple and effective approach for improving biodiesel atomization performance. A comprehensive analysis of spray and droplet impingement is also conducted. The findings reveal that biodiesel exhibits a higher probability of fuel–wall impingement, suggesting that future research should focus on two key directions: first, developing combined strategies to enhance impact-induced secondary atomization while minimizing fuel deposition; and second, investigating single-droplet impingement, specifically that of microscale biodiesel droplets and blended fuel droplets under real engine operating conditions. This paper also presents several advanced techniques, including air-assisted atomization, dual-fuel impingement, nano-biodiesel, and water-emulsified biodiesel, aimed at mitigating the atomization limitations of biodiesel, thereby facilitating the broader adoption of biodiesel in compression ignition engines. Full article
Show Figures

Figure 1

16 pages, 2714 KB  
Article
A Study on Phosphorous-Based Flame Retardants for Transparent PET Composites: Fire, Mechanical, and Optical Performance
by Sara Villanueva-Díez and Alberto Sánchez-de-Andrés
Polymers 2025, 17(16), 2191; https://doi.org/10.3390/polym17162191 - 11 Aug 2025
Viewed by 533
Abstract
Flame-retardant poly (ethylene terephthalate) composites (FR PET) have been developed with the potential to be used as substrates in applications where flexibility and transparency are required. Several phosphorous-based flame retardants of a different nature were selected here for compounding by melt blending with [...] Read more.
Flame-retardant poly (ethylene terephthalate) composites (FR PET) have been developed with the potential to be used as substrates in applications where flexibility and transparency are required. Several phosphorous-based flame retardants of a different nature were selected here for compounding by melt blending with a low-molecular-weight PET polymer. The fire reaction, transparency, and mechanical properties were analyzed. TGA and cone calorimetry were used to elucidate the gas-phase and condensed-phase actions of flame retardants and their effectivity. Cone calorimeters showed an improved performance with the addition of flame retardants, particularly a reduction in generated heat, improving the FGI (fire growth index) value. However, a V0 classification (following the UL94 standard) was achieved only with the addition of an organic phosphonate, Aflammit PCO900, to the PET matrix. This behavior was linked to the early reaction of this flame retardant in the gas phase, in addition to a plastification effect that causes the removal of the polymer from the incident flame. The presence of flame retardants reduced the transparency of composites over the neat PET, but, nevertheless, a good optical performance remained. No special effect was observed on the crystallization parameters. Therefore, the increase in opacity can be attributed to the poor miscibility of flame retardants and/or differences in the diffraction index of the polymer and FR additives. Full article
(This article belongs to the Special Issue Flame-Retardant Polymer Composites II)
Show Figures

Figure 1

18 pages, 861 KB  
Article
Observer-Based Exponential Stability Control of T-S Fuzzy Networked Systems with Varying Communication Delays
by Hejun Yao and Fangzheng Gao
Mathematics 2025, 13(15), 2513; https://doi.org/10.3390/math13152513 - 5 Aug 2025
Viewed by 194
Abstract
This paper is concerned with the problem of dynamic output feedback exponential stability control of T-S fuzzy networked control systems (NCSs) with varying communication delays. First, with consideration of varying communication delays, a new model of the networked systems is established by using [...] Read more.
This paper is concerned with the problem of dynamic output feedback exponential stability control of T-S fuzzy networked control systems (NCSs) with varying communication delays. First, with consideration of varying communication delays, a new model of the networked systems is established by using the T-S fuzzy method, and a state observer is designed to estimate the unknown control disturbance. Then, a delay-dependent exponential stability criterion of closed-loop systems is derived by means of iterative technique and multiple augmented Lyapnov functionals and the linear matrix inequality (LMI) method. Furthermore, an observer-based controller is explicitly constructed to realize exponential stability control for this class of NCSs. An iterative algorithm is developed to compute the controller’s matrix by means of the Cone Complementarity Linearization Method (CCLM). Lastly, the validity and feasibility of the proposed exponential stability criterion are confirmed via a numerical simulation example. Full article
Show Figures

Figure 1

31 pages, 1755 KB  
Article
Two-Stage Distributionally Robust Optimization for an Asymmetric Loss-Aversion Portfolio via Deep Learning
by Xin Zhang, Shancun Liu and Jingrui Pan
Symmetry 2025, 17(8), 1236; https://doi.org/10.3390/sym17081236 - 4 Aug 2025
Viewed by 437
Abstract
In portfolio optimization, investors often overlook asymmetric preferences for gains and losses. We propose a distributionally robust two-stage portfolio optimization (DR-TSPO) model, which is suitable for scenarios where the loss reference point is adaptively updated based on prior decisions. For analytical convenience, we [...] Read more.
In portfolio optimization, investors often overlook asymmetric preferences for gains and losses. We propose a distributionally robust two-stage portfolio optimization (DR-TSPO) model, which is suitable for scenarios where the loss reference point is adaptively updated based on prior decisions. For analytical convenience, we further reformulate the DR-TSPO model as an equivalent second-order cone programming counterpart. Additionally, we develop a deep learning-based constraint correction algorithm (DL-CCA) trained directly on problem descriptions, which enhances computational efficiency for large-scale non-convex distributionally robust portfolio optimization. Our empirical results obtained using global market data demonstrate that during COVID-19, the DR-TSPO model outperformed traditional two-stage optimization in reducing conservatism and avoiding extreme losses. Full article
(This article belongs to the Section Computer)
Show Figures

Figure 1

26 pages, 4116 KB  
Article
Robust Optimal Operation of Smart Microgrid Considering Source–Load Uncertainty
by Zejian Qiu, Zhuowen Zhu, Lili Yu, Zhanyuan Han, Weitao Shao, Kuan Zhang and Yinfeng Ma
Processes 2025, 13(8), 2458; https://doi.org/10.3390/pr13082458 - 4 Aug 2025
Viewed by 517
Abstract
The uncertainties arising from high renewable energy penetration on both the generation and demand sides pose significant challenges to distribution network security. Smart microgrids are considered an effective way to solve this problem. Existing studies exhibit limitations in prediction accuracy, Alternating Current (AC) [...] Read more.
The uncertainties arising from high renewable energy penetration on both the generation and demand sides pose significant challenges to distribution network security. Smart microgrids are considered an effective way to solve this problem. Existing studies exhibit limitations in prediction accuracy, Alternating Current (AC) power flow modeling, and integration with optimization frameworks. This paper proposes a closed-loop technical framework combining high-confidence interval prediction, second-order cone convex relaxation, and robust optimization to facilitate renewable energy integration in distribution networks via smart microgrid technology. First, a hybrid prediction model integrating Variational Mode Decomposition (VMD), Long Short-Term Memory (LSTM), and Quantile Regression (QR) is designed to extract multi-frequency characteristics of time-series data, generating adaptive prediction intervals that accommodate individualized decision-making preferences. Second, a second-order cone relaxation method transforms the AC power flow optimization problem into a mixed-integer second-order cone programming (MISOCP) model. Finally, a robust optimization method considering source–load uncertainties is developed. Case studies demonstrate that the proposed approach reduces prediction errors by 21.15%, decreases node voltage fluctuations by 16.71%, and reduces voltage deviation at maximum offset nodes by 17.36%. This framework significantly mitigates voltage violation risks in distribution networks with large-scale grid-connected photovoltaic systems. Full article
(This article belongs to the Special Issue Applications of Smart Microgrids in Renewable Energy Development)
Show Figures

Figure 1

19 pages, 439 KB  
Article
Multi-Objective Optimization for Economic and Environmental Dispatch in DC Networks: A Convex Reformulation via a Conic Approximation
by Nestor Julian Bernal-Carvajal, Carlos Arturo Mora-Peña and Oscar Danilo Montoya
Electricity 2025, 6(3), 43; https://doi.org/10.3390/electricity6030043 - 1 Aug 2025
Viewed by 311
Abstract
This paper addresses the economic–environmental dispatch (EED) problem in DC power grids integrating thermoelectric and photovoltaic generation. A multi-objective optimization model is developed to minimize both fuel costs and CO2 emissions while considering power balance, voltage constraints, generation limits, and thermal line [...] Read more.
This paper addresses the economic–environmental dispatch (EED) problem in DC power grids integrating thermoelectric and photovoltaic generation. A multi-objective optimization model is developed to minimize both fuel costs and CO2 emissions while considering power balance, voltage constraints, generation limits, and thermal line capacities. To overcome the non-convexity introduced by quadratic voltage products in the power flow equations, a convex reformulation is proposed using second-order cone programming (SOCP) with auxiliary variables. This reformulation ensures global optimality and enhances computational efficiency. Two test systems are used for validation: a 6-node DC grid and an 11-node grid incorporating hourly photovoltaic generation. Comparative analyses show that the convex model achieves objective values with errors below 0.01% compared to the original non-convex formulation. For the 11-node system, the integration of photovoltaic generation led to a 24.34% reduction in operating costs (from USD 10.45 million to USD 7.91 million) and a 27.27% decrease in CO2 emissions (from 9.14 million kg to 6.64 million kg) over a 24 h period. These results confirm the effectiveness of the proposed SOCP-based methodology and demonstrate the environmental and economic benefits of renewable integration in DC networks. Full article
Show Figures

Figure 1

24 pages, 3980 KB  
Article
A Two-Stage Restoration Method for Distribution Networks Considering Generator Start-Up and Load Recovery Under an Earthquake Disaster
by Lin Peng, Aihua Zhou, Junfeng Qiao, Qinghe Sun, Zhonghao Qian, Min Xu and Sen Pan
Electronics 2025, 14(15), 3049; https://doi.org/10.3390/electronics14153049 - 30 Jul 2025
Viewed by 308
Abstract
Earthquakes can severely disrupt power distribution networks, causing extensive outages and disconnection from the transmission grid. This paper proposes a two-stage restoration method tailored for post-earthquake distribution systems. First, earthquake-induced damage is modeled using ground motion prediction equations (GMPEs) and fragility curves, and [...] Read more.
Earthquakes can severely disrupt power distribution networks, causing extensive outages and disconnection from the transmission grid. This paper proposes a two-stage restoration method tailored for post-earthquake distribution systems. First, earthquake-induced damage is modeled using ground motion prediction equations (GMPEs) and fragility curves, and degraded network topologies are generated by Monte Carlo simulation. Then, a time-domain generator start-up model is developed as a mixed-integer linear program (MILP), incorporating cranking power and radial topology constraints. Further, a prioritized load recovery model is formulated as a mixed-integer second-order cone program (MISOCP), integrating power flow, voltage, and current constraints. Finally, case studies demonstrate the effectiveness and general applicability of the proposed method, confirming its capability to support resilient and adaptive distribution network restoration under various earthquake scenarios. Full article
Show Figures

Figure 1

20 pages, 5568 KB  
Article
Dynamic Wear Modeling and Experimental Verification of Guide Cone in Passive Compliant Connectors Based on the Archard Model
by Yuanping He, Bowen Wang, Feifei Zhao, Xingfu Hong, Liang Fang, Weihao Xu, Ming Liao and Fujing Tian
Polymers 2025, 17(15), 2091; https://doi.org/10.3390/polym17152091 - 30 Jul 2025
Viewed by 366
Abstract
To address the wear life prediction challenge of Guide Cones in passive compliant connectors under dynamic loads within specialized equipment, this study proposes a dynamic wear modeling and life assessment method based on the improved Archard model. Through integrated theoretical modeling, finite element [...] Read more.
To address the wear life prediction challenge of Guide Cones in passive compliant connectors under dynamic loads within specialized equipment, this study proposes a dynamic wear modeling and life assessment method based on the improved Archard model. Through integrated theoretical modeling, finite element simulation, and experimental validation, we establish a bidirectional coupling framework analyzing dynamic contact mechanics and wear evolution. By developing phased contact state identification criteria and geometric constraints, a transient load calculation model is established, revealing dynamic load characteristics with peak contact forces reaching 206.34 N. A dynamic contact stress integration algorithm is proposed by combining Archard’s theory with ABAQUS finite element simulation and ALE adaptive meshing technology, enabling real-time iterative updates of wear morphology and contact stress. This approach constructs an exponential model correlating cumulative wear depth with docking cycles (R2 = 0.997). Prototype experiments demonstrate a mean absolute percentage error (MAPE) of 14.6% between simulated and measured wear depths, confirming model validity. With a critical wear threshold of 0.8 mm, the predicted service life reaches 45,270 cycles, meeting 50-year operational requirements (safety margin: 50.9%). This research provides theoretical frameworks and engineering guidelines for wear-resistant design, material selection, and life evaluation in high-reliability automatic docking systems. Full article
(This article belongs to the Section Polymer Processing and Engineering)
Show Figures

Figure 1

18 pages, 4253 KB  
Article
Testing Using the DCP Probe of a Subgrade Modeled from Difficult-to-Compact Sand in a Calibration Chamber
by Dariusz Tymosiak, Maria Jolanta Sulewska, Wanda Kokoszka, Marta Słowik, Ewa Błazik-Borowa, Dominik Ożóg and Monika Puchlik
Materials 2025, 18(15), 3548; https://doi.org/10.3390/ma18153548 - 29 Jul 2025
Viewed by 336
Abstract
The aim of the article is to analyze the possibilities of using a lightweight dynamic cone probe DCP to determine the quality of compaction of surface layers of embankments (from 0.10 m to approx. 0.80 m below ground level). For this purpose, comparative [...] Read more.
The aim of the article is to analyze the possibilities of using a lightweight dynamic cone probe DCP to determine the quality of compaction of surface layers of embankments (from 0.10 m to approx. 0.80 m below ground level). For this purpose, comparative tests of non-cohesive soil used for the construction of embankments were carried out using the DCP test and direct tests of the degree of compaction IS in a calibration chamber with the following dimensions: height 1.10 m and diameter 0.75 m. The subsoil was prepared from difficult-to-compact sand (Sa) with a uniformity coefficient of CU = 3.10 and curvature coefficient of CC = 0.99. The soil in the laboratory in the calibration chamber was compacted in layers using a vibratory plate compactor. A database for statistical analysis was obtained, n = 68 cases described by seven variables: z, ρ, w, ρd, IS, PI, N10(DCP). It was found that the DCP probe can be used to assess the degree of compaction of embankments made of non-cohesive soil, using the developed relationship IS = f(z, N10(DCP)). Full article
(This article belongs to the Section Construction and Building Materials)
Show Figures

Figure 1

15 pages, 4209 KB  
Article
Finite Element Analysis on Stress Development in Alveolar Bone During Insertion of a Novel Dental Implant Design
by Ning Zhang, Matthias Karl and Frank Wendler
Appl. Sci. 2025, 15(15), 8366; https://doi.org/10.3390/app15158366 - 28 Jul 2025
Viewed by 379
Abstract
A novel macrodesign for a dental implant characterized by a non-monotonic variation in core diameter and thread shape has been described to produce lower stress levels during insertion as compared to conventional tapered implants. Two finite element models resembling the lower left molar [...] Read more.
A novel macrodesign for a dental implant characterized by a non-monotonic variation in core diameter and thread shape has been described to produce lower stress levels during insertion as compared to conventional tapered implants. Two finite element models resembling the lower left molar region with preformed osteotomies were created based on a cone beam computed tomography (CBCT) scan. Insertion of both the novel and the conventional, tapered implant type were simulated using Standard for the Exchange of Product model data (STEP) files of both implant types. Von Mises equivalent stress, strain development, and amount of redistributed bone were recorded. The conventional implant demonstrated a continuous increase in strain values and reaction moment throughout the insertion process, with a brief decrease observed during the final stages. Stress levels in the cortical bone gradually increased, followed by a reduction when the implant was finally positioned subcrestally. The novel implant achieved the maximum magnitude of reaction moment and cortical bone strain values when the implant’s maximum core diameter passed the cortical bone layer at around 60% of the insertion process. Following a notable decrease, both the reaction moment and stress started to rise again as the implant penetrated further. The novel implant removed more bones in the trabecular region while the conventional implant predominantly interacted with cortical bone. Overall, the novel design seems to be less traumatic to alveolar bone during the insertion process and hence may lead to reduced levels of initial peri-implant bone loss. Full article
(This article belongs to the Special Issue Dental Implants and Restorations: Challenges and Prospects)
Show Figures

Graphical abstract

19 pages, 2871 KB  
Article
Strategic Information Patterns in Advertising: A Computational Analysis of Industry-Specific Message Strategies Using the FCB Grid Framework
by Seung Chul Yoo
Information 2025, 16(8), 642; https://doi.org/10.3390/info16080642 - 28 Jul 2025
Viewed by 341
Abstract
This study presents a computational analysis of industry-specific advertising message strategies through the theoretical lens of the FCB (Foote, Cone & Belding) grid framework. Leveraging the AiSAC (AI Analysis System for Ad Creation) system developed by the Korea Broadcast Advertising Corporation (KOBACO), we [...] Read more.
This study presents a computational analysis of industry-specific advertising message strategies through the theoretical lens of the FCB (Foote, Cone & Belding) grid framework. Leveraging the AiSAC (AI Analysis System for Ad Creation) system developed by the Korea Broadcast Advertising Corporation (KOBACO), we analyzed 27,000 Korean advertisements across five major industries using advanced machine learning techniques. Through Latent Dirichlet Allocation topic modeling with a coherence score of 0.78, we identified five distinct message strategies: emotional appeal, product features, visual techniques, setting and objects, and entertainment and promotion. Our computational analysis revealed that each industry exhibits a unique “message strategy fingerprint” that significantly discriminates between categories, with discriminant analysis achieving 62.7% classification accuracy. Time-series analysis using recurrent neural networks demonstrated a significant evolution in strategy preferences, with emotional appeal increasing by 44.3% over the study period (2015–2024). By mapping these empirical findings onto the FCB grid, the present study validated that industry positioning within the grid’s quadrants aligns with theoretical expectations: high-involvement/think (IT and Telecom), high-involvement/feel (Public Institutions), low-involvement/think (Food and Household Goods), and low-involvement/feel (Services). This study contributes to media science by demonstrating how computational methods can empirically validate the established theoretical frameworks in advertising, providing a data-driven approach to understanding message strategy patterns across industries. Full article
(This article belongs to the Special Issue AI Tools for Business and Economics)
Show Figures

Figure 1

23 pages, 15846 KB  
Article
Habitats, Plant Diversity, Morphology, Anatomy, and Molecular Phylogeny of Xylosalsola chiwensis (Popov) Akhani & Roalson
by Anastassiya Islamgulova, Bektemir Osmonali, Mikhail Skaptsov, Anastassiya Koltunova, Valeriya Permitina and Azhar Imanalinova
Plants 2025, 14(15), 2279; https://doi.org/10.3390/plants14152279 - 24 Jul 2025
Viewed by 505
Abstract
Xylosalsola chiwensis (Popov) Akhani & Roalson is listed in the Red Data Book of Kazakhstan as a rare species with a limited distribution, occurring in small populations in Kazakhstan, Uzbekistan, and Turkmenistan. The aim of this study is to deepen the understanding of [...] Read more.
Xylosalsola chiwensis (Popov) Akhani & Roalson is listed in the Red Data Book of Kazakhstan as a rare species with a limited distribution, occurring in small populations in Kazakhstan, Uzbekistan, and Turkmenistan. The aim of this study is to deepen the understanding of the ecological conditions of its habitats, the floristic composition of its associated plant communities, the species’ morphological and anatomical characteristics, and its molecular phylogeny, as well as to identify the main threats to its survival. The ecological conditions of the X. chiwensis habitats include coastal sandy plains and the slopes of chinks and denudation plains with gray–brown desert soils and bozyngens on the Mangyshlak Peninsula and the Ustyurt Plateau at altitudes ranging from −3 to 270 m above sea level. The species is capable of surviving in arid conditions (less than 100 mm of annual precipitation) and under extreme temperatures (air temperatures exceeding 45 °C and soil surface temperatures above 65 °C). In X. chiwensis communities, we recorded 53 species of vascular plants. Anthropogenic factors associated with livestock grazing, industrial disturbances, and off-road vehicle traffic along an unregulated network of dirt roads have been identified as contributing to population decline and the potential extinction of the species under conditions of unsustainable land use. The morphometric traits of X. chiwensis could be used for taxonomic analysis and for identifying diagnostic morphological characteristics to distinguish between species of Xylosalsola. The most taxonomically valuable characteristics include the fruit diameter (with wings) and the cone-shaped structure length, as they differ consistently between species and exhibit relatively low variability. Anatomical adaptations to arid conditions were observed, including a well-developed hypodermis, which is indicative of a water-conserving strategy. The moderate photosynthetic activity, reflected by a thinner palisade mesophyll layer, may be associated with reduced photosynthetic intensity, which is compensated for through structural mechanisms for water conservation. The flow cytometry analysis revealed a genome size of 2.483 ± 0.191 pg (2n/4x = 18), and the phylogenetic analysis confirmed the placement of X. chiwensis within the tribe Salsoleae of the subfamily Salsoloideae, supporting its taxonomic distinctness. To support the conservation of this rare species, measures are proposed to expand the area of the Ustyurt Nature Reserve through the establishment of cluster sites. Full article
(This article belongs to the Section Plant Ecology)
Show Figures

Figure 1

Back to TopTop