Sign in to use this feature.

Years

Between: -

Subjects

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Journals

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Article Types

Countries / Regions

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Search Results (1,182)

Search Parameters:
Keywords = confining pressure

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
24 pages, 5245 KB  
Article
Analysis of Mechanical Properties and Energy Evolution of Through-Double-Joint Sandy Slate Under Three-Axis Loading and Unloading Conditions
by Yang Wang, Chuanxin Rong, Hao Shi, Zhensen Wang, Yanzhe Li and Runze Zhang
Appl. Sci. 2025, 15(17), 9570; https://doi.org/10.3390/app15179570 (registering DOI) - 30 Aug 2025
Viewed by 39
Abstract
In the mining of deep mineral resources and tunnel engineering, the degradation of mechanical properties and the evolution of energy of through-double-joint sandy slate under triaxial loading and unloading conditions are key scientific issues affecting the stability design of the project. The existing [...] Read more.
In the mining of deep mineral resources and tunnel engineering, the degradation of mechanical properties and the evolution of energy of through-double-joint sandy slate under triaxial loading and unloading conditions are key scientific issues affecting the stability design of the project. The existing research has insufficiently explored the joint inclination angle effect, damage evolution mechanism, and energy distribution characteristics of this type of rock mass under the path of increasing axial pressure and removing confining pressure. Based on this, in this study, uniaxial compression, conventional triaxial compression and increasing axial pressure, and removing confining pressure tests were conducted on four types of rock-like materials with prefabricated 0°, 30°, 60°, and 90° through-double-joint inclinations under different confining pressures. The axial stress/strain curve, failure characteristics, and energy evolution law were comprehensively analyzed, and damage variables based on dissipated energy were proposed. The test results show that the joint inclination angle significantly affects the bearing capacity of the specimen, and the peak strength shows a trend of first increasing and then decreasing with the increase in the inclination angle. In terms of failure modes, the specimens under conventional triaxial compression exhibit progressive compression/shear failure (accompanied by rock bridge fracture zones), while under increased axial compression and relief of confining pressure, a combined tensioning and shear failure is induced. Moreover, brittleness is more pronounced under high confining pressure, and the joint inclination angle also has a significant control effect on the failure path. In terms of energy, under the same confining pressure, as the joint inclination angle increases, the dissipated energy and total energy of the cemented filling body at the end of triaxial compression first decrease and then increase. The triaxial compression damage constitutive model of jointed rock mass established based on dissipated energy can divide the damage evolution into three stages: initial damage, damage development, and accelerated damage growth. Verified by experimental data, this model can well describe the damage evolution characteristics of rock masses with different joint inclination angles. Moreover, an increase in the joint inclination angle will lead to varying degrees of damage during the loading process of the rock mass. The research results can provide key theoretical support and design basis for the stability assessment of surrounding rock in deep and high-stress plateau tunnels, the optimization of support parameters for jointed rock masses, and early warning of rockburst disasters. Full article
Show Figures

Figure 1

23 pages, 4773 KB  
Article
Predicting Constitutive Behaviour of Idealized Granular Soils Using Recurrent Neural Networks
by Xintong Li and Jianfeng Wang
Appl. Sci. 2025, 15(17), 9495; https://doi.org/10.3390/app15179495 - 29 Aug 2025
Viewed by 76
Abstract
The constitutive modelling of granular soils has been a long-standing research subject in geotechnical engineering, and machine learning (ML) has recently emerged as a promising tool for achieving this goal. This paper proposes two recurrent neural networks, namely, the Gated Recurrent Unit Neural [...] Read more.
The constitutive modelling of granular soils has been a long-standing research subject in geotechnical engineering, and machine learning (ML) has recently emerged as a promising tool for achieving this goal. This paper proposes two recurrent neural networks, namely, the Gated Recurrent Unit Neural Network (GRU-NN) and the Long Short-Term Memory Neural Network (LSTM-NN), which utilize input parameters such as the initial void ratio, initial fabric anisotropy, uniformity coefficient, mean particle size, and confining pressure to establish the high-dimensional relationships of granular soils from micro to macro levels subjected to triaxial shearing. The research methodology consists of several steps. Firstly, 200 numerical triaxial tests on idealized granular soils comprising polydisperse spherical particles are performed using the discrete element method (DEM) simulation to generate datasets and to train and test the proposed neural networks. Secondly, LSTM-NN and GRU-NN are constructed and trained, and their prediction performance is evaluated by the mean absolute percentage error (MAPE) and R-square against the DEM-based datasets. The extremely low error values obtained by both LSTM-NN and GRU-NN indicate their outstanding capability in predicting the constitutive behaviour of idealized granular soils. Finally, the trained ML-based models are applied to predict the constitutive behaviour of a miniature glass bead sample subjected to triaxial shearing with in situ micro-CT, as well as to two extrapolated test sets with different initial parameters. The results show that both methods perform well in capturing the mechanical responses of the idealized granular soils. Full article
Show Figures

Figure 1

15 pages, 5326 KB  
Article
Study on the Construction of a Nonlinear Creep Constitutive Model of Salt-Gypsum Rock in the Bayan Deep and the Critical Value of Wellbore Shrinkage Liquid Column Pressure
by Penglin Liu, Aobo Yin, Tairan Liang, Wen Sun, Wei Lian, Bo Zhang, Shanpo Jia and Jinchuan Huang
Processes 2025, 13(9), 2747; https://doi.org/10.3390/pr13092747 - 28 Aug 2025
Viewed by 180
Abstract
Aiming at the problems of borehole shrinkage and pipe sticking caused by creep in salt-gypsum rock formations during deep well drilling, multi-field coupling creep experiments on deep salt-bearing gypsum mudstone were carried out. Furthermore, a nonlinear creep constitutive model was constructed based on [...] Read more.
Aiming at the problems of borehole shrinkage and pipe sticking caused by creep in salt-gypsum rock formations during deep well drilling, multi-field coupling creep experiments on deep salt-bearing gypsum mudstone were carried out. Furthermore, a nonlinear creep constitutive model was constructed based on the Drucker–Prager criterion, and the critical value of liquid column pressure for borehole shrinkage was determined through numerical simulation. Experiments show that at 140 °C, salt-gypsum rock is mainly subjected to brittle failure with single shear fracture, while at 180 °C, multiple sets of cross-cutting shear bands form, shifting to plastic flow-dominated composite failure. The coupling effect of confining pressure and deviatoric stress is temperature-dependent; the critical deviatoric stress is independent of confining pressure at 140 °C, but decreases significantly with increasing confining pressure at 180 °C, revealing that salt-gypsum rock is more prone to plastic flow under high temperatures and confining pressure. The creep constitutive equation was further determined, and fitting parameters show that the stress exponent m = 2–5 and the time exponent n decrease linearly with the increase in deviatoric stress, and the model can accurately describe the characteristics of three-stage creep. The numerical simulation found that there is a nonlinear relationship between the drilling fluid density and borehole shrinkage; the shrinkage rate exceeds 1.47% when the density is ≤2.0 g/cm3, and the expansion amount is >1.0 mm when ≥2.4 g/cm3. The critical safe density range is 2.1–2.3 g/cm3, which is consistent with the field data in the Bayan area. The research results provide an experimental basis and quantitative method for the dynamic regulation of drilling fluid density in deep gypsum rock formations, and have engineering guiding significance for preventing borehole wall instability. Full article
(This article belongs to the Section Energy Systems)
Show Figures

Figure 1

24 pages, 16565 KB  
Article
Dynamic Characteristics of the Pore Heterogeneity of Longmaxi Shale Based on High-Pressure Triaxial Creep Testing
by Yan Dai, Hanyu Zhang, Yanming Zhu, Haoran Chen, Yao Ge, Qian Wang and Yiming Zhao
Fractal Fract. 2025, 9(9), 564; https://doi.org/10.3390/fractalfract9090564 - 28 Aug 2025
Viewed by 215
Abstract
The dynamic changes in shale pore structure due to tectonic uplift are crucial for understanding the processes of shale gas enrichment and accumulation, particularly in complex tectonic regions. To explore the heterogeneous changes in pore structure and their influencing factors during the last [...] Read more.
The dynamic changes in shale pore structure due to tectonic uplift are crucial for understanding the processes of shale gas enrichment and accumulation, particularly in complex tectonic regions. To explore the heterogeneous changes in pore structure and their influencing factors during the last tectonic uplift of Longmaxi shale, triaxial creep experiments were performed under varying confining pressure conditions. In addition, FE-SEM, MIP, LN2GA, and LCO2GA experiments were employed to both qualitatively and quantitatively characterize the pore structure of three distinct groups of Longmaxi shale samples. To further investigate pore heterogeneity, the multifractal dimension was applied to examine the evolution of the shale pore structure under the influence of the last tectonic uplift. The results revealed that the primary pore types in Longmaxi shale include organic matter pores, microfractures, intergranular pores, and intragranular pores. The shale’s mechanical properties and mineral content have a significant impact on the heterogeneity of these pores. Notably, the shale pores exhibit distinct multifractal characteristics, highlighting the complex nature of pore heterogeneity. The singular index (α0) and ten other multifractal dimension parameters provide valuable insights into the heterogeneity characteristics of shale pores from various perspectives. Additionally, dynamic changes in pore heterogeneity are primarily controlled by the mineral composition. Under identical creep pressure variation conditions, significant differences are observed in the pore rebound behavior of Longmaxi shale with different mineral compositions. Under high-pressure conditions, the content of TOC and quartz plays a dominant role in controlling pore heterogeneity, with their influence initially decreasing and then increasing as pressure decreases. The reduction in creep pressure emphasizes the controlling effect of TOC, quartz, and feldspar content on pore connectivity. This study introduces high-pressure triaxial creep experiments to simulate the stress response behavior of pore structures during tectonic uplift, offering a more comprehensive reflection of pore evolution in organic-rich shale under realistic geological conditions. Full article
(This article belongs to the Special Issue Multiscale Fractal Analysis in Unconventional Reservoirs)
Show Figures

Figure 1

21 pages, 5634 KB  
Article
Performance Evaluation of Flapping-Wing Energy Harvester in Confined Duct Environments
by Maqusud Alam and Chang-Hyun Sohn
Energies 2025, 18(17), 4508; https://doi.org/10.3390/en18174508 - 25 Aug 2025
Viewed by 370
Abstract
This study investigates the impact of different duct designs on the energy-harvesting performance of oscillating-wing systems in both partially and fully confined environments. Numerical simulations were conducted to examine the effects of straight, convergent–straight, and convergent–divergent duct configurations on the aerodynamic forces and [...] Read more.
This study investigates the impact of different duct designs on the energy-harvesting performance of oscillating-wing systems in both partially and fully confined environments. Numerical simulations were conducted to examine the effects of straight, convergent–straight, and convergent–divergent duct configurations on the aerodynamic forces and overall energy extraction efficiency. Under partial confinement, the convergent–divergent duct demonstrated a significant improvement of 67.5% in power output over the ductless baseline configuration. This enhancement is attributed to the increased incoming flow velocity and amplified pressure difference around the wing, which improve the effectiveness of energy generation. However, the straight and convergent–straight ducts reduced the harvester’s performance due to the diminished flow velocity within each duct. Under full confinement, all duct configurations substantially enhanced energy-harvesting performance, with the convergent–straight duct providing the highest efficiency gain (84.9%). This improvement is primarily due to the increased velocity and pressure differential across the wing surfaces, which maximise the heaving force and overall energy generation performance. These findings highlight the critical role of duct geometry in optimising energy-harvesting performance, both in partially confined and fully confined flow environments. Full article
Show Figures

Figure 1

19 pages, 4724 KB  
Article
Effect of Surface Tortuosity on Particle Dynamics in Rock Fractures
by Yang Wang, Cheng Li, Kangsheng Xue, Xin Qu and Yaling Liu
Processes 2025, 13(9), 2702; https://doi.org/10.3390/pr13092702 - 25 Aug 2025
Viewed by 278
Abstract
The transport behavior of particles in tortuous fractures is prevalent in the oil and gas extraction process and has a profound impact on engineering. However, due to a variety of factors, drilling fluid leakage is prone to occur during drilling and completion, and [...] Read more.
The transport behavior of particles in tortuous fractures is prevalent in the oil and gas extraction process and has a profound impact on engineering. However, due to a variety of factors, drilling fluid leakage is prone to occur during drilling and completion, and an evaluation system for the influence of meander characteristics on the kinetic properties of particles has not yet been established. To this end, this paper constructs a numerical model based on CFD-DEM numerical simulation to simulate the particle–fluid two-phase flow in the meandering fracture, investigates the mechanism of surface meandering on particle force, particle transport velocity, and particle residence time, and proposes a mathematical method based on meandering for predicting particle transport velocity and particle residence time in the stable transport phase. The results show that the increase in tortuosity makes the force state of particles in the fracture show significant instability and intensifies the interaction between fluid and particles in the fracture; the effect of the tortuous wall intensifies the inhomogeneity of transport velocity, and the perturbation effect of the complex path structure on the x-direction velocity of particles is stronger; and the increase in tortuosity is not conducive to particle retention in the fracture. The results of the study can provide theoretical guidance for reducing the risk of drilling fluid leakage during drilling and completion. Full article
(This article belongs to the Section Energy Systems)
Show Figures

Figure 1

25 pages, 20792 KB  
Article
Research on the Spatio-Temporal Differentiation of Environmental Heat Exposure in the Main Urban Area of Zhengzhou Based on LCZ and the Cooling Potential of Green Infrastructure
by Xu Huang, Lizhe Hou, Shixin Guan, Hongpan Li, Jombach Sándor, Fekete Albert, Filepné Kovács Krisztina and Huawei Li
Land 2025, 14(9), 1717; https://doi.org/10.3390/land14091717 - 25 Aug 2025
Viewed by 265
Abstract
Urban heat exposure has become an increasingly critical environmental issue under the dual pressures of global climate warming and rapid urbanization, posing significant threats to public health and urban sustainability. However, conventional linear regression models often fail to capture the complex, nonlinear interactions [...] Read more.
Urban heat exposure has become an increasingly critical environmental issue under the dual pressures of global climate warming and rapid urbanization, posing significant threats to public health and urban sustainability. However, conventional linear regression models often fail to capture the complex, nonlinear interactions among multiple environmental factors, and studies confined to single LCZ types lack a comprehensive understanding of urban thermal mechanisms. This study takes the central urban area of Zhengzhou as a case and proposes an integrated “Local Climate Zone (LCZ) framework + random forest-based multi-factor contribution analysis” approach. By incorporating multi-temporal Landsat imagery, this method effectively identifies nonlinear drivers of heat exposure across different urban morphological units. Compared to traditional approaches, the proposed model retains spatial heterogeneity while uncovering intricate regulatory pathways among contributing factors, demonstrating superior adaptability and explanatory power. Results indicate that (1) high-density built-up zones (LCZ1 and E) constitute the core of heat exposure, with land surface temperatures (LSTs) 6–12 °C higher than those of natural surfaces and LCZ3 reaching a peak LST of 49.15 °C during extreme heat events; (2) NDVI plays a dominant cooling role, contributing 50.5% to LST mitigation in LCZ3, with the expansion of low-NDVI areas significantly enhancing cooling potential (up to 185.39 °C·km2); (3) LCZ5 exhibits an anomalous spatial pattern with low-temperature patches embedded within high-temperature surroundings, reflecting the nonlinear impacts of urban form and anthropogenic heat sources. The findings demonstrate that the LCZ framework, combined with random forest modeling, effectively overcomes the limitations of traditional linear models, offering a robust analytical tool for decoding urban heat exposure mechanisms and informing targeted climate adaptation strategies. Full article
Show Figures

Figure 1

28 pages, 7744 KB  
Article
Optimizing Random Forest with Hybrid Swarm Intelligence Algorithms for Predicting Shear Bond Strength of Cable Bolts
by Ming Xu, Yingui Qiu, Manoj Khandelwal, Mohammad Hossein Kadkhodaei and Jian Zhou
Machines 2025, 13(9), 758; https://doi.org/10.3390/machines13090758 - 24 Aug 2025
Viewed by 404
Abstract
This study combines three optimization algorithms, Tunicate Swarm Algorithm (TSA), Whale Optimization Algorithm (WOA), and Jellyfish Search Optimizer (JSO), with random forest (RF) to predict the shear bond strength of cable bolts under different types and grouting conditions. Based on the original dataset, [...] Read more.
This study combines three optimization algorithms, Tunicate Swarm Algorithm (TSA), Whale Optimization Algorithm (WOA), and Jellyfish Search Optimizer (JSO), with random forest (RF) to predict the shear bond strength of cable bolts under different types and grouting conditions. Based on the original dataset, a database of 860 samples was generated by introducing random noise around each data point. After establishing three hybrid models (RF-WOA, RF-JSO, RF-TSA) and training them, the obtained models were evaluated using six metrics: coefficient of determination (R2), root mean squared error (RMSE), mean absolute error (MAE), mean absolute percentage error (MAPE), variance account for (VAF), and A-20 index. The results indicate that the RF-JSO model exhibits superior performance compared to the other models. The RF-JSO model achieved an excellent performance on the testing set (R2 = 0.981, RMSE = 11.063, MAE = 6.457, MAPE = 9, VAF = 98.168, A-20 = 0.891). In addition, Shapley Additive exPlanations (SHAP), Partial Dependence Plot (PDP), and Local Interpretable Model-agnostic Explanations (LIME) were used to analyze the interpretability of the model, and it was found that confining pressure (Stress), elastic modulus (E), and a standard cable type (cable type_standard) contributed the most to the prediction of shear bond strength. In summary, the hybrid model proposed in this study can effectively predict the shear bond strength of cable bolts. Full article
(This article belongs to the Special Issue Key Technologies in Intelligent Mining Equipment)
Show Figures

Figure 1

13 pages, 4953 KB  
Article
Long-Range Transport of Biomass Burning Aerosols from Southern Africa: A Case Study Using Layered Atlantic Smoke Interactions with Clouds Observations
by Osinachi F. Ajoku, Joseph L. Wilkins and Mumin Abdulahi
Atmosphere 2025, 16(9), 997; https://doi.org/10.3390/atmos16090997 - 23 Aug 2025
Viewed by 355
Abstract
A case study of an incoming biomass burning aerosol plume at Ascension Island is analyzed for the peak of the 2017 fire season using satellites, reanalysis and in situ observations. Measurements from the Atmospheric Radiation Measurement Mobile Facility 1 reveal an abrupt change [...] Read more.
A case study of an incoming biomass burning aerosol plume at Ascension Island is analyzed for the peak of the 2017 fire season using satellites, reanalysis and in situ observations. Measurements from the Atmospheric Radiation Measurement Mobile Facility 1 reveal an abrupt change from relatively clean conditions (~70 parts per billion by volume of carbon monoxide) to a more polluted state (~150 parts per billion by volume of carbon monoxide). Corresponding changes in aerosol size reveal a broadening of size distributions toward larger optical diameters, consistent with the arrival of aged aerosols. Within a 24 h period, black carbon fraction increases ~500% from ~300 ng me to ~1500 ng m3, while light absorption coefficients increase ~300%. Long-range transport of these aerosols is primarily confined between 2 and 5 km above sea level along the northwesterly trade winds. Our results show that the primary driver of increases in aerosol loading over Ascension Island is an intensification of the St. Helena high-pressure system (anticyclone) that leads to a weakening of trade winds and increases westward transport on its northern flank. A better understanding of the complex interactions between air quality, meteorology and long-range aerosol transport is important for future modeling studies focused on aerosol–cloud–radiation interactions over the open ocean and reducing its associated uncertainties. Full article
(This article belongs to the Special Issue Natural Sources Aerosol Remote Monitoring (2nd Edition))
Show Figures

Figure 1

23 pages, 5651 KB  
Article
Creep Tests and Fractional Creep Damage Model of Saturated Frozen Sandstone
by Yao Wei and Hui Peng
Water 2025, 17(16), 2492; https://doi.org/10.3390/w17162492 - 21 Aug 2025
Viewed by 447
Abstract
The rock strata traversed by frozen shafts in coal mines located in western regions are predominantly composed of weakly cemented, water-rich sandstones of the Cretaceous system. Investigating the rheological damage behavior of saturated sandstone under frozen conditions is essential for evaluating the safety [...] Read more.
The rock strata traversed by frozen shafts in coal mines located in western regions are predominantly composed of weakly cemented, water-rich sandstones of the Cretaceous system. Investigating the rheological damage behavior of saturated sandstone under frozen conditions is essential for evaluating the safety and stability of these frozen shafts. To explore the damage evolution and creep characteristics of Cretaceous sandstone under the coupled influence of low temperature and in situ stress, a series of triaxial creep tests were conducted at a constant temperature of −10 °C, under varying confining pressures (0, 2, 4, and 6 MPa). Simultaneously, acoustic emission (AE) energy monitoring was employed to characterize the damage behavior of saturated frozen sandstone under stepwise loading conditions. Based on the experimental findings, a fractional-order creep constitutive model incorporating damage evolution was developed to capture the time-dependent deformation behavior. The sensitivity of model parameters to temperature and confining pressure was also analyzed. The main findings are as follows: (1) Creep deformation progressively increases with higher confining pressure, and nonlinear accelerated creep is observed during the final loading stage. (2) A fractional-order nonlinear creep model accounting for the coupled effects of low temperature, stress, and damage was successfully established based on the test data. (3) Model parameters were identified using the least squares fitting method across different temperature and pressure conditions. The predicted curves closely match the experimental results, validating the accuracy and applicability of the proposed model. These findings provide a theoretical foundation for understanding deformation mechanisms and ensuring the structural integrity of frozen shafts in Cretaceous sandstone formations of western coal mines. Full article
Show Figures

Figure 1

19 pages, 7005 KB  
Article
Water Level Response to Earthquakes in an Open Well and in a Closed Well—Analysis of Field Observations
by Hallel Lutzky, Ittai Kurzon, Haim Gvirtzman, Vladimir Lyakhovsky and Eyal Shalev
Water 2025, 17(16), 2453; https://doi.org/10.3390/w17162453 - 19 Aug 2025
Viewed by 562
Abstract
Seismic waves induce pore pressure changes in aquifers, leading to water level oscillations in wells. These oscillations are often used to estimate the poroelastic properties of aquifers, but their interpretation is influenced by factors such as aquifer properties, seismic wave characteristics, and wellbore [...] Read more.
Seismic waves induce pore pressure changes in aquifers, leading to water level oscillations in wells. These oscillations are often used to estimate the poroelastic properties of aquifers, but their interpretation is influenced by factors such as aquifer properties, seismic wave characteristics, and wellbore storage. The aim of this study is to evaluate the effect of wellbore storage on seismically induced water level oscillations. We analyze water level responses to similar seismic forcing in two adjacent deep wells (~1000 m) tapping the same confined aquifer: one open (artesian) and one closed (flowing artesian). Seismic forcing was characterized using ground motion velocity data from a nearby seismic station. The results show that the wells differ by three orders of magnitude in their wellbore storage. In the open well, pore pressure oscillations are reliably detected only for teleseismic events, while in the closed well, they are also reliably recorded for regional earthquakes. Under these conditions, it is possible to estimate the first-order approximation of the aquifer’s poroelastic coefficients. These findings emphasize the importance of accounting for wellbore storage when interpreting seismically induced water level fluctuations. Full article
(This article belongs to the Section Hydrogeology)
Show Figures

Figure 1

16 pages, 5037 KB  
Article
Mechanistic Study of CO2-Based Oil Flooding in Microfluidics and Machine Learning Parametric Analysis
by Chunxiu Shen, Lianjie Hou, Ze Zhou, Yanxing Wang, Omar Alfarisi, Sergey E. Chernyshov, Junrong Liu, Shuyang Liu, Jianchun Xu and Xiaopu Wang
Energies 2025, 18(16), 4385; https://doi.org/10.3390/en18164385 - 18 Aug 2025
Viewed by 473
Abstract
CO2-enhanced oil recovery (CO2-EOR) has gained prominence as an effective oil displacement method with low carbon emissions, yet its microscopic mechanisms remain incompletely understood. This study introduces a novel high-pressure microfluidic visualization system capable of operating at 0.1–10 MPa [...] Read more.
CO2-enhanced oil recovery (CO2-EOR) has gained prominence as an effective oil displacement method with low carbon emissions, yet its microscopic mechanisms remain incompletely understood. This study introduces a novel high-pressure microfluidic visualization system capable of operating at 0.1–10 MPa without confining pressure and featuring stratified porous media with a 63 μm minimum throat size to provide unprecedented insights into CO2 and CO2-foam EOR processes at the microscale. Through quantitative image analysis and advanced machine learning modeling, we reveal that increasing the CO2 injection pressure nonlinearly reduces residual oil saturation, achieving near-complete miscibility at 6 MPa with only 2% residual oil—a finding that challenges conventional thresholds for miscibility in heterogeneous systems. Our work uniquely demonstrates that CO2-foam flooding not only mobilizes capillary-trapped oil films but also dynamically alters interfacial tension and the pore-scale fluid distribution, a phenomenon previously underexplored. Support Vector Regression (R2 = 0.71) further uncovers a nonlinear relationship between the surfactant concentration and residual oil saturation, offering a data-driven framework for parameter optimization. These results advance our fundamental understanding by bridging microscale dynamics with field-applicable insights, while the integration of machine learning with microfluidics represents a methodological leap for EOR research. Full article
(This article belongs to the Special Issue Subsurface Energy and Environmental Protection 2024)
Show Figures

Figure 1

21 pages, 5547 KB  
Article
Study of Performance and Engineering Application of D-RJP Jet Grouting Technology in Anchorage Foundation Reinforcement for Deep Suspension Bridge Excavations
by Xiaoliang Zhu, Wenqing Zhao, Sheng Fang, Junchen Zhao, Guoliang Dai, Zhiwei Chen and Wenbo Zhu
Appl. Sci. 2025, 15(16), 8985; https://doi.org/10.3390/app15168985 - 14 Aug 2025
Viewed by 320
Abstract
To address the critical challenge of ensuring bottom water-inrush stability during the excavation of ultra-deep foundation pits for riverside suspension-bridge anchorages under complex geological conditions involving high-pressure confined groundwater, we investigate the application of D-RJP high-pressure rotary jet grouting pile technology for ground [...] Read more.
To address the critical challenge of ensuring bottom water-inrush stability during the excavation of ultra-deep foundation pits for riverside suspension-bridge anchorages under complex geological conditions involving high-pressure confined groundwater, we investigate the application of D-RJP high-pressure rotary jet grouting pile technology for ground improvement. Its effectiveness is systematically validated through a case study of the South Anchorage Foundation Pit for the North Channel Bridge of the Zhangjinggao Yangtze River Bridge. The D-RJP method led to the successful construction of a composite foundation within the soft soil that satisfies the permeability coefficient, interface friction coefficient, bearing capacity, and shear strength requirements, significantly improving the geotechnical performance of the anchorage foundation. A series of field experiments were conducted to optimize the critical construction parameters, including the lifting speed, water–cement ratio, and stroke spacing. Core sampling and laboratory testing revealed the grout columns to have good structural integrity. The unconfined compressive strength of the high-pressure jet grout columns reached 5.45 MPa in silty clay layers and 8.21 MPa in silty sand layers. The average permeability coefficient ranged from 1.67 × 10−7 to 2.52 × 10−7 cm/s. The average density of the columns was 1.66 g/cm3 in the silty clay layer and 2.08 g/cm3 in the silty sand layer. The cement content in the return slurry varied between 18% and 27%, with no significant soil squeezing effect observed. The foundation interface friction coefficient ranged from 0.44 to 0.52. After excavation, the composite foundation formed by D-RJP columns was subjected to static load and direct shear testing. The results showed a characteristic bearing capacity value of 1200 kPa, the internal friction angle exceeded 24.23°, and the cohesion exceeded 180 kPa. This study successfully verifies the feasibility of applying D-RJP technology to construct high-performance artificial composite foundations in complex strata characterized by deep soft soils and high-pressure confined groundwater, providing valuable technical references and practical insights for similar ultra-deep foundation pit projects involving suspension bridge anchorages. Full article
Show Figures

Figure 1

19 pages, 5339 KB  
Article
Evolution of the Damping Ratio Considering Cyclic Confining Pressure Under Intermittent Cyclic Loading
by Juehao Huang, Chao Meng, Yongqiang Zhou, Jian Chen, Xiaodong Fu and Mingyi Wang
Buildings 2025, 15(16), 2882; https://doi.org/10.3390/buildings15162882 - 14 Aug 2025
Viewed by 201
Abstract
The damping ratio is essential to conducting dynamic analysis for underground engineering under traffic loading. Variations in the damping ratio are usually studied using cyclic triaxial tests with continuous cyclic loading; however, intermittent loading is observed under traffic loading. Moreover, both the deviator [...] Read more.
The damping ratio is essential to conducting dynamic analysis for underground engineering under traffic loading. Variations in the damping ratio are usually studied using cyclic triaxial tests with continuous cyclic loading; however, intermittent loading is observed under traffic loading. Moreover, both the deviator stress and confining pressure vary cyclically. So far, the development of the damping ratio under intermittent cyclic loading with cyclic confining pressure has rarely been studied. Thus, cyclic triaxial tests with continuous and intermittent cyclic loading were conducted. Unlike continuous loading, where the normalized damping ratio progressively decreases, the corresponding variations under intermittent cyclic loading showed a sudden increase in the initial damping ratio at each restart. Critically, the cyclic confining pressure significantly reduced the normalized damping ratio, with greater attenuation under intermittent loading at higher cyclic confining pressures. In addition, an empirical model incorporating these effects for the damping ratio under intermittent cyclic loading was developed. Full article
Show Figures

Figure 1

29 pages, 692 KB  
Article
Landschap Philia: The Origins of Human Delight in Landscape Beauty
by Andrew Lothian
Land 2025, 14(8), 1641; https://doi.org/10.3390/land14081641 - 14 Aug 2025
Viewed by 466
Abstract
This paper identifies the various influences of Western aesthetic preferences of landscapes in answer to the question, why do humans find landscapes attractive? A four-level model of influences is proposed, based on the innate or evolutionary influences applicable to all humanity, through the [...] Read more.
This paper identifies the various influences of Western aesthetic preferences of landscapes in answer to the question, why do humans find landscapes attractive? A four-level model of influences is proposed, based on the innate or evolutionary influences applicable to all humanity, through the cultural and the societal to the individual. At each level there are a number of contributory factors at play, and these are described. The paper is confined to Western perspectives of landscape aesthetics. At the innate level are four landscape theories that postulate the reasons why humans find landscapes attractive. Also at the innate level are the philosophical underpinnings of human delight in landscapes and the Gestalt influence on preferences. The cultural influence comprises the legend of Arcadia and the Golden Age; of classicism, teleology, and landscape painting; and the emergence of the sublime, the beautiful, the picturesque, and Romanticism. At the societal level are the artistic pursuits of landscape painting and the development of parks and gardens, which reflected the perfect Italianate landscape. Also at this level are Western society’s attitude to mountains, which changed radically in the seventeenth century. Individuals are influenced by psychoanalytical pressures on the subconscious, by unconscious experiences in infancy such as a human’s preference for water, and by the influence of neuroaesthetics, which describes how the areas of the brain respond to aesthetic objects. Finally, research of landscape preferences over 50 years provides insights on the influence of landscape components, reflecting the influence of the innate, cultural, and societal factors. The combined realms of influence of each of these factors are hypothesized to explain human responses to landscapes. Full article
(This article belongs to the Section Land Socio-Economic and Political Issues)
Show Figures

Figure 1

Back to TopTop