Sign in to use this feature.

Years

Between: -

Subjects

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Journals

Article Types

Countries / Regions

Search Results (32)

Search Parameters:
Keywords = constrained lenses

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
22 pages, 2087 KB  
Article
Constraining the Primordial Black Hole Mass Function by the Lensing Events of Fast Radio Bursts
by Jing-Hao Li, Shi-Jie Wang, Xin-Yang Zhao and Nan Li
Universe 2025, 11(9), 311; https://doi.org/10.3390/universe11090311 - 11 Sep 2025
Viewed by 219
Abstract
Light from fast radio bursts (FRBs) can be deflected by the gravitational lensing effect of primordial black holes (PBHs), if they are distributed along the path from the FRBs to the observer. Consequently, the PBH mass function can be constrained by the lensing [...] Read more.
Light from fast radio bursts (FRBs) can be deflected by the gravitational lensing effect of primordial black holes (PBHs), if they are distributed along the path from the FRBs to the observer. Consequently, the PBH mass function can be constrained by the lensing events of FRBs. In this work, four different PBH mass functions are investigated (i.e., the monochromatic, log-normal, skew log-normal, and power-law distributions), and the constraints on the model parameters are obtained, if the PBH abundance fPBH and the event rate of lensed FRBs τ¯ are given. We find that, if τ¯<104 in future FRB experiments, fPBH will be less than 102.5 in most of the PBH mass range from 1–100M for the monochromatic mass function. Moreover, for the three extended mass functions, τ¯ increases when the PBH mass distributions spread to larger masses, setting more stringent constraints on fPBH. Full article
(This article belongs to the Special Issue Primordial Black Holes: Observational Strategies)
Show Figures

Figure 1

15 pages, 2004 KB  
Article
Impact of Aquifer Heterogeneity on the Migration and Natural Attenuation of Multicomponent Heavy Dense Nonaqueous Phase Liquids (DNAPLs) in a Retired Chemically Polluted Site
by Wenyi Xie, Mei Li, Dengdeng Jiang, Lingya Kong, Mengjie Wang, Shaopo Deng and Xuwei Li
Processes 2025, 13(8), 2338; https://doi.org/10.3390/pr13082338 - 23 Jul 2025
Viewed by 422
Abstract
Retired chemically polluted sites in southern Jiangsu Province, China, are characterized by dense nonaqueous phase liquids (DNAPLs) and extremely thick aquifers (>30 m), which pose substantial challenges for determining investigation and remediation depths during redevelopment and exploitation. This study constructed a 2D groundwater [...] Read more.
Retired chemically polluted sites in southern Jiangsu Province, China, are characterized by dense nonaqueous phase liquids (DNAPLs) and extremely thick aquifers (>30 m), which pose substantial challenges for determining investigation and remediation depths during redevelopment and exploitation. This study constructed a 2D groundwater transport model using TMVOC to systematically investigate the migration, diffusion, and natural attenuation processes of two typical DNAPLs—1,2-dichloroethane (DCE) and carbon tetrachloride (CTC)—under three scenarios: individual transport, mixed transport, and heterogeneous aquifer conditions, with a simulation period of 35 years. In individual transport scenarios, DCE and CTC showed distinct migration behaviors. DCE achieved a maximum vertical transport distance of 14.01 m and a downstream migration distance of 459.58 m, while CTC reached 13.57 m vertically and 453.51 m downstream. When transported as a mixture, their migration was inhibited: DCE’s vertical and downstream distances decreased to 13.76 m and 440.46 m, respectively; and CTC’s to 13.23 m and 420.32 m, likely due to mutual solvent effects that altered their physicochemical properties such as viscosity and solubility. Under natural attenuation conditions, both DNAPLs ceased downstream transport by the end of the 6th year. DCE concentrations dropped below its risk control value (0.81 mg/L) by the 14th year, and CTC (with a risk control value of 0.23 mg/L) by the 11th year. By the 10th year, DCE’s downstream plume had retreated to 48.65 m, and CTC’s to 0.95 m. In heterogeneous aquifers, vertical upward transport of DCE and CTC increased to 14.82 m and 14.22 m, respectively, due to the partial absence of low-conductivity silt layers, while their downstream distances decreased to 397.99 m and 354.11 m, constrained by low-permeability lenses in the migration path. These quantitative results clarify the dynamic differences in DNAPL transport under varying conditions, highlighting the impacts of multicomponent interactions, natural attenuation, and aquifer heterogeneity. They provide critical references for risk management, scientific determination of remediation depths, and safe exploitation of retired chemically polluted sites with similar hydrogeological characteristics. Full article
(This article belongs to the Section Environmental and Green Processes)
Show Figures

Figure 1

20 pages, 54664 KB  
Article
Lensless Digital Holographic Reconstruction Based on the Deep Unfolding Iterative Shrinkage Thresholding Network
by Duofang Chen, Zijian Guo, Huidi Guan and Xueli Chen
Electronics 2025, 14(9), 1697; https://doi.org/10.3390/electronics14091697 - 22 Apr 2025
Viewed by 749
Abstract
Without using any optical lenses, lensless digital holography (LDH) records the hologram of a sample and numerically retrieves the amplitude and phase of the sample from the hologram. Such lensless imaging designs have enabled high-resolution and high-throughput imaging of specimens using compact, portable, [...] Read more.
Without using any optical lenses, lensless digital holography (LDH) records the hologram of a sample and numerically retrieves the amplitude and phase of the sample from the hologram. Such lensless imaging designs have enabled high-resolution and high-throughput imaging of specimens using compact, portable, and cost-effective devices to potentially address various point-of-care-, global health-, and telemedicine-related challenges. However, in lensless digital holography, the reconstruction results are severely affected by zero-order noise and twin images as only the hologram intensity can be recorded. To mitigate such interference and enhance image quality, extensive efforts have been made. In recent years, deep learning (DL)-based approaches have made significant advancements in the field of LDH reconstruction. It is well known that most deep learning networks are often regarded as black-box models, which poses challenges in terms of interpretability. Here, we present a deep unfolding network, dubbed the ISTAHolo-Net, for LDH reconstruction. The ISTAHolo-Net replaces the traditional iterative update steps with a fixed number of sub-networks and the regularization weights with learnable parameters. Every sub-network consists of two modules, which are the gradient descent module (GDM) and the proximal mapping module (PMM), respectively. The ISTAHolo-Net incorporates the sparsity-constrained inverse problem model into the neural network and hence combines the interpretability of traditional iterative algorithms with the learning capabilities of neural networks. Simulation and real experiments were conducted to verify the effectiveness of the proposed reconstruction method. The performance of the proposed method was compared with the angular spectrum method (ASM), the HRNet, the Y-Net, and the DH-GAN. The results show that the DL-based reconstruction algorithms can effectively reduce the interference of twin images, thereby improving image reconstruction quality, and the proposed ISTAHolo-Net performs best on our dataset. Full article
Show Figures

Figure 1

16 pages, 1466 KB  
Article
Orbital Precession in Janis–Newman–Winicour Spacetime
by Bobur Turimov, Khurshid Karshiboev, Ahmadjon Abdujabbarov, Samik Mitra and Shavkat Karshiboev
Galaxies 2024, 12(5), 58; https://doi.org/10.3390/galaxies12050058 - 28 Sep 2024
Cited by 3 | Viewed by 1672
Abstract
We have investigated the Janis–Newman–Winicour spacetime through three fundamental tests of theories of gravity, namely, gravitational lensing, perihelion shift, and redshift due to gravitational force. Focusing initially on the circular motion of a massive particle within the equatorial plane, the analysis disregards external [...] Read more.
We have investigated the Janis–Newman–Winicour spacetime through three fundamental tests of theories of gravity, namely, gravitational lensing, perihelion shift, and redshift due to gravitational force. Focusing initially on the circular motion of a massive particle within the equatorial plane, the analysis disregards external scalar field interactions. The Janis–Newman–Winicour (JNW) spacetime’s unique parameters, mass (M) and the scalar parameter (n), are examined, revealing an intriguing relationship between the innermost stable circular orbit position of the test particle and the scalar field parameter. The study also explores photon motion around a gravitational object in JNW spacetime, revealing the expansion of the photon sphere alongside a diminishing shadow, influenced by the external scalar field. Despite these complexities, gravitational bending of light remains consistent with general relativity predictions. The investigation extends to perihelion precession, where the trajectory of a massive particle in JNW spacetime exhibits eccentricity-dependent shifts, distinguishing it from Schwarzschild spacetime. Finally, oscillatory motion of massive particles in JNW spacetime is explored, providing analytical expressions for epicyclic frequencies using perturbation methods. The study concludes with the application of MCMC analyses to constrain the JNW spacetime parameters based on observational data. Full article
Show Figures

Figure 1

15 pages, 3727 KB  
Article
D-MAINS: A Deep-Learning Model for the Label-Free Detection of Mitosis, Apoptosis, Interphase, Necrosis, and Senescence in Cancer Cells
by Sarah He, Muhammed Sillah, Aidan R. Cole, Apoorva Uboveja, Katherine M. Aird, Yu-Chih Chen and Yi-Nan Gong
Cells 2024, 13(12), 1004; https://doi.org/10.3390/cells13121004 - 8 Jun 2024
Cited by 4 | Viewed by 3471
Abstract
Background: Identifying cells engaged in fundamental cellular processes, such as proliferation or living/death statuses, is pivotal across numerous research fields. However, prevailing methods relying on molecular biomarkers are constrained by high costs, limited specificity, protracted sample preparation, and reliance on fluorescence imaging. Methods: [...] Read more.
Background: Identifying cells engaged in fundamental cellular processes, such as proliferation or living/death statuses, is pivotal across numerous research fields. However, prevailing methods relying on molecular biomarkers are constrained by high costs, limited specificity, protracted sample preparation, and reliance on fluorescence imaging. Methods: Based on cellular morphology in phase contrast images, we developed a deep-learning model named Detector of Mitosis, Apoptosis, Interphase, Necrosis, and Senescence (D-MAINS). Results: D-MAINS utilizes machine learning and image processing techniques, enabling swift and label-free categorization of cell death, division, and senescence at a single-cell resolution. Impressively, D-MAINS achieved an accuracy of 96.4 ± 0.5% and was validated with established molecular biomarkers. D-MAINS underwent rigorous testing under varied conditions not initially present in the training dataset. It demonstrated proficiency across diverse scenarios, encompassing additional cell lines, drug treatments, and distinct microscopes with different objective lenses and magnifications, affirming the robustness and adaptability of D-MAINS across multiple experimental setups. Conclusions: D-MAINS is an example showcasing the feasibility of a low-cost, rapid, and label-free methodology for distinguishing various cellular states. Its versatility makes it a promising tool applicable across a broad spectrum of biomedical research contexts, particularly in cell death and oncology studies. Full article
(This article belongs to the Section Cell Methods)
Show Figures

Figure 1

13 pages, 862 KB  
Article
Discord in Concordance Cosmology and Anomalously Massive Early Galaxies
by Stacy S. McGaugh
Universe 2024, 10(1), 48; https://doi.org/10.3390/universe10010048 - 19 Jan 2024
Cited by 9 | Viewed by 2288
Abstract
Cosmological parameters are constrained by a wide variety of observations. We examine the concordance diagram for modern measurements of the Hubble constant, the shape parameter from the large-scale structure, the cluster baryon fraction, and the age of the universe, all from non-CMB data. [...] Read more.
Cosmological parameters are constrained by a wide variety of observations. We examine the concordance diagram for modern measurements of the Hubble constant, the shape parameter from the large-scale structure, the cluster baryon fraction, and the age of the universe, all from non-CMB data. There is good agreement for H0=73.24±0.38kms1Mpc1 and Ωm=0.237±0.015. This concordance value is indistinguishable from the WMAP3 cosmology but is not consistent with that of Planck: there is a tension in Ωm as well as H0. These tensions have emerged as progressively higher multipoles have been incorporated into CMB fits. This temporal evolution is suggestive of a systematic effect in the analysis of CMB data at fine angular scales and may be related to the observation of unexpectedly massive galaxies at high redshift. These are overabundant relative to ΛCDM predictions by an order of magnitude at z>7. Such massive objects are anomalous and could cause gravitational lensing of the surface of last scattering in excess of the standard calculation made in CMB fits, potentially skewing the best-fit cosmological parameters and contributing to the Hubble tension. Full article
(This article belongs to the Special Issue Cosmic Microwave Background)
Show Figures

Figure 1

31 pages, 21839 KB  
Review
Optimizing Tunable LC Devices with Twisted Light
by José M. Otón, Javier Pereiro-García, Xabier Quintana, Manuel Caño-García, Eva Otón and Morten A. Geday
Crystals 2024, 14(1), 16; https://doi.org/10.3390/cryst14010016 - 24 Dec 2023
Cited by 4 | Viewed by 2703
Abstract
Tunable circular devices made of liquid crystals or other materials, like lenses, axicons, or phase plates, are often constrained by limitations in size, tunability, power, and other parameters. These constraints restrict their use and limit their applicability. In this review, a thorough study [...] Read more.
Tunable circular devices made of liquid crystals or other materials, like lenses, axicons, or phase plates, are often constrained by limitations in size, tunability, power, and other parameters. These constraints restrict their use and limit their applicability. In this review, a thorough study of the use of light’s orbital angular momentum in the manufacturing of liquid crystal (LC) devices is presented. Twisted light fosters the simultaneous optimization of most critical parameters. Experimental demonstrations of the unmatched performance of tunable LC lenses, axicons, and other elements in parameters such as lens diameter (>1″), power and tunability (>±6 diopters), fill factor (>98%), and time response have been achieved by reversible vortex generation created by azimuthal phase delay. This phase delay can eventually be removed within the optical system so that lens performance is not affected. Full article
(This article belongs to the Special Issue Reviews in Liquid Crystals)
Show Figures

Figure 1

19 pages, 4431 KB  
Article
In Situ Trace Element and Sulfur Isotope Composition of Pyrite from the Beiwagou Pb-Zn Deposit, Liaodong Peninsula, Northeast China: Implications for Ore Genesis
by Qi Yu, Zhigao Wang, Qingfei Sun and Keyong Wang
Minerals 2023, 13(9), 1176; https://doi.org/10.3390/min13091176 - 7 Sep 2023
Cited by 2 | Viewed by 2028
Abstract
The Beiwagou Pb-Zn deposit, located in the western part of the Liaodong Peninsula, is a carbonate-hosted stratiform deposit with a Pb + Zn reserve of 0.08 Mt @ 4.14% (Pb + Zn). The orebodies occur as conformable layers and lenses and are strictly [...] Read more.
The Beiwagou Pb-Zn deposit, located in the western part of the Liaodong Peninsula, is a carbonate-hosted stratiform deposit with a Pb + Zn reserve of 0.08 Mt @ 4.14% (Pb + Zn). The orebodies occur as conformable layers and lenses and are strictly controlled by strata (the Paleoproterozoic Gaojiayu and Dashiqiao Formations) and lithology (plagioclase amphibolite and dolomitic marble). Given that previous studies have focused only on the mineralization features and mineralogy of deposits, herein, we report in situ trace element analyses of pyrite using LA-ICP-MS, together with in situ sulfur isotopes of pyrite, to constrain the composition, substitution mechanisms, source of sulfur, and sulfate reduction pathways of pyrite in the Beiwagou deposit. Based on pyrite morphology, texture, and chemistry, four pyrite types were identified: subhedral, porous-to-massive pyrite (Py1) related to chalcopyrite; subhedral, porous crushed pyrite (Py2) associated with fine-grained sphalerite; rounded and porous pyrite (Py3) related to the Zn-rich part of the laminated ore; and anhedral, porous-to-massive pyrite (Py4) associated with pyrrhotite, arsenopyrite, sphalerite, and galena. Py1 is characterized by high As, Ag, Cd, In, Au, Cu, and Zn concentrations and low Te, Bi, and Mo concentrations, whereas Py2 has high concentrations of Co and Ni and low concentrations of other trace elements, such as Cu, Zn, Bi, and Te. Py3 is characterized by elevated As concentrations, low Co, Ni, In, W, Te, and Tl concentrations, and varying Pb concentrations, whereas Py4 has low Ag, Cd, In, Zn, Cu, and Mn concentrations and varying W, Co, Ni, Pb, Sb, and As concentrations. Significant correlations between some elements in each pyrite type suggest substitution mechanisms, such as (Zn2+ + Cu2+ + Mn2+ + Cd2+) ↔ 2Fe2+, Ag+ + (Sb)3+ ↔ 2Fe2+, and (Te+ + Ag+) + Sb3+ ↔ 2Fe2+, and the existence of a negative correlation between Co and Ni implies competition between both elements. The strongly positive δ34S values (12.11‰–23.54‰) are similar to that of seawater sulfates and likely result from thermochemical sulfate reduction (TSR). In conclusion, the Beiwagou Pb-Zn deposit is a typical SEDEX deposit and mineralization likely occurred during diagenesis. Full article
Show Figures

Figure 1

12 pages, 338 KB  
Article
Investigating Gravitationally Lensed Quasars Observable by Nancy Grace Roman Space Telescope
by Lindita Hamolli, Mimoza Hafizi, Francesco De Paolis and Esmeralda Guliqani
Galaxies 2023, 11(3), 71; https://doi.org/10.3390/galaxies11030071 - 1 Jun 2023
Cited by 1 | Viewed by 2095
Abstract
In this work, we investigate the possibility of observing quasars, particularly lensed quasars, by the Nancy Grace Roman Space Telescope (Roman). To this aim, based on the capabilities of the Roman Space Telescope and the results from the quasar luminosity function (QLF) in [...] Read more.
In this work, we investigate the possibility of observing quasars, particularly lensed quasars, by the Nancy Grace Roman Space Telescope (Roman). To this aim, based on the capabilities of the Roman Space Telescope and the results from the quasar luminosity function (QLF) in the infrared band of the Spitzer Space Telescope imaging survey, we calculated the number of quasars expected to be in its field of view. In order to estimate the number of lensed quasars, we develop a Monte Carlo simulation to estimate the probability that a quasar is lensed once or more times by foreground galaxies. Using the mass–luminosity distribution function of galaxies and the redshift distributions of galaxies and quasars, we find that 1 per 180 observed quasars will be lensed by foreground galaxies. Further on, adopting a singular isothermal sphere (SIS) model for lens galaxies, we calculate the time delay between lensed images for single and multiple lensing systems and present their distributions. We emphasize that detailed studies of these lensing systems will provide a powerful probe of the physical properties of quasars and may allow testing the mass distribution models of galaxies in addition to being extremely helpful for constraining the cosmological parameters. Full article
Show Figures

Figure 1

28 pages, 970 KB  
Review
Strong Gravitational Lensing of Gravitational Waves: A Review
by Margherita Grespan and Marek Biesiada
Universe 2023, 9(5), 200; https://doi.org/10.3390/universe9050200 - 22 Apr 2023
Cited by 24 | Viewed by 4568
Abstract
The first successful detection of gravitational waves (GWs) opened up a new window to study a realm of the most violent phenomena in the universe, such as coalescences of binary black holes (BH–BH), binary neutron stars (NS–NS), and mixed (BH–NS) systems, which are [...] Read more.
The first successful detection of gravitational waves (GWs) opened up a new window to study a realm of the most violent phenomena in the universe, such as coalescences of binary black holes (BH–BH), binary neutron stars (NS–NS), and mixed (BH–NS) systems, which are mostly inaccessible in the electromagnetic window. On the other hand, strong gravitational lensing of distant sources, such as galaxies and quasars, by other massive objects lying closer along the line of sight has become a powerful tool in cosmology and astrophysics. With the increasing sensitivity of the new generation of GW detectors, the chances to detect a strongly lensed GW signal are increasing. When GWs are strongly lensed, magnification of the signal intensity is expected, unveiling binary compact objects otherwise too distant to be detected. Such systems are important for their plethora of applications. Lensed GWs can be a test for general relativity, constrain mass distribution in galaxies or galaxy clusters, and provide cosmography information independently of the local cosmic ladders. In this review, we will provide a theoretical background of the gravitational lensing of GWs, including the wave optics regime, which becomes important in this context. Then we will describe the possible cosmological and astrophysical insight hidden in these signals, and present the state-of-the-art searches of lensed GWs in the present and future GW observatories. Full article
(This article belongs to the Special Issue Advances in Gravitational Lensing and Gravitational Waves Research)
Show Figures

Figure 1

24 pages, 10568 KB  
Review
MEMS Enabled Miniature Two-Photon Microscopy for Biomedical Imaging
by Xiaomin Yu, Liang Zhou, Tingxiang Qi, Hui Zhao and Huikai Xie
Micromachines 2023, 14(2), 470; https://doi.org/10.3390/mi14020470 - 17 Feb 2023
Cited by 7 | Viewed by 5582
Abstract
Over the last decade, two-photon microscopy (TPM) has been the technique of choice for in vivo noninvasive optical brain imaging for neuroscientific study or intra-vital microendoscopic imaging for clinical diagnosis or surgical guidance because of its intrinsic capability of optical sectioning for imaging [...] Read more.
Over the last decade, two-photon microscopy (TPM) has been the technique of choice for in vivo noninvasive optical brain imaging for neuroscientific study or intra-vital microendoscopic imaging for clinical diagnosis or surgical guidance because of its intrinsic capability of optical sectioning for imaging deeply below the tissue surface with sub-cellular resolution. However, most of these research activities and clinical applications are constrained by the bulky size of traditional TMP systems. An attractive solution is to develop miniaturized TPMs, but this is challenged by the difficulty of the integration of dynamically scanning optical and mechanical components into a small space. Fortunately, microelectromechanical systems (MEMS) technology, together with other emerging micro-optics techniques, has offered promising opportunities in enabling miniaturized TPMs. In this paper, the latest advancements in both lateral scan and axial scan techniques and the progress of miniaturized TPM imaging will be reviewed in detail. Miniature TPM probes with lateral 2D scanning mechanisms, including electrostatic, electromagnetic, and electrothermal actuation, are reviewed. Miniature TPM probes with axial scanning mechanisms, such as MEMS microlenses, remote-focus, liquid lenses, and deformable MEMS mirrors, are also reviewed. Full article
(This article belongs to the Special Issue Optical MEMS, Volume III)
Show Figures

Figure 1

18 pages, 3932 KB  
Article
Multi-Objective Optimization of Liquid Silica Array Lenses Based on Latin Hypercube Sampling and Constrained Generative Inverse Design Networks
by Hanjui Chang, Shuzhou Lu, Yue Sun, Guangyi Zhang and Longshi Rao
Polymers 2023, 15(3), 499; https://doi.org/10.3390/polym15030499 - 18 Jan 2023
Cited by 15 | Viewed by 2610
Abstract
Injection molding process parameters have a great impact on plastic production quality, manufacturing cost, and molding efficiency. This study proposes to apply the method of Latin hypercube sampling, and to combine the response surface model and “Constraint Generation Inverse Design Network (CGIDN)” to [...] Read more.
Injection molding process parameters have a great impact on plastic production quality, manufacturing cost, and molding efficiency. This study proposes to apply the method of Latin hypercube sampling, and to combine the response surface model and “Constraint Generation Inverse Design Network (CGIDN)” to achieve multi-objective optimization of the injection process, shorten the time to find the optimal process parameters, and improve the production efficiency of plastic parts. Taking the LSR lens array of automotive LED lights as the research object, the residual stress and volume shrinkage were taken as the optimization objectives, and the filling time, melt temperature, maturation time, and maturation pressure were taken as the influencing factors to obtain the optimization target values, and the response surface models between the volume shrinkage rate and the influencing factors were established. Based on the “Constraint-Generated Inverse Design Network”, the optimization was independently sought within the set parameters to obtain the optimal combination of process parameters to meet the injection molding quality of plastic parts. The results showed that the optimal residual stress value and volume shrinkage rate were 11.96 MPa and 4.88%, respectively, in the data set of 20 Latin test samples obtained based on Latin hypercube sampling, and the optimal residual stress value and volume shrinkage rate were 8.47 MPa and 2.83%, respectively, after optimization by the CGIDN method. The optimal process parameters obtained by CGIDN optimization were a melt temperature of 30 °C, filling time of 2.5 s, maturation pressure of 40 MPa, and maturation time of 15 s. The optimization results were obvious and showed the feasibility of the data-driven injection molding process optimization method based on the combination of Latin hypercube sampling and CGIDN. Full article
(This article belongs to the Special Issue Multifunctional Polymer Molding Processing of Polymers)
Show Figures

Figure 1

15 pages, 352 KB  
Review
Testing Quantum Gravity in the Multi-Messenger Astronomy Era
by Aleksandra Piórkowska-Kurpas and Marek Biesiada
Universe 2022, 8(6), 321; https://doi.org/10.3390/universe8060321 - 8 Jun 2022
Cited by 3 | Viewed by 2457
Abstract
Quantum gravity (QG) remains elusive despite almost century-long efforts to combine general relativity and quantum mechanics. All the approaches triggered and powered by purely theoretical considerations eventually failed with a prevailing feeling of a complete lack of guidance from the experimental side. Currently, [...] Read more.
Quantum gravity (QG) remains elusive despite almost century-long efforts to combine general relativity and quantum mechanics. All the approaches triggered and powered by purely theoretical considerations eventually failed with a prevailing feeling of a complete lack of guidance from the experimental side. Currently, however, this circumstance is beginning to change considerably. We have entered the era of multi-messenger astronomy. The electromagnetic window to the universe—so far the only one—has been tremendously enlarged in the energy range beyond gamma rays up to ultra-high-energy photons and has been complemented by other messengers: high-energy cosmic rays, cosmic neutrinos, and gravitational waves (GWs). This has created a unique environment in which to observationally constrain various phenomenological QG effects. In this paper, we focus on the LIV phenomenology manifested as energy-dependent time-of-flight delays and strong lensing time delays. We review results regarding time-of-flight delays obtained with GRBs. We also recall the idea of energy-dependent lensing time delays, which allow one to constrain LIV models independently of the intrinsic time delay. Lastly, we show how strongly a gravitationally lensed GW signal would place interesting constraints on the LIV. Full article
(This article belongs to the Special Issue Ultra High Energy Photons)
16 pages, 1206 KB  
Article
Cosmological Parameter Estimation Using Current and Future Observations of Strong Gravitational Lensing
by Jing-Zhao Qi, Wei-Hong Hu, Yu Cui, Jing-Fei Zhang and Xin Zhang
Universe 2022, 8(5), 254; https://doi.org/10.3390/universe8050254 - 20 Apr 2022
Cited by 11 | Viewed by 2555
Abstract
The remarkable development of cosmology benefits from the increasingly improved measurements of cosmic distances, including absolute distances and relative distances. In recent years, however, the emerged cosmological tensions have motivated us to explore independent and precise late-universe probes. The two observational effects of [...] Read more.
The remarkable development of cosmology benefits from the increasingly improved measurements of cosmic distances, including absolute distances and relative distances. In recent years, however, the emerged cosmological tensions have motivated us to explore independent and precise late-universe probes. The two observational effects of strong gravitational lensing (SGL), the velocity dispersions of lens galaxies and the time delays between multiple images can provide measurements of relative and absolute distances, respectively, and their combination makes it possible to break the degeneracies between cosmological parameters and enable tight constraints on them. In this paper, we combine the observed 130 SGL systems with velocity-dispersion measurements and 7 SGL systems with time-delay measurements to constrain dark-energy cosmological models. It is found that the combination of the two effects does not significantly break the degeneracies between cosmological parameters as expected. However, with the simulations of 8000 SGL systems with well-measured velocity dispersions and 55 SGL systems with well-measured time delays based on the forthcoming LSST survey, we find that the combination of two effects can significantly break the parameter degeneracies, and make the constraint precision of cosmological parameters meet the standard of precision cosmology. We conclude that the observations of SGL will become a useful late-universe probe for precisely measuring cosmological parameters. Full article
(This article belongs to the Special Issue Universe: Feature Papers–Cosmology and Gravitation)
Show Figures

Figure 1

21 pages, 1145 KB  
Article
Theory and Phenomenology of a Four-Dimensional String–Corrected Black Hole
by Kimet Jusufi and Dejan Stojkovic
Universe 2022, 8(3), 194; https://doi.org/10.3390/universe8030194 - 21 Mar 2022
Cited by 10 | Viewed by 2909
Abstract
We construct an effective four-dimensional string-corrected black hole (4D SCBH) by rescaling the string coupling parameter in a D-dimensional Callan–Myers–Perry black hole. From the theoretical point of view, the most interesting findings are that the string corrections coincide with the so-called generalized [...] Read more.
We construct an effective four-dimensional string-corrected black hole (4D SCBH) by rescaling the string coupling parameter in a D-dimensional Callan–Myers–Perry black hole. From the theoretical point of view, the most interesting findings are that the string corrections coincide with the so-called generalized uncertainty principle (GUP) corrections to black hole solutions, Bekenstein–Hawking entropy acquires logarithmic corrections, and that there exists a critical value of the coupling parameter for which the black hole temperature vanishes. We also find that, due to the string corrections, the nature of the central singularity may be altered from space-like to time-like singularity. In addition, we study the possibility of testing such a black hole with astrophysical observations. Since the dilaton field does not decouple from the metric, it is not a priori clear that the resulting 4D SCBH offers only small corrections to the Schwarzschild black hole. We used motion of the S2 star around the black hole at the center of our galaxy to constrain the parameters (the string coupling parameter and ADM mass) of the 4D SCBH. To test the weak gravity regime, we calculate the deflection angle in this geometry and apply it to gravitational lensing. To test the strong field regime, we calculate the black hole shadow radius. While we find that the observables change as we change the string coupling parameter, the magnitude of the change is too small to distinguish it from the Schwarzschild black hole. With the current precision, to the leading order terms, the 4D SCBH cannot be distinguished from the Schwarzschild black hole. Full article
(This article belongs to the Special Issue Black Holes in Einstein–Gauss–Bonnet Theories)
Show Figures

Figure 1

Back to TopTop