Sign in to use this feature.

Years

Between: -

Subjects

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Journals

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Article Types

Countries / Regions

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Search Results (1,022)

Search Parameters:
Keywords = constant current control

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
23 pages, 3082 KB  
Article
Horizontal Wellbore Stability in the Production of Offshore Natural Gas Hydrates via Depressurization
by Zhengfeng Shan, Zhiyuan Wang, Shipeng Wei, Peng Liu, En Li, Jianbo Zhang and Baojiang Sun
Sustainability 2025, 17(19), 8738; https://doi.org/10.3390/su17198738 - 29 Sep 2025
Abstract
Wellbore stability is a crucial factor affecting the safe exploitation of offshore natural gas hydrates. As a sustainable energy source, natural gas hydrate has significant reserves, high energy density, and low environmental impact, making it an important candidate for alternative energy. Although research [...] Read more.
Wellbore stability is a crucial factor affecting the safe exploitation of offshore natural gas hydrates. As a sustainable energy source, natural gas hydrate has significant reserves, high energy density, and low environmental impact, making it an important candidate for alternative energy. Although research on the stability of screen pipes during horizontal-well hydrate production is currently limited, its importance in sustainable energy extraction is growing. This study therefore considers the effects of hydrate phase change, gas–water seepage, energy and mass exchange, reservoir deformation, and screen pipe influence and develops a coupled thermal–fluid–solid–chemical field model for horizontal-well natural gas hydrate production. The model results were validated using experimental data and standard test cases from the literature. The results obtained by applying this model in COMSOL Multiphysics 6.1 showed that the errors in all simulations were less than 2%, with errors of 12% and 6% observed at effective stresses of 0.5 MPa and 3 MPa, respectively. The simulation results indicate that the presence of the screen pipe in the hydrate reservoir exerts little effect on the decomposition of gas hydrates, but it effectively mitigates stress concentration in the near-wellbore region, redistributing the effective stress and significantly reducing the instability risk of the hydrate reservoir. Furthermore, the distribution of mechanical parameters around the screen pipe is uneven, with maximum values of equivalent Mises stress, volumetric strain, and displacement generally occurring on the inner side of the screen pipe in the horizontal crustal stress direction, making plastic instability most likely to occur in this area. With other basic parameters held constant, the maximum equivalent Mises stress and the instability area within the screen increase with the rise in the production pressure drop and wellbore size, and the decrease in screen pipe thickness. The results of this study lay the foundation for wellbore instability control in the production of offshore natural gas hydrates via depressurization. The study provides new insights into sustainable energy extraction, as improving wellbore stability during the extraction process can enhance resource utilization, reduce environmental impact, and promote sustainable development in energy exploitation. Full article
Show Figures

Figure 1

10 pages, 1101 KB  
Article
The Differential Early Responses of Human Leukocytes to Influenza Virus and Respiratory Syncytial Virus
by Norbert J. Roberts and M. Kerry O’Banion
Pathogens 2025, 14(10), 974; https://doi.org/10.3390/pathogens14100974 - 26 Sep 2025
Abstract
The current studies examined very early events associated with activation and initiation of a human immune response after sham exposure or exposure to influenza virus (IAV) versus respiratory syncytial virus (RSV), focusing on the function of a critical accessory cell for lymphocyte responses. [...] Read more.
The current studies examined very early events associated with activation and initiation of a human immune response after sham exposure or exposure to influenza virus (IAV) versus respiratory syncytial virus (RSV), focusing on the function of a critical accessory cell for lymphocyte responses. Calcium mobilization by monocytes/macrophages was rapid and marked in response to exposure to IAV but was muted in response to RSV. Monocytes/macrophages exposed to IAV showed markedly enhanced expression of Cox-2 mRNA measured soon after exposure, whereas exposure to RSV resulted in reduced expression (relative to control cells). In contrast, expression of the constitutively expressed 2.8 kb Cox-1 mRNA was relatively constant. The 72/74 kDa/pl 7.5 protein doublet (product of the Cox-2 gene) was identified in lysates of IAV-exposed monocytes/macrophages but not RSV-exposed monocytes/macrophages. The results demonstrate that human monocytes/macrophages show reduced responses to RSV, similar to previously demonstrated effects of RSV on lymphocyte responses. This relative lack of early responses may contribute substantially to the ability of RSV to re-infect individuals. Full article
Show Figures

Figure 1

18 pages, 1741 KB  
Article
Recruitment and Controlled Growth of Juveniles of the Critically Endangered Fan Mussel Pinna nobilis in the Northern Adriatic
by Valentina Pitacco, Domen Trkov, Daniela Caracciolo, Saul Ciriaco, Marco Segarich, Edoardo Batistini, Martina Orlando-Bonaca, Lovrenc Lipej, Borut Mavrič, Manja Rogelja, Ilenia Azzena, Chiara Locci, Fabio Scarpa, Daria Sanna, Marco Casu, Chiara Manfrin, Alberto Pallavicini and Ana Fortič
Diversity 2025, 17(10), 666; https://doi.org/10.3390/d17100666 - 23 Sep 2025
Viewed by 90
Abstract
The fan mussel Pinna nobilis is the largest bivalve species in the Mediterranean Sea and provides numerous ecosystem services. It is classified as critically endangered by IUCN (International Union for Conservation of Nature) due to severe mass mortality events throughout the Mediterranean. The [...] Read more.
The fan mussel Pinna nobilis is the largest bivalve species in the Mediterranean Sea and provides numerous ecosystem services. It is classified as critically endangered by IUCN (International Union for Conservation of Nature) due to severe mass mortality events throughout the Mediterranean. The aims of this work are as follows: (i) to assess the current recruitment potential of the species, (ii) to enhance recruitment by keeping juveniles in controlled conditions before releasing them back into the sea, and (iii) to assess the health status of recruits. In the period 2022–2023, larval collectors were set up in the Gulf of Trieste as part of the LIFE Pinna project. The collected individuals were kept in aquaria in two different facilities under different conditions: (a) a closed system with constant water temperature, live phytoplankton, and commercial food and (b) an open system with ambient seawater temperature and commercial food. A clear temporal and spatial variability in recruitment was observed: 13 recruits were found in 2022 and 50 recruits in 2023. The live specimens were between 0.5 and 8 cm in size upon collection and larger in 2023. The growth and survival rate did not differ significantly between the two systems, but the average monthly growth and survival rate were related to the initial size of the juveniles. Full article
Show Figures

Figure 1

15 pages, 2392 KB  
Article
Broken Rotor Bar Detection in Variable-Speed-Drive-Fed Induction Motors Through Statistical Features and Artificial Neural Networks
by Jose M. Flores-Perez, Luis M. Ledesma-Carrillo, Misael Lopez-Ramirez, Jaime O. Landin-Martinez, Geovanni Hernandez-Gomez and Eduardo Cabal-Yepez
Electronics 2025, 14(19), 3750; https://doi.org/10.3390/electronics14193750 - 23 Sep 2025
Viewed by 160
Abstract
Induction motors (IM) play essential tasks in distinct production sectors because of their low cost and robustness. Considering that most of the energy demand in industry is allocated for powering up IM, recent research has focused on detecting and predicting faults to avoid [...] Read more.
Induction motors (IM) play essential tasks in distinct production sectors because of their low cost and robustness. Considering that most of the energy demand in industry is allocated for powering up IM, recent research has focused on detecting and predicting faults to avoid severe disturbances. Broken rotor bars (BRB) in IM cause a significant deficit of energy, above all in those applications where constant changes in speed are required, increasing the probability of a catastrophic failure. Variable speed drives (VSD) introduce harmonic components to the power supply current controlling the IM rotating speed, which make it difficult to identify BRB. Therefore, in this work, an innovative methodology is proposed for detecting BRB in VSD-fed IM with a wide rotating-speed bandwidth during their start-up transient. The introduced procedure performs a statistical analysis for computing the mean, median, mode, variance, skewness, and kurtosis, to identify slight changes on the acquired current signal. These values are fed into an artificial neural network (ANN), which carries out the IM operational condition classification as healthy (HLT) or with BRB. Experimentally obtained results corroborate the effectiveness of the proposed approach to detecting BRB even for dynamically varying rotating speed, reaching a high accuracy of 99%, similar to recently reported techniques. Full article
(This article belongs to the Special Issue Fault Diagnosis and Condition Monitoring for Induction Motors)
Show Figures

Figure 1

22 pages, 2333 KB  
Article
RST-Controlled Interleaved Boost Converters for Enhanced Stability in CPL-Dominated DC Microgrids
by Abdullrahman A. Al-Shammaa, Hassan M. Hussein Farh, Hammed Olabisi Omotoso, AL-Wesabi Ibrahim, Akram M. Abdurraqeeb and Abdulrhman Alshaabani
Symmetry 2025, 17(10), 1585; https://doi.org/10.3390/sym17101585 - 23 Sep 2025
Viewed by 165
Abstract
Microgrids have emerged as a crucial solution for addressing environmental concerns, such as reducing greenhouse gas emissions and enhancing energy sustainability. By incorporating renewable energy sources like solar and wind, microgrids improve energy efficiency and offer a cleaner alternative to conventional power grids. [...] Read more.
Microgrids have emerged as a crucial solution for addressing environmental concerns, such as reducing greenhouse gas emissions and enhancing energy sustainability. By incorporating renewable energy sources like solar and wind, microgrids improve energy efficiency and offer a cleaner alternative to conventional power grids. Among various microgrid architectures, DC microgrids are gaining significant attention due to their higher efficiency, reduced reactive power losses, and direct compatibility with renewable energy sources and energy storage systems. However, DC microgrids face stability challenges, particularly due to the presence of constant power loads (CPLs), which exhibit negative incremental impedance characteristics. These loads can destabilize the system, leading to oscillations and performance degradation. This paper explores various control strategies designed to enhance the stability and dynamic response of DC microgrids, with a particular focus on interleaved boost converters (IBCs) interfaced with CPLs. Traditional control methods, including proportional–integral (PI) and sliding mode control (SMC), have shown limitations in handling dynamic variations and disturbances. To overcome these challenges, this paper proposes a novel RST-based control strategy for IBCs, offering improved stability, adaptability, and disturbance rejection. The efficacy of the RST controller is validated through extensive simulations tests, demonstrating competitive performance in maintaining DC bus voltage regulation and current distribution. Key performance indicators demonstrate competitive performance, including settling times below 40 ms for voltage transients, overshoot limited to ±2%, minimal voltage deviation from the reference, and precise current sharing between interleaved phases. The findings contribute to advancing the stability and efficiency of DC microgrids, facilitating their broader adoption in modern energy systems. Full article
Show Figures

Figure 1

28 pages, 464 KB  
Article
Analysis of a Retrial Queueing System Suitable for Modeling Operation of Ride-Hailing Platforms with the Dynamic Service Pricing
by Alexander Dudin, Sergei Dudin and Olga Dudina
Axioms 2025, 14(9), 714; https://doi.org/10.3390/axioms14090714 - 22 Sep 2025
Viewed by 140
Abstract
Effective operation of any service system requires optimal organization of the sharing of resources between the users (customers). To this end, it is necessary to elaborate on the mechanisms that allow for the mitigation of congestion, i.e., the accumulation of many users requiring [...] Read more.
Effective operation of any service system requires optimal organization of the sharing of resources between the users (customers). To this end, it is necessary to elaborate on the mechanisms that allow for the mitigation of congestion, i.e., the accumulation of many users requiring service. Due to the randomness of the user’s arrival process, congestions can occur even when an arrival rate is constant, e.g., the arrivals are described by the stationary Poisson process, which is assumed in the majority of existing papers. However, congestions can be more severe if the possibility of fluctuation of the instantaneous arrival rate exists. Such a possibility is an inherent feature of many systems and can be taken into account via the description of arrivals by the Markov arrival process (MAP). This makes the problem of congestion avoidance drastically more challenging. In many real-world systems, there exists the possibility of customer admission control via dynamic pricing. We propose a novel predictive mechanism of dynamic pricing. Decision moments coincide with the transition moments of the underlying process of the MAP. A customer may join or balk the system or postpone joining the system depending on the current cost. We illustrate the application of this mechanism in a multi-server retrial queueing model with dynamic service pricing. The behavior of the system is described by a multidimensional Markov chain with state-inhomogeneous transitions. Its stationary distribution is computed and may be used for solving the various problems of system revenue maximization via the choice of the proper pricing strategy. Full article
(This article belongs to the Special Issue Probability Theory and Stochastic Processes: Theory and Applications)
Show Figures

Figure 1

19 pages, 2773 KB  
Article
Study of the System of Two Parallel Reactions—Carburization of Nanocrystalline Iron and Formation of a Carbon Deposit
by Rafał J. Pelka and Ewa A. Ekiert
Crystals 2025, 15(9), 823; https://doi.org/10.3390/cryst15090823 - 19 Sep 2025
Viewed by 231
Abstract
The reaction system of nanocrystalline iron carburization and carbon deposit formation as an example of a parallel chemical reaction was studied. The main measurement procedure was the Chemical Potential Programmed Reaction method, according to which the course of a chemical reaction in this [...] Read more.
The reaction system of nanocrystalline iron carburization and carbon deposit formation as an example of a parallel chemical reaction was studied. The main measurement procedure was the Chemical Potential Programmed Reaction method, according to which the course of a chemical reaction in this particular case was controlled by the methane–hydrogen mixtures of precisely selected variable composition. The measurements were performed in a tubular differential flow reactor with thermogravimetric measurement and analysis of the gas phase composition at a temperature of 650 °C under atmospheric pressure. In the current research, by measuring the mass of the solid sample at changing carburizing potential and after balancing the reacting system, the reaction rates of parallel iron carburization and carbon deposit formation were precisely determined using the model of the reaction of a nanocrystalline substance with the gas phase in states close to chemical equilibrium. The reaction rate constants for those reactions were estimated as well based on model equations. Full article
Show Figures

Figure 1

20 pages, 1266 KB  
Review
Research Trends and Challenges of Integrated Constant On-Time (COT) Buck Converters
by Seok-Tae Koh and Sunghyun Bae
Electronics 2025, 14(18), 3721; https://doi.org/10.3390/electronics14183721 - 19 Sep 2025
Viewed by 320
Abstract
Constant on-time (COT) buck converters offer fast transient responses and a simple architecture but face challenges like switching frequency variation, instability with low-equivalent series resistance (ESR) capacitors, and DC output voltage offset. This paper reviews advanced COT control techniques developed to overcome these [...] Read more.
Constant on-time (COT) buck converters offer fast transient responses and a simple architecture but face challenges like switching frequency variation, instability with low-equivalent series resistance (ESR) capacitors, and DC output voltage offset. This paper reviews advanced COT control techniques developed to overcome these limitations. We examine methods for frequency stabilization (e.g., adaptive on-time, phase-locked loop), stability with low-ESR capacitors (e.g., passive and active ripple injection, virtual inductor current), and improved DC regulation (e.g., offset cancellation). This review also covers techniques for optimizing transient response and multiphase architectures for high-current applications. Full article
(This article belongs to the Section Circuit and Signal Processing)
Show Figures

Figure 1

23 pages, 4818 KB  
Article
Model Predictive Control of Common Ground PV Multilevel Inverter with Sliding Mode Observer for Capacitor Voltage Estimation
by Kelwin Silveira, Felipe B. Grigoletto, Fernanda Carnielutti, Mokhtar Aly, Margarita Norambuena and José Rodriguez
Processes 2025, 13(9), 2961; https://doi.org/10.3390/pr13092961 - 17 Sep 2025
Viewed by 402
Abstract
Transformerless inverters have received significant attention in solar photovoltaic (PV) applications. The absence of low-frequency transformers contributes to improved efficiency and reduced size compared to other topologies; however, there are concerns about leakage currents. The common ground (CG) connection in PV inverters is [...] Read more.
Transformerless inverters have received significant attention in solar photovoltaic (PV) applications. The absence of low-frequency transformers contributes to improved efficiency and reduced size compared to other topologies; however, there are concerns about leakage currents. The common ground (CG) connection in PV inverters is an attractive solution to this issue, as it generates a constant common-mode voltage and theoretically eliminates the leakage current. In this context, multilevel CG inverters can eliminate the leakage current while achieving high-quality output voltages. Nonetheless, achieving simultaneous control of the grid current and inner capacitor voltages can be challenging. Furthermore, controlling the capacitor voltages in multilevel inverters requires feedback from measurement sensors, which can increase the cost and may affect the overall reliability. To address these issues, this paper proposes a model predictive controller (MPC) for a CG multilevel inverter with a reduced number of sensors. While conventional MPC uses a classical multi-objective technique with a single cost function, the proposed method avoids the use of weighting factors in the cost function. Additionally, a sliding-mode observer is developed to estimate the capacitor voltages, and an incremental conductance-based maximum power point tracking (MPPT) algorithm is used to generate the current reference. Simulation and experimental results confirm the effectiveness of the proposed observer and MPC strategy. Full article
Show Figures

Figure 1

16 pages, 1459 KB  
Article
Fast and Green Extraction Method Based on HS–SPME/GC–MS to Identify Chemical Markers of X-Ray Irradiated Hen Eggs
by Andrea Chiappinelli, Marco Iammarino, Michele Tomaiuolo, Valeria Nardelli, Concetta Boniglia, Emanuela Bortolin, Augusto Alberto Pastorelli, Raffaella Gargiulo, Silvia Di Giacomo, Matteo Rosetti and Maria Campaniello
Appl. Sci. 2025, 15(18), 10044; https://doi.org/10.3390/app151810044 - 14 Sep 2025
Viewed by 303
Abstract
Food irradiation is a clean, safe and non-thermal technology applied to destroy pathogenic microorganisms, i.e., Salmonella spp., in hen eggs. Currently, in Europe only the egg white can be irradiated up to 3 kGy, so different control methods are crucial for official inspections [...] Read more.
Food irradiation is a clean, safe and non-thermal technology applied to destroy pathogenic microorganisms, i.e., Salmonella spp., in hen eggs. Currently, in Europe only the egg white can be irradiated up to 3 kGy, so different control methods are crucial for official inspections to identify illicit treatments. In this work, an analytical method was proposed to determine the radiolytic markers, namely 2–dodecylcyclobutanone (2–DCB) and 2–tetradecylcyclobutanone (2–TCB) in hen egg samples. This method is based on headspace solid phase micro-extraction coupled with gas chromatography/mass spectrometry (HS–SPME/GC–MS). The eggs were treated by an X-ray irradiator at dose levels of 0.5, 1.0 and 3.0 kGy. The preliminary validation showed good selectivity, without matrix interferences in non-irradiated samples. Spiked samples showed linear responses in the range 2.5–25.0 µg kg−1, where 2.5 µg kg−1 was the limit of detection for both analytes. Irradiated samples showed a dose-dependent increase in signal intensity and a constant 2–DCB/2–TCB ratio. The minimum dose level detected was 0.5 kGy for all samples, and the 2–DCB and 2–TCB signals remained stable over one month after irradiation. Not least, white analytical chemistry was used to evaluate the HS–SPME/GC–MS method validation effectiveness, greenness power and economic efficiency, compared to the EN 1785:2003 standard method. The results of this study prove that the HS–SPME/GC–MS method is a reliable green alternative to the official method, which is suitable in food safety control programs. Full article
(This article belongs to the Section Food Science and Technology)
Show Figures

Figure 1

14 pages, 1146 KB  
Review
Thermal Adaptation in Liriomyza trifolii (Diptera: Agromyzidae): From Interspecific Competition to Mechanisms
by Ya-Wen Chang, Jing-Ya Zhao, Yu-Cheng Wang and Yu-Zhou Du
Insects 2025, 16(9), 957; https://doi.org/10.3390/insects16090957 - 11 Sep 2025
Viewed by 464
Abstract
Global climate change has intensified temperature fluctuations, significantly impacting insect populations. Thermal tolerance has emerged as a critical determinant of species distribution and invasion potential. Liriomyza trifolii, an economically important invasive pest, has been rapidly expanding in southeastern coastal regions of China, [...] Read more.
Global climate change has intensified temperature fluctuations, significantly impacting insect populations. Thermal tolerance has emerged as a critical determinant of species distribution and invasion potential. Liriomyza trifolii, an economically important invasive pest, has been rapidly expanding in southeastern coastal regions of China, gradually displacing its congeners L. sativae and L. huidobrensis. This competitive advantage is closely associated with its superior thermal adaptation strategies. Here, we first examine the temperature-mediated competitive dominance of L. trifolii, then systematically elucidate the physiological, biochemical, and molecular mechanisms underlying its temperature tolerance, revealing its survival strategies under extreme temperatures. Notably, L. trifolii exhibits a lower developmental threshold temperature and higher thermal constant, extending its damage period, while its significantly lower supercooling point confers exceptional overwintering capacity. Physiologically, rapid cold hardening (RCH) enhances cold tolerance through glycerol accumulation and increased fatty acid unsaturation, while heat acclimation improves thermotolerance via a trade-off between developmental processes and reproductive investment. Molecular analyses demonstrate that L. trifolii combines the low-temperature inducible characteristics of L. huidobrensis with the high-temperature responsive advantages of L. sativae in heat shock protein (Hsp) expression patterns. Transcriptomic studies further identify differential expressions of lipid metabolism and chaperone-related genes as key to thermal adaptation. Current research limitations include incomplete understanding of non-Hsp gene regulatory networks and laboratory–field adaptation discrepancies. Future studies should integrate multi-omics approaches with ecological modeling to predict L. trifolii’s expansion under climate change scenarios and develop temperature-based green control strategies. Full article
(This article belongs to the Special Issue Invasive Pests: Bionomics, Damage, and Management)
Show Figures

Figure 1

13 pages, 3362 KB  
Article
Gate-Induced Static and Dynamic Nonlinearity Characteristics of Bilayer Graphene Field-Effect Transistors (Bi-GFETs)
by Varun Kumar Kakar, Munindra and Pankaj Kumar Pal
Micromachines 2025, 16(9), 1031; https://doi.org/10.3390/mi16091031 - 9 Sep 2025
Viewed by 527
Abstract
In this study, the nonlinearity characteristics of bilayer graphene field-effect transistors (Bi-GFETs) are analyzed by using a small-signal equivalent circuit. The static nonlinearity is determined by applying mathematical operation on the drain current equation of Bi-GFETs. Furthermore, the closed expressions for the second- [...] Read more.
In this study, the nonlinearity characteristics of bilayer graphene field-effect transistors (Bi-GFETs) are analyzed by using a small-signal equivalent circuit. The static nonlinearity is determined by applying mathematical operation on the drain current equation of Bi-GFETs. Furthermore, the closed expressions for the second- and third-order harmonic distortion (HD) and the intermodulation (IM) distortion of the second- and third-order for Bi-GFETs are analyzed graphically. Dynamic nonlinearity is studied and illustrated in the results by examining the input and output characteristics; i.e., the drain current versus the negative drain to the source voltage and the transfer characteristic curve at various gate voltages controlled by both the top gate as well as the back gate. The characteristic behavior of the gate voltage in Bi-GFETs at short channel lengths is observed and compared; that is, the characteristic curves exhibits strong nonlinearity, with a low power point with some kinks at high gate biasing and a constant linear region at low gate biasing. The quantitative values of the second-order harmonic distortion (HD) and intermodulation distortion (IM) of the proposed analytical model are −40 dB and −45 dB. Quantitative and qualitative outcomes of the characteristics of Bi-GFETs are compared with existing experimental data, which is available in the literature. Full article
Show Figures

Figure 1

19 pages, 11446 KB  
Article
Research on Constant-Voltage/Constant-Current Characteristics of Variable-Structure Dual-Frequency Dual-Load Wireless Power Transfer Technology
by Lu Zhang, Jundan Mao, Yonglin Ke, Yueliang Chen, Yao Dong and Qinzheng Zhang
World Electr. Veh. J. 2025, 16(9), 504; https://doi.org/10.3390/wevj16090504 - 8 Sep 2025
Viewed by 1209
Abstract
To address the limitations of conventional magnetically coupled resonant wireless power transfer (MCR-WPT) systems in multi-frequency multi-load applications—specifically inadequate load power independence and high complexity inconstant-voltage/constant-current (CV/CC) control—this paper proposes a variable-structure dual-frequency dual-load wireless power transfer system by first establishing its mathematical [...] Read more.
To address the limitations of conventional magnetically coupled resonant wireless power transfer (MCR-WPT) systems in multi-frequency multi-load applications—specifically inadequate load power independence and high complexity inconstant-voltage/constant-current (CV/CC) control—this paper proposes a variable-structure dual-frequency dual-load wireless power transfer system by first establishing its mathematical model and implementing hybrid-frequency modulation for multi-frequency output, then developing an improved T/LCC hybrid resonant topology by deriving parameter design conditions for compensation network reconfiguration under CV/CC requirements, subsequently employing an orthogonal planar solenoid coupling mechanism and frequency-division demodulation to achieve load-independent power regulation across wide load ranges for enhanced stability, and finally constructing a 120 W dual-frequency dual-load prototype to validate the system’s CV/CC characteristics, where simulations and experimental results demonstrate stronger consistency with theoretical predictions. Full article
(This article belongs to the Special Issue Power Electronics for Electric Vehicles)
Show Figures

Figure 1

14 pages, 4246 KB  
Article
PI-Based Current Constant Control with Ripple Component for Lifetime Extension of Lithium-Ion Battery
by Min-Ho Shin, Jin-Ho Lee and Jehyuk Won
Electronics 2025, 14(17), 3566; https://doi.org/10.3390/electronics14173566 - 8 Sep 2025
Viewed by 343
Abstract
This paper presents a proportional–integral (PI) control-based charging strategy that introduces a ripple component into the constant-current (CC) charging profile to regulate battery temperature and improve long-term performance. The proposed method is implemented within an on-board charger (OBC), where the ripple amplitude is [...] Read more.
This paper presents a proportional–integral (PI) control-based charging strategy that introduces a ripple component into the constant-current (CC) charging profile to regulate battery temperature and improve long-term performance. The proposed method is implemented within an on-board charger (OBC), where the ripple amplitude is adaptively adjusted based on battery temperature and internal resistance. While most prior studies focus on electrochemical characteristics, this work highlights the importance of analyzing current profiles from a power electronics and converter control perspective. The ripple magnitude is controlled in real time through gain tuning of the PI current controller, allowing temperature-aware charging. To validate the proposed method, experiments were conducted using a 11 kW OBC system and 70 Ah lithium-ion battery to examine the correlation between ripple amplitude and battery temperature rise, as well as its impact on internal resistance. The control strategy was evaluated under various thermal conditions and shown to be effective in mitigating temperature-related degradation through ripple-based modulation. Full article
Show Figures

Figure 1

11 pages, 1043 KB  
Article
Charge Transfer Rates Controlled by Frequency Dispersion of Double-Layer Capacitances
by Koichi Jeremiah Aoki and Jingyuan Chen
Electrochem 2025, 6(3), 32; https://doi.org/10.3390/electrochem6030032 - 5 Sep 2025
Viewed by 337
Abstract
Reported rate constants of charge transfer reactions (CTs) have ranged widely, depending on techniques and timescales. This fact can be attributed to the time-dependent double-layer capacitance (DLC), caused by solvent interactions such as hydrogen bonds. The time variation of the DLC necessarily affects [...] Read more.
Reported rate constants of charge transfer reactions (CTs) have ranged widely, depending on techniques and timescales. This fact can be attributed to the time-dependent double-layer capacitance (DLC), caused by solvent interactions such as hydrogen bonds. The time variation of the DLC necessarily affects the heterogeneous electrode kinetics. The delay by the solvation, being frequency dispersion, is incorporated into the CT kinetics in this report on the basis of the conventional reaction rate equations. It is different from the absolute rate theory. This report insists on a half value of the transfer coefficient owing to the segregation of the electrostatic energy from the chemical one. The rate equation here is akin to the Butler–Volmer one, except for the power law of the time caused by the delay of the DLC. The dipoles orient successively other dipoles in a group associated with the delay, which resembles that in the DLC. The delay suppresses the observed currents in the form of a negative capacitance. The above behavior was examined with a ferrocenyl derivative by ac impedance methods. The delay from diffusion control was attributed to the negative capacitance rather than the CT, even if the conventional DLC effect was corrected. Full article
Show Figures

Figure 1

Back to TopTop