Sign in to use this feature.

Years

Between: -

Subjects

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Journals

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Article Types

Countries / Regions

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Search Results (462)

Search Parameters:
Keywords = convective initiation

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
24 pages, 4192 KB  
Article
Investigation on Dynamic Thermal Transfer Characteristics of Electromagnetic Rail Spray Cooling in Transient Processes
by Shuo Ma and Hongting Ma
Energies 2025, 18(19), 5254; https://doi.org/10.3390/en18195254 - 3 Oct 2025
Viewed by 193
Abstract
Electromagnetic Railguns Face Severe Ablation and Melting Risks Due to Extremely High Transient Thermal Loads During High-Speed Launching, Directly Impacting Launch Reliability and Service Life. To address this thermal management challenge, this study proposes and validates the effectiveness of spray cooling technology. Leveraging [...] Read more.
Electromagnetic Railguns Face Severe Ablation and Melting Risks Due to Extremely High Transient Thermal Loads During High-Speed Launching, Directly Impacting Launch Reliability and Service Life. To address this thermal management challenge, this study proposes and validates the effectiveness of spray cooling technology. Leveraging its high heat transfer coefficient, exceptional critical heat flux (CHF) carrying capacity, and strong transient cooling characteristics, it is particularly suitable for the unsteady thermal control during the initial launch phase. An experimental platform was established, and a three-dimensional numerical model was developed to systematically analyze the dynamic influence mechanisms of nozzle inlet pressure, flow rate, spray angle, and spray distance on cooling performance. Experimental results indicate that the system achieves maximum critical heat flux (CHF) and rail temperature drop at an inlet pressure of 0.5 MPa and a spray angle of 0°. Numerical simulations further reveal that a 45° spray cone angle simultaneously achieves the maximum temperature drop and optimal wall temperature uniformity. Key parameter sensitivity analysis demonstrates that while increasing spray distance leads to larger droplet diameters, the minimal droplet velocity decay combined with a significant increase in overall momentum markedly enhances convective heat transfer efficiency. Concurrently, increasing spray distance effectively improves rail surface temperature uniformity by optimizing the spatial distribution of droplet size and velocity. Full article
(This article belongs to the Section J: Thermal Management)
Show Figures

Figure 1

7 pages, 1917 KB  
Proceeding Paper
Supercell Thunderstorms on September 7, 2024, in Greece: Documentation and Predictability
by Maria Christodoulou, Ioannis Tegoulias and Ioannis Pytharoulis
Environ. Earth Sci. Proc. 2025, 35(1), 58; https://doi.org/10.3390/eesp2025035058 - 30 Sep 2025
Viewed by 206
Abstract
On September 7, 2024, a deep convection event was observed in Northern and Central Greece, and based on radar data analysis, three supercells were identified. One of these, the most intense with maximum radar reflectivity of 68 dBZ, had a lifetime of almost [...] Read more.
On September 7, 2024, a deep convection event was observed in Northern and Central Greece, and based on radar data analysis, three supercells were identified. One of these, the most intense with maximum radar reflectivity of 68 dBZ, had a lifetime of almost 7 h and covered a distance of more than 200 km, producing damaging winds and large hail along its track. The goal of this study was to analyze this case using radar data and to evaluate the predictability of such a high-impact event using a numerical weather prediction model. The Weather Research and Forecasting (ARW-WRF) model was used to perform an array of simulations, and using multiple initialization times, the influence of lead time was examined. Furthermore, the dependence of the results on the choice of parameterization scheme used in the model is assessed below. The model performed satisfactorily in predicting intense storm activity, without reaching the extreme values observed by the radar. Full article
Show Figures

Figure 1

22 pages, 12368 KB  
Article
Implementing an Indirect Radar Assimilation Scheme with a 1D Bayesian Retrieval in the Numerical Prediction Model
by Jian Yin, Xiang-Yu Huang, Bing Lu, Min Chen, Yao Sun, Yijie Zhu and Cheng Wang
Remote Sens. 2025, 17(19), 3320; https://doi.org/10.3390/rs17193320 - 27 Sep 2025
Viewed by 263
Abstract
To enhance the operational efficiency of the CMA-BJ3.0 regional numerical model and address the issue of short-term precipitation overforecasting caused by assimilating estimated saturated water vapor, this study investigates the assimilation of radar reflectivity mosaic data by optimizing the configuration of retrieved water [...] Read more.
To enhance the operational efficiency of the CMA-BJ3.0 regional numerical model and address the issue of short-term precipitation overforecasting caused by assimilating estimated saturated water vapor, this study investigates the assimilation of radar reflectivity mosaic data by optimizing the configuration of retrieved water vapor in the indirect assimilation scheme. A 1D (one-dimensional) Bayesian method was employed to retrieve and constrain water vapor from reflectivity observations, generating retrieved water vapor for assimilation to mitigate overforecasting biases. A case study of precipitation on 1 August 2022 was analyzed, with particular focus on comparing the innovation vector statistics, spatial patterns of analysis increments, and physical mechanisms underlying forecast differences across multiple data assimilation configurations. Results showed that an observation-background (O-B) statistical distribution closer to a Gaussian unbiased state indicated a better balance between observations and the background field. The optimized scheme corrected systematic positive biases in water vapor, curbed excessive increments, and effectively resolved the overforecasting issue by refining the initial water vapor field. Batch experiments quantitatively demonstrated that assimilating 1D Bayesian-retrieved water vapor significantly improved precipitation forecast scores, particularly for higher magnitudes (≥25.0 mm/3 h), and reduced the over-forecast within the first 6 h. While the study focused on improving short-term precipitation accuracy without considering hydrometeor impacts or convective dynamics, the 1D Bayesian method, despite its background-dependency, proved effective in correcting water vapor biases, making it a promising assimilation scheme. Full article
Show Figures

Graphical abstract

20 pages, 30882 KB  
Article
Analysis of the Ducted Gravity Waves Generated by Elevated Convection over Complex Terrain in China
by Manman Ma and Luyao Qin
Atmosphere 2025, 16(10), 1118; https://doi.org/10.3390/atmos16101118 - 24 Sep 2025
Viewed by 234
Abstract
Gravity waves play a crucial role in the evolution of convective systems. The unique thermal structure of elevated convection occurring above a stable boundary layer facilitates the generation and propagation of gravity waves. This study focuses on an elevated convection event over Central [...] Read more.
Gravity waves play a crucial role in the evolution of convective systems. The unique thermal structure of elevated convection occurring above a stable boundary layer facilitates the generation and propagation of gravity waves. This study focuses on an elevated convection event over Central China on the night of 2–3 February 2024. The WRF model, combined with terrain sensitivity experiments, is employed to analyze the characteristics of gravity waves and the effects of terrain variability. The event consists of two elevated convection clusters; the first triggers gravity waves on its southwestern side, which subsequently initiates the second convection cluster. The gravity waves exhibit a horizontal wavelength of 25 km and a period of 17.5 min, propagating eastward. Below an altitude of 3 km, a stable wave duct layer is present, overlain by an unstable overreflective zone. This stratification creates an ideal channel for ducted gravity wave propagation, which is essential for maintaining the waves. Sensitivity experiments confirm that convective forcing alone is sufficient to generate the observed gravity waves. Although the terrain lies within the stable boundary layer, its ruggedness modulates the distribution of waves and indirectly influences the organization of elevated convection. Full article
(This article belongs to the Special Issue State-of-the-Art in Severe Weather Research)
Show Figures

Figure 1

7 pages, 916 KB  
Proceeding Paper
Orographic Effect’s Correlation with Convection During a Low-Pressure System Passage over Greece in September 2023
by Sotirios T. Arsenis, Ioannis Samos and Panagiotis T. Nastos
Environ. Earth Sci. Proc. 2025, 35(1), 37; https://doi.org/10.3390/eesp2025035037 - 17 Sep 2025
Viewed by 253
Abstract
Extreme rainfall events are frequently associated with regions of complex topography, where terrain-induced convergence and uplift enhance storm development. Understanding the interaction between surface relief and atmospheric dynamics is essential for improving severe weather forecasting and hazard mitigation. Storm “Daniel”, which affected Greece [...] Read more.
Extreme rainfall events are frequently associated with regions of complex topography, where terrain-induced convergence and uplift enhance storm development. Understanding the interaction between surface relief and atmospheric dynamics is essential for improving severe weather forecasting and hazard mitigation. Storm “Daniel”, which affected Greece from 4–7 September 2023, produced extreme rainfall and widespread flooding in the Thessaly region—a landscape characterized by significant elevation gradients. This study investigates the spatial relationship between lightning activity and terrain elevation, aiming to assess whether deep convection was preferentially triggered over mountainous regions or followed specific orographic patterns. High-resolution elevation data (SRTM 1 Arc-Second Global DEM) were used to calculate the mean elevation around each lightning strike across four spatial scales (2 km, 5 km, 10 km, and 20 km). Statistical analysis, including correlation coefficients and third-degree polynomial regression, revealed a non-linear relationship, with a distinct peak in lightning frequency at mid-elevations (~200–400 m). These findings suggest that topographic features at local scales can significantly modulate convective initiation, likely due to a combination of mechanical uplift and favorable thermodynamic conditions. The study integrates geospatial techniques and statistical modeling to provide quantitative insights into how terrain influences the formation, location, and intensity of thunderstorms during high-impact weather events. Full article
Show Figures

Figure 1

25 pages, 1221 KB  
Article
Simulations of Drainage Flows with Topographic Shading and Surface Physics Inform Analytical Models
by Alex Connolly and Fotini Katopodes Chow
Atmosphere 2025, 16(9), 1091; https://doi.org/10.3390/atmos16091091 - 17 Sep 2025
Viewed by 268
Abstract
We perform large-eddy simulations (LESs) with realistic radiation, including topographic shading, and an advanced land surface model to investigate drainage flow dynamics in an idealized compound-slope mountain geometry. This allows an analysis not only of fully developed profiles in steady state—the subject of [...] Read more.
We perform large-eddy simulations (LESs) with realistic radiation, including topographic shading, and an advanced land surface model to investigate drainage flow dynamics in an idealized compound-slope mountain geometry. This allows an analysis not only of fully developed profiles in steady state—the subject of existing analytical solutions—but also of transient two- and three-dimensional dynamics. The evening onset of downslope flow is related to the duration of shadow front propagation along the eastern slopes, for which an analytic form is derived. We demonstrate that the flow response to this radiation pattern is mediated by the thermal inertia of the land through sensitivity to soil moisture. Onset timing differences on opposite sides of the peak are explained by convective structures that persist after sunset over the western slopes when topographic shading is considered. Although these preceding convective systems, as well as the presence of neighboring terrain, inhibit the initial development of drainage flows, the LES develops an approximately steady-state, fully developed flow over the finite slopes and finite nocturnal period. This allows a comparison to analytical models restricted to such cases. New analytical solutions based on surface heat flux boundary conditions, which can be estimated by the coupled land surface model, suggest the need for improved representation of the eddy diffusivity for analytical models of drainage flows. Full article
Show Figures

Graphical abstract

6 pages, 1113 KB  
Proceeding Paper
Integrating NWCSAF Nowcasting Tools into the Regional Cloud Seeding Program: A Case Study on 1 November 2023 in Saudi Arabia
by Ioannis Matsangouras, Stavros-Andreas Logothetis and Ayman Albar
Environ. Earth Sci. Proc. 2025, 35(1), 13; https://doi.org/10.3390/eesp2025035013 - 10 Sep 2025
Viewed by 674
Abstract
The Kingdom of Saudi Arabia launched a Regional Cloud Seeding Program in 2022 to enhance rainfall in central and southwestern regions. This study highlights a cloud seeding case on 1 November 2023, using convective development products derived from the Nowcasting Satellite Application Facility [...] Read more.
The Kingdom of Saudi Arabia launched a Regional Cloud Seeding Program in 2022 to enhance rainfall in central and southwestern regions. This study highlights a cloud seeding case on 1 November 2023, using convective development products derived from the Nowcasting Satellite Application Facility (NWCSAF), part of the SAF Network coordinated by the European Organization for the Exploitation of Meteorological Satellites. NWCSAF provided real-time satellite data for assessing cloud dynamics and precipitation. Analysis focused on Convection Initiation (CI) products issued 30–90 min before cloud seeding activities. Results showed the CI+30, +60, and +90 min outputs had high predictive accuracy, aligning with observed convection and demonstrating the value of satellite-based nowcasting in potential adaptation during cloud seeding operations. Full article
Show Figures

Figure 1

17 pages, 2925 KB  
Article
Case Study on Skin Calorimetry: Modeling Localized Muscle Heat Transfer During Exercise
by Pedro Jesús Rodríguez de Rivera, Miriam Rodríguez de Rivera, Fabiola Socorro and Manuel Rodríguez de Rivera
Biosensors 2025, 15(9), 567; https://doi.org/10.3390/bios15090567 - 29 Aug 2025
Viewed by 607
Abstract
Direct measurement of heat loss in a moving limb requires attached heat-flux sensors, which are strongly affected by convection and radiation. Skin calorimetry minimizes these effects, enabling an accurate measurement. A skin calorimeter was used to measure the heat flux in the rectus [...] Read more.
Direct measurement of heat loss in a moving limb requires attached heat-flux sensors, which are strongly affected by convection and radiation. Skin calorimetry minimizes these effects, enabling an accurate measurement. A skin calorimeter was used to measure the heat flux in the rectus femoris (thigh) of a subject exercising for 30 min at a mechanical power of 80 W. In this work, we have developed an analytical model able to describe the thermal evolution of the rectus femoris during exercise and subsequent recovery. This model consists of a sum of two exponentials f(t) = A1(1 − et/τ) + A2·t·et/τ, with the novelty that the second term is a linear–exponential, which opposes the first term, and that allows the initial thermal transient characterization. The time constants are the most relevant parameters, with mean values of 5 min during exercise and 10 min during recovery (for the 4 cm2 sensing area). The mean exercise amplitude (A1) is 1.1 mW/W, while in post-exercise it is −0.8 mW/W. In addition, the measurement of the thermal resistance of the skin before and after exercise allowed for the estimation and analysis of the evolution of the subcutaneous internal temperature, which follows the same exponential function. The developed mathematical model defines a Transfer Function (TF)—a potential invariant that can predict the thigh’s heat flux response to any exercise protocol (for the subject analyzed). This mathematical approach may be useful for sports and clinical applications. Full article
(This article belongs to the Section Wearable Biosensors)
Show Figures

Figure 1

16 pages, 9656 KB  
Article
Diurnal Analysis of Nor’westers over Gangetic West Bengal as Observed from Weather Radar
by Bibraj Raj, Swaroop Sahoo, N. Puviarasan and V. Chandrasekar
Atmosphere 2025, 16(8), 989; https://doi.org/10.3390/atmos16080989 - 20 Aug 2025
Viewed by 639
Abstract
Intense thunderstorms known as Nor’westers develop in the Eastern and North Eastern parts of India and Bangladesh before the monsoon season (March to May). The associated severe weather can cause extensive damage to property and livestock. This study uses the pre-monsoon volumetric data [...] Read more.
Intense thunderstorms known as Nor’westers develop in the Eastern and North Eastern parts of India and Bangladesh before the monsoon season (March to May). The associated severe weather can cause extensive damage to property and livestock. This study uses the pre-monsoon volumetric data of S-band radar from 2013 to 2018 located in Kolkata to investigate the diurnal variation in the characteristics of the storms over Gangetic West Bengal. The cell initiation, echo top heights, maximum reflectivity, and core convective area are determined by using a flexible feature tracking algorithm (PyFLEXTRKR). The variation of the parameters in diurnal scale is examined from 211,503 individual cell tracks. The distribution of the severe weather phenomena based on radar based thresholds in spatial and temporal scale is also determined. The results show that new cell initiation peaks in the late evening and early morning, displaying bimodal variability. Most of these cells have a short lifespan of 0 to 3 h, with fewer than 5 percent of storms lasting beyond 3 h. The occurrence of hail is much greater in the afternoon due to intense surface heating than at other times. In contrast, the occurrence of lightning is higher in the late evening hours when the cell initiation reaches its peak. The convective rains are generally accompanied by lightning, exhibiting a similar diurnal temporal variability but are more widespread. The findings will assist operational weather forecasters in identifying locations that need targeted observation at certain times of the day to enhance the accuracy of severe weather nowcasting. Full article
(This article belongs to the Section Meteorology)
Show Figures

Figure 1

19 pages, 2607 KB  
Article
Sensitivity Analysis of the Temperature Field of Surrounding Rock in Cold-Region Tunnels Using a Fully Coupled Thermo-Hydrological Model
by Wentao Wu and Jiaqi Guo
Appl. Sci. 2025, 15(16), 9020; https://doi.org/10.3390/app15169020 - 15 Aug 2025
Viewed by 302
Abstract
The thermo-hydrological (TH) coupling model constitutes the foundational framework for investigating the temperature distribution of surrounding rock in cold region tunnels. In this study, a fully coupled TH model is proposed that takes into account multiple physical phenomena during the freezing process of [...] Read more.
The thermo-hydrological (TH) coupling model constitutes the foundational framework for investigating the temperature distribution of surrounding rock in cold region tunnels. In this study, a fully coupled TH model is proposed that takes into account multiple physical phenomena during the freezing process of surrounding rock. Firstly, the model was established based on thermodynamics, seepage theory, and ice–water phase change theory, which accounted for unfrozen water, latent heat of phase change, ice impedance, and convective heat transfer. The model was successfully verified by comparing its results to field data. Next, the sensitivity of surrounding rock temperature to environmental, thermodynamic, seepage, and coupling parameters in the fully coupled TH model was systematically studied using a numerical analysis method. The results show that the annual temperature amplitude and thermal conductivity represent the main factors affecting the surrounding rock temperature at a radial depth of 0 m, while the initial temperature and porosity are the key factors at a radial depth of 5 m. Permeability has the least influence on the surrounding rock temperature, but the temperature field will experience sudden changes if its value exceeds its value exceeds 1 × 10−12 m2. Finally, using the proposed numerical model, the thickness of insulation layer was simulated, and the degree of influence of the parameters on the thickness of insulation layer was analyzed. This study reveals that the annual temperature amplitude has the greatest influence on the calculation of insulation layer thickness, with its normalized sensitivity factor being approximately 50%. These findings not only expand the methodology for exploring the laws of TH coupling but also provide a theoretical foundation for improving the parameter calibration efficiency and calculation accuracy of the fully coupled TH model, and they have significant reference value. Full article
(This article belongs to the Section Applied Thermal Engineering)
Show Figures

Figure 1

17 pages, 2728 KB  
Article
High-Pass Noise Suppression in the Mosquito Auditory System
by Dmitry N. Lapshin and Dmitry D. Vorontsov
Insects 2025, 16(8), 840; https://doi.org/10.3390/insects16080840 - 14 Aug 2025
Viewed by 502
Abstract
Mosquitoes detect sound with their antennae, which transmit vibrations to mechanosensory neurons in Johnston’s organ. However, their auditory system is exposed to low-frequency noise such as convective and thermal noise, as well as noise induced by flight, which could impair sensitivity. High-pass filters [...] Read more.
Mosquitoes detect sound with their antennae, which transmit vibrations to mechanosensory neurons in Johnston’s organ. However, their auditory system is exposed to low-frequency noise such as convective and thermal noise, as well as noise induced by flight, which could impair sensitivity. High-pass filters (HPFs) may mitigate this issue by suppressing low-frequency interference before it is transformed into neuronal signals. We investigated HPF mechanisms in Culex pipiens mosquitoes by analyzing the phase–frequency characteristics of the primary sensory neurons in the Johnston’s organ. Electrophysiological recordings from male and female mosquitoes revealed phase shifts consistent with high-pass filtering. Initial modeling suggested a single HPF; however, experimentally obtained phase shifts exceeding –90° required revising the model to include two serially connected HPFs. The results showed that male mosquitoes exhibit stronger low-frequency suppression (~32 dB at 10 Hz) compared to females (~21 dB), with some female neurons showing negligible filtering. The estimated delay in signal transmission was ~7 ms for both sexes. These findings suggest that HPFs enhance noise immunity, particularly in males, whose auditory sensitivity is critical for mating. The diversity in female neuronal tuning may reflect broader auditory functions in addition to mating, such as host detection. This study provides indirect evidence for HPFs in mosquito hearing and highlights sex-specific adaptations in auditory processing. The proposed dual-HPF model improves our understanding of how mosquitoes maintain high auditory sensitivity in noisy environments. Full article
(This article belongs to the Collection Insect Sensory Biology)
Show Figures

Figure 1

31 pages, 2529 KB  
Article
Improving the Heat Transfer Efficiency of Economizers: A Comprehensive Strategy Based on Machine Learning and Quantile Ideas
by Nan Wang, Yuanhao Shi, Fangshu Cui, Jie Wen, Jianfang Jia and Bohui Wang
Energies 2025, 18(16), 4227; https://doi.org/10.3390/en18164227 - 8 Aug 2025
Viewed by 447
Abstract
Ash deposition on economizer heating surfaces degrades convective heat transfer efficiency and compromises boiler operational stability in coal-fired power plants. Conventional time-scheduled soot blowing strategies partially mitigate this issue but often cause excessive steam/energy consumption, conflicting with enterprise cost-saving and efficiency-enhancement goals. This [...] Read more.
Ash deposition on economizer heating surfaces degrades convective heat transfer efficiency and compromises boiler operational stability in coal-fired power plants. Conventional time-scheduled soot blowing strategies partially mitigate this issue but often cause excessive steam/energy consumption, conflicting with enterprise cost-saving and efficiency-enhancement goals. This study introduces an integrated framework combining real-time ash monitoring, dynamic process modeling, and predictive optimization to address these challenges. A modified soot blowing protocol was developed using combustion process parameters to quantify heating surface cleanliness via a cleanliness factor (CF) dataset. A comprehensive model of the attenuation of heat transfer efficiency was constructed by analyzing the full-cycle interaction between ash accumulation, blowing operations, and post-blowing refouling, incorporating steam consumption during blowing phases. An optimized subtraction-based mean value algorithm was applied to minimize the cumulative attenuation of heat transfer efficiency by determining optimal blowing initiation/cessation thresholds. Furthermore, a bidirectional gated recurrent unit network with quantile regression (BiGRU-QR) was implemented for probabilistic blowing time prediction, capturing data distribution characteristics and prediction uncertainties. Validation on a 300 MW supercritical boiler in Guizhou demonstrated a 3.96% energy efficiency improvement, providing a practical solution for sustainable coal-fired power generation operations. Full article
Show Figures

Figure 1

18 pages, 3978 KB  
Article
Effect of Anisotropy on Saline Groundwater Pumping Efficiency for Seawater Intrusion Control
by Youcheng Lv, Bengu Yang, Hongjian Ai, Chongjing Yang, Jie Dong, Rifei Kang, Wenxiang Xu and Peng Yang
Water 2025, 17(16), 2359; https://doi.org/10.3390/w17162359 - 8 Aug 2025
Viewed by 423
Abstract
Hydraulic conductivity anisotropy critically controls seawater intrusion management in coastal aquifers, and yet its impact on negative hydraulic barriers remains poorly understood. Using three-dimensional density-dependent modeling, this study reveals how varying ratios between horizontal and vertical conductivity influence barrier effectiveness. The results show [...] Read more.
Hydraulic conductivity anisotropy critically controls seawater intrusion management in coastal aquifers, and yet its impact on negative hydraulic barriers remains poorly understood. Using three-dimensional density-dependent modeling, this study reveals how varying ratios between horizontal and vertical conductivity influence barrier effectiveness. The results show that systems where vertical conductivity dominates enhance horizontal flow, but retain more residual salt, while horizontally dominated systems initially accelerate saltwater wedge retreat, but subsequently cause interface destabilization and inland reinvasion. Pumping rate and well depth interact significantly with these anisotropy effects, with higher pumping rates reducing anisotropy-dependent variations and deeper wells activating density-driven convection processes. Optimal barrier design requires careful consideration of competing objectives, as conditions favoring interface stability differ from those maximizing salt removal. These findings establish design principles for hydraulic barriers in anisotropic coastal aquifers, providing critical insights for managing seawater intrusion in increasingly stressed groundwater systems. Full article
Show Figures

Figure 1

17 pages, 4148 KB  
Article
Contribution of the Gravity Component and Surface Type During the Initial Stages of Biofilm Formation at Solid–Liquid Interfaces
by Elisavet Malea, Maria Petala, Margaritis Kostoglou and Theodoros Karapantsios
Water 2025, 17(15), 2277; https://doi.org/10.3390/w17152277 - 31 Jul 2025
Viewed by 870
Abstract
Water systems are highly vulnerable to biofilm formation, which can compromise water quality, operational efficiency, and public health. Factors such as surface material properties and gravitational orientation of the surface play critical roles in the early stages of microbial attachment and biofilm development. [...] Read more.
Water systems are highly vulnerable to biofilm formation, which can compromise water quality, operational efficiency, and public health. Factors such as surface material properties and gravitational orientation of the surface play critical roles in the early stages of microbial attachment and biofilm development. This study examines the impact of gravity and surface composition on the initial adhesion of Pseudomonas fluorescens AR11—a model organism for biofilm research. Focusing on stainless steel (SS) and polycarbonate (PC), two materials commonly used in water and wastewater infrastructure, bacterial adhesion was evaluated at surface inclinations of 0°, 45°, 90°, and 180° to assess gravitational impact. After three hours of contact, fluorescence microscopy and image analysis were used to quantify surface coverage and cluster size distribution. The results showed that both material type and orientation significantly affected early biofilm formation. PC surfaces consistently exhibited higher bacterial adhesion at all angles, with modest variations, suggesting that material properties are a dominant factor in initial colonization. In contrast, SS showed angle-dependent variation, indicating a combined effect of gravitational convection and surface characteristics. These insights contribute to a deeper understanding of biofilm dynamics under realistic environmental conditions, including those encountered in space systems, and support the development of targeted strategies for biofilm control in water systems and spaceflight-related infrastructure. Full article
Show Figures

Figure 1

18 pages, 4841 KB  
Article
Nocturnal Convection Along a Trailing-End Cold Front: Insights from Ground-Based Remote Sensing Observations
by Kylie Hoffman, David D. Turner and Belay B. Demoz
Atmosphere 2025, 16(8), 926; https://doi.org/10.3390/atmos16080926 - 30 Jul 2025
Viewed by 360
Abstract
This study examines a convergence event at the trailing end of a cold front observed in the United States’ Southern Great Plains region on 28 September 1997, using an array of in situ and remote sensing instruments. The event exhibited a structure with [...] Read more.
This study examines a convergence event at the trailing end of a cold front observed in the United States’ Southern Great Plains region on 28 September 1997, using an array of in situ and remote sensing instruments. The event exhibited a structure with elevated divergence near 3 km AGL and moisture transport over both warm and cold sectors. Data from Raman lidar (RL), Atmospheric Emitted Radiance Interferometer (AERI), and Radar Wind Profilers (RWP) were used to characterize vertical profiles of the event, revealing the presence of a narrow moist updraft, horizontal moisture advection, and cloud development ahead of the front. Convection parameters, Convective Available Potential Energy (CAPE) and Convective Inhibition (CIN), were derived from collocated AERI and RL. Regions of high CAPE were aligned with areas of high moisture, indicating that convection was more favorable at moist elevated levels than near the surface. RWP observations revealed vorticity structures consistent with existing theories. This study highlights the value of high-resolution, continuous profiling from remote sensors to resolve mesoscale processes and evaluate convection potential. The event underscores the role of elevated moisture and wind shear in modulating convection initiation along a trailing-end cold front boundary where mesoscale and synoptic forces interact. Full article
(This article belongs to the Section Meteorology)
Show Figures

Figure 1

Back to TopTop