Sign in to use this feature.

Years

Between: -

Subjects

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Journals

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Article Types

Countries / Regions

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Search Results (864)

Search Parameters:
Keywords = conventional farming system

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
17 pages, 879 KB  
Article
Strategies to Overcome Local Family Farmers’ Difficulties in Supplying Vegetables Through Short Food Supply Chains: A Brazilian Case Study
by Suellen Secchi Martinelli, Vanessa Mello Rodrigues, Suzi Barletto Cavalli, Greyce Luci Bernardo, Ana Carolina Fernandes, Paula Lazzarin Uggioni, Yasmin El Kadri Monteiro, Jeffery Bray, Heather Hartwell and Rossana Pacheco da Costa Proença
Green Health 2025, 1(2), 12; https://doi.org/10.3390/greenhealth1020012 - 5 Sep 2025
Viewed by 153
Abstract
This study aimed to identify and analyse the main difficulties faced by family farmers in producing and supplying vegetables through short food supply chains. Semi-structured interviews were conducted with seven family farmers in a large city in southern Brazil. We sought to include [...] Read more.
This study aimed to identify and analyse the main difficulties faced by family farmers in producing and supplying vegetables through short food supply chains. Semi-structured interviews were conducted with seven family farmers in a large city in southern Brazil. We sought to include at least one farmer supplying each of the main identified outlets: schools, restaurants, supermarkets, street markets, and consumer groups. Contacts were obtained through rural producer organisations. Data were recorded, transcribed, and analysed using thematic analysis. Three groups of difficulties emerged: (i) production—including seasonality, pest, and disease management, climate-related losses, and limited technical support; (ii) sales—such as price competition, logistical challenges, and inconsistent demand; and (iii) consumption—particularly low consumer habits regarding vegetable purchase and preparation, and preference for non-seasonal products. The study concludes that the main challenges to strengthening short food supply chains are the limited engagement of young people in farming, lack of specialised technical assistance, climate-related risks, bureaucratic barriers, and the high costs of organic certification. Farmers also reported logistic difficulties and constraints in supplying restaurants due to demand for a narrow range of products disregarding seasonality. At the consumer level, habits shaped by conventional food systems emerged as obstacles. Strategies such as alternative markets, farmer organisations, supportive public policies, and initiatives to promote cooking skills and consumer awareness are key to enhancing resilience and expanding the supply of healthy foods. Full article
Show Figures

Figure 1

26 pages, 2313 KB  
Article
First Tests on the Performance and Reliability of an Experimental Bio-Based UTTO Lubricant Used in an Agricultural Tractor
by Roberto Fanigliulo, Renato Grilli, Laura Fornaciari, Stefano Benigni and Daniele Pochi
Energies 2025, 18(17), 4612; https://doi.org/10.3390/en18174612 - 30 Aug 2025
Viewed by 397
Abstract
Inside the transmission group of an agricultural tractor, the efficiency of power transfer to moving parts, their lubrication, and protection from wear are guaranteed by UTTO (Universal Tractor Transmission Oil) fluids, which are also used to operate the hydraulic system. These fluids, with [...] Read more.
Inside the transmission group of an agricultural tractor, the efficiency of power transfer to moving parts, their lubrication, and protection from wear are guaranteed by UTTO (Universal Tractor Transmission Oil) fluids, which are also used to operate the hydraulic system. These fluids, with mineral or synthetic origin, are characterized by excellent lubricating properties, high toxicity, and low biodegradability, which makes it important to replace them with more eco-sustainable fluids, such as those based on vegetable oils that are highly biodegradable and have low toxicity. It is also important to consider EU policies on the use of such fluids in sensitive environmental applications. To this end, several experimental bio-UTTO formulations were tested at CREA to evaluate—compared to conventional fluids—their suitability for use as lubricants for transmissions and hydraulic systems through endurance tests carried out in a Fluid Test Rig (FTR) specifically developed by CREA to apply controlled and repeatable work cycles to small volumes of oil, which are characterized by high thermal and mechanical stresses. The technical performance and the main physical–chemical parameters of the fluids were continuously monitored during the work cycles. Based on these experiences, this study describes the first application of a methodological approach aimed at testing an experimental biobased UTTO on a tractor used in normal farm activity. The method was based on a former test at the FTR in which the performance of the bio-UTTO was compared to that of the conventional UTTO recommended by the tractor manufacturer. Given the good results of the FTR test, bio-UTTO was introduced in a 20-year-old medium-power tractor, replacing the mineral fluid originally supplied, for the first reliability tests during its normal use on the CREA farm. After almost 600 h of work, the technical performance and the trend of chemical–physical parameters of bio-UTTO did not undergo significant changes. No damage to the tractor materials or oil leaks was observed. The test is still ongoing, but according to the results, in line with the indications provided by the FTR test, the experimental bio-UTTO seems suitable for replacing the conventional fluid in the tractor used in this study. Full article
Show Figures

Figure 1

18 pages, 6468 KB  
Review
Carbon Sequestration Under Different Agricultural Land Use in Croatia
by Igor Bogunovic
Agriculture 2025, 15(17), 1821; https://doi.org/10.3390/agriculture15171821 - 27 Aug 2025
Viewed by 356
Abstract
In order to help mitigate climate change, carbon farming methods must be urgently introduced. The research systematically reviewed peer-reviewed literature, national statistical reports, and policy documents published between 2000 and 2024, focusing on the impact of land management on soil organic carbon in [...] Read more.
In order to help mitigate climate change, carbon farming methods must be urgently introduced. The research systematically reviewed peer-reviewed literature, national statistical reports, and policy documents published between 2000 and 2024, focusing on the impact of land management on soil organic carbon in Croatia. This paper provides an overview of current agricultural practices on croplands and grasslands in Croatia. It identifies the weak points of current soil management and suggests possible measures for carbon sequestration in cropland and grassland soils. About 89% of Croatian soils are tilled conventionally, along with other harmful practices such as uncontrolled grazing and improper fertilization, which contribute to increasing carbon losses and soil degradation. Different practices are presented and discussed as possible solutions, each adapted to the specific environmental and soil conditions of Croatia. For example, studies in Croatian Stagnosols report 5% lower CO2 emissions under conservation tillage compared to conventional tillage, while long-term grass cover in perennial croplands has shown soil organic carbon increases of up to 51%. The recommendations are categorised according to the possibility of a change in carbon stocks over time and the associated carbon storage potential. Croatia needs to recognize any shortcomings in the existing system and create incentives and policies to transform management practices into site and environment-specific regional practices. Full article
Show Figures

Figure 1

13 pages, 1218 KB  
Article
Identification of Patterns of Trace Mineral Deficiencies in Dairy and Beef Cattle Herds in Spain
by Candela Fernández-Villa, Lucas Rigueira, Marta López-Alonso, Belén Larrán, Inmaculada Orjales, Carlos Herrero-Latorre, Víctor Pereira and Marta Miranda
Animals 2025, 15(17), 2480; https://doi.org/10.3390/ani15172480 - 23 Aug 2025
Viewed by 409
Abstract
Microminerals such as cobalt (Co), copper (Cu), iodine (I), iron (Fe), manganese (Mn), molybdenum (Mo), selenium (Se), and zinc (Zn) play key roles in cattle health. However, trace element imbalances are often underdiagnosed. This study retrospectively analyzed serum samples from 1273 cows across [...] Read more.
Microminerals such as cobalt (Co), copper (Cu), iodine (I), iron (Fe), manganese (Mn), molybdenum (Mo), selenium (Se), and zinc (Zn) play key roles in cattle health. However, trace element imbalances are often underdiagnosed. This study retrospectively analyzed serum samples from 1273 cows across 117 herds in Spain, encompassing conventional dairy (n = 46), pasture-based dairy (n = 11), organic dairy (n = 25), and semi-extensive beef (n = 35) systems. Trace elements were determined by inductively coupled plasma mass spectrometry (ICP-MS). All herds were investigated for clinical or productive issues where mineral deficiencies were suspected. Significant differences were found in serum trace mineral concentrations between production systems. Adequacy rates were highest in conventional dairy herds receiving routine mineral supplementation, while deficiencies in Se, I, and Cu were frequently detected in pasture-based, organic, and beef herds. Zinc deficiencies were rare and typically involved complex, combined deficiencies. At the farm level, multielement deficiencies (≥3 elements) were detected in 39–45% of organic, pasture-based, and beef herds, but in only 5% of conventional dairy herds (p < 0.001). Principal component and cluster analyses produced consistent groupings of minerals according to dietary supplementation and soil-driven exposure. These findings highlight the increased vulnerability of low-input systems to complex micromineral imbalances and underline the importance of system-adapted mineral-monitoring and supplementation strategies in herd health management. However, as the study is based on diagnostic submissions rather than a randomized herd survey, the findings should be interpreted with caution due to potential selection bias. Full article
(This article belongs to the Collection Feeding Cattle for Health Improvement)
Show Figures

Figure 1

30 pages, 390 KB  
Article
Spatial Differentiation of the Competitiveness of Organic Farming in EU Countries in 2014–2023: An Input–Output Approach
by Agnieszka Komor, Joanna Pawlak, Wioletta Wróblewska, Sebastian Białoskurski and Eugenia Czernyszewicz
Sustainability 2025, 17(17), 7614; https://doi.org/10.3390/su17177614 - 23 Aug 2025
Viewed by 548
Abstract
Organic agriculture is a production system based on environmentally friendly practices that promote the conservation of natural resources, biodiversity, and the production of high-quality food. Its tenets are linked to the concept of sustainable development, which integrates environmental, social, and economic goals. In [...] Read more.
Organic agriculture is a production system based on environmentally friendly practices that promote the conservation of natural resources, biodiversity, and the production of high-quality food. Its tenets are linked to the concept of sustainable development, which integrates environmental, social, and economic goals. In the face of global competition and changes in food systems, studying their competitiveness of organic agriculture is essential. It is key to assessing its potential for long-term development and competition with conventional agriculture. The purpose of this study is to identify and assess the spatial differentiation in the competitiveness of organic agriculture in EU countries. This study assessed the level of input and output competitiveness of organic agriculture in selected EU countries using the author’s synthetic taxonomic indicators consisting of several sub-variables. The competitiveness of organic farming in twenty-three countries (Cyprus, Latvia, Portugal, and Finland were not included due to a lack of statistical data) was analysed using one of the linear ordering methods, i.e., a non-pattern method with a system of fixed weights. The research has shown significant spatial differentiation in both the input competitiveness and the outcome competitiveness of organic agriculture in EU countries. In 2023, Estonia had the highest level of input competitiveness, followed by Austria, the Czech Republic, and Sweden. In 2023, Estonia had the highest synthetic indicator of outcome competitiveness, followed by The Netherlands and Denmark. In addition, an assessment was made of changes in EU organic agriculture in 2014–2023 by analysing the direction and dynamics of changes in selected measures of the development potential of organic agriculture in all member states (27 countries). This sector is characterised by high growth dynamics, including both the area under cultivation and the number of producers and processors of organic food. This study identified several important measures to support the development of organic farming (especially in countries where this type of activity is relatively less competitive) through targeted support mechanisms, such as policy and regulatory measures, financing, agricultural training and advisory services, scientific research, encouraging cooperation, and stimulating demand for organic products. Full article
28 pages, 3284 KB  
Article
An Attention-Enhanced Bottleneck Network for Apple Segmentation in Orchard Environments
by Imran Md Jelas, Nur Alia Sofia Maluazi and Mohd Asyraf Zulkifley
Agriculture 2025, 15(17), 1802; https://doi.org/10.3390/agriculture15171802 - 23 Aug 2025
Viewed by 314
Abstract
As global food demand continues to rise, conventional agricultural practices face increasing difficulty in sustainably meeting production requirements. In response, deep learning-driven automated systems have emerged as promising solutions for enhancing precision farming. Nevertheless, accurate fruit segmentation remains a significant challenge in orchard [...] Read more.
As global food demand continues to rise, conventional agricultural practices face increasing difficulty in sustainably meeting production requirements. In response, deep learning-driven automated systems have emerged as promising solutions for enhancing precision farming. Nevertheless, accurate fruit segmentation remains a significant challenge in orchard environments due to factors such as occlusion, background clutter, and varying lighting conditions. This study proposes the Depthwise Asymmetric Bottleneck with Attention Mechanism Network (DABAMNet), an advanced convolutional neural network (CNN) architecture composed of multiple Depthwise Asymmetric Bottleneck Units (DABou), specifically designed to improve apple segmentation in RGB imagery. The model incorporates the Convolutional Block Attention Module (CBAM), a dual attention mechanism that enhances channel and spatial feature discrimination by adaptively emphasizing salient information while suppressing irrelevant content. Furthermore, the CBAM attention module employs multiple global pooling strategies to enrich feature representation across varying spatial resolutions. Through comprehensive ablation studies, the optimal configuration was identified as early CBAM placement after DABou unit 5, using a reduction ratio of 2 and combined global max-min pooling, which significantly improved segmentation accuracy. DABAMNet achieved an accuracy of 0.9813 and an Intersection over Union (IoU) of 0.7291, outperforming four state-of-the-art CNN benchmarks. These results demonstrate the model’s robustness in complex agricultural scenes and its potential for real-time deployment in fruit detection and harvesting systems. Overall, these findings underscore the value of attention-based architectures for agricultural image segmentation and pave the way for broader applications in sustainable crop monitoring systems. Full article
(This article belongs to the Section Artificial Intelligence and Digital Agriculture)
Show Figures

Figure 1

36 pages, 2737 KB  
Article
Sustainability Assessment of Rice Farming: Insights from Four Italian Farms Under Climate Stress
by Savoini Guglielmo, De Marinis Pietro, Casson Andrea, Abhishek Dattu Narote, Riccardo Guidetti, Stefano Bocchi and Valentina Vaglia
Agriculture 2025, 15(17), 1797; https://doi.org/10.3390/agriculture15171797 - 22 Aug 2025
Viewed by 586
Abstract
The study compares the overall sustainability of two organic and two conventional rice farming systems during the 2022 drought. The research aimed to develop an experiment exploring the ability of an integrated methodological approach to identify tradeoffs and provide actionable insights for a [...] Read more.
The study compares the overall sustainability of two organic and two conventional rice farming systems during the 2022 drought. The research aimed to develop an experiment exploring the ability of an integrated methodological approach to identify tradeoffs and provide actionable insights for a sustainable agricultural transition under extreme climate stress. To this aim, the study employed economic analysis, Life Cycle Assessment (LCA) for environmental impact, and the OASIS framework for broader social and resilience indicators. The study revealed tradeoffs between the economic efficiency of conventional rice farming and the ecological resilience of organic systems, a conclusion made possible only through its integrated assessment methodology. By combining different methods, the research suggested that while conventional farms achieved clear financial superiority and greater efficiency per ton of rice, organic systems showcased superior ecological performance per hectare, greater biodiversity, and enhanced resilience. This highlights a crucial research frontier focused on designing hybrid systems or new economic models that can translate the environmental resilience of organic methods into tangible market value, effectively resolving the very tradeoffs this comprehensive assessment suggested. Full article
(This article belongs to the Section Agricultural Systems and Management)
Show Figures

Graphical abstract

22 pages, 1130 KB  
Review
Spectroscopy-Based Methods for Water Quality Assessment: A Comprehensive Review and Potential Applications in Livestock Farming
by Aikaterini-Artemis Agiomavriti, Thomas Bartzanas, Nikos Chorianopoulos and Athanasios I. Gelasakis
Water 2025, 17(16), 2488; https://doi.org/10.3390/w17162488 - 21 Aug 2025
Viewed by 742
Abstract
Water quality monitoring and evaluation are essential across multiple sectors, including public health, environmental protection, agriculture and livestock management, industrial processes, and broader sustainability efforts. Conventional water analysis techniques, although accurate, are often constrained by their labor-intensive nature, extended processing times, and limited [...] Read more.
Water quality monitoring and evaluation are essential across multiple sectors, including public health, environmental protection, agriculture and livestock management, industrial processes, and broader sustainability efforts. Conventional water analysis techniques, although accurate, are often constrained by their labor-intensive nature, extended processing times, and limited applicability for in situ, real-time monitoring. In recent years, spectroscopy-based methods have gained prominence as alternatives for water quality assessment, particularly when combined with chemometric analyses and advanced technological systems. This review provides an overview of the current advancements of spectroscopy-based water monitoring, with a focus on spectroscopy techniques operating within ultraviolet–visible (UV–Vis) and infrared (IR) spectral regions, which are currently applied for the assessment of a broad range of physicochemical and biological parameters relevant to livestock water management, including chemical oxygen demand (COD), dissolved organic carbon (DOC), nitrates, microbial contamination, and heavy metal ions. The findings highlight the growing utility of spectroscopy as a reliable tool in water quality assessment (e.g., COD detection with R2 = 0.86 and nitrate detection with R2 = 0.95 compared to traditional methods) and underpin the need for continued research into scalable, sensor-integrated solutions tailored for use in livestock farming environments. Full article
(This article belongs to the Section Water Quality and Contamination)
Show Figures

Figure 1

18 pages, 2226 KB  
Article
The Clonal Spread and Persistence of Campylobacter in Danish Broiler Farms and Its Association with Human Infections
by Katrine Grimstrup Joensen, Gitte Sørensen, Pernille Gymoese, Louise Gade Dahl and Eva Møller Nielsen
Pathogens 2025, 14(8), 821; https://doi.org/10.3390/pathogens14080821 - 19 Aug 2025
Viewed by 513
Abstract
Campylobacter is the most common cause of bacterial foodborne illness in the EU, primarily linked to poultry. To better understand its transmission dynamics, we applied whole-genome sequencing (WGS) to Campylobacter isolates collected at slaughterhouses over a two-year period from broilers originating from 26 [...] Read more.
Campylobacter is the most common cause of bacterial foodborne illness in the EU, primarily linked to poultry. To better understand its transmission dynamics, we applied whole-genome sequencing (WGS) to Campylobacter isolates collected at slaughterhouses over a two-year period from broilers originating from 26 Danish farms. The samples included cloacal swabs and boot sock samples from broiler houses and surrounding farm environments. We identified 150 distinct cgMLST types among 883 isolates. While most cgMLST types were flock-specific, some persisted across production cycles or appeared at different farms, indicating entrenched contamination or potential common-source introductions. Notably, 39% of broiler-associated cgMLST types overlapped with human clinical isolates from the same period, with the strongest overlap among persistent and cross-farm types, particularly in conventional production systems. Our findings underscore the need for strengthened biosecurity, targeted surveillance of high-risk genotypes, and real-time WGS integration to mitigate the burden of human Campylobacteriosis. This study supports a One Health approach to managing zoonotic risk in poultry production. Full article
(This article belongs to the Special Issue Feature Papers on the Epidemiology of Infectious Diseases)
Show Figures

Figure 1

16 pages, 1174 KB  
Article
Flesh Quality, Shelf Life, and Freshness Assessment of Sea Bream Reared in a Coastal Mediterranean Integrated Multi-Trophic Aquaculture System
by Simona Tarricone, Maria Antonietta Colonna, Marco Ragni, Roberta Trani, Adriana Giangrande, Grazia Basile, Loredana Stabili, Claudia Carbonara, Francesco Giannico and Caterina Longo
Animals 2025, 15(16), 2425; https://doi.org/10.3390/ani15162425 - 19 Aug 2025
Viewed by 392
Abstract
This study investigated the flesh quality, shelf life, and sensory freshness of sea bream (Sparus aurata) reared in the REMEDIA Life IMTA system, which incorporates bioremediator organisms—sponges, polychaetes, bivalves, and macroalgae—supported by artificial vertical collectors to enhance the settlement of sessile [...] Read more.
This study investigated the flesh quality, shelf life, and sensory freshness of sea bream (Sparus aurata) reared in the REMEDIA Life IMTA system, which incorporates bioremediator organisms—sponges, polychaetes, bivalves, and macroalgae—supported by artificial vertical collectors to enhance the settlement of sessile macroinvertebrates and improve environmental quality. A total of 96 fish (18 months old) were analysed, 48 farmed within the IMTA system and 48 in the conventional offshore system. Both groups received the same commercial feed. For each group, 16 fish were analysed after 1, 7, and 14 days of storage at 2 ± 1 °C to evaluate physical features, chemical and fatty acid composition, and sensory freshness. The total weight was markedly greater for fish in the IMTA group (p < 0.05), which showed a significantly (p < 0.05) longer tail. For all the storage times, the content of total saturated fatty acids was markedly higher in the control group, along with a lower concentration of polyunsaturated fatty acids (p < 0.05). The quality index method showed better results for the IMTA group (p < 0.05), particularly after 2 weeks of storage in ice. In conclusion, sea bream reared in the IMTA system showed better flesh quality, extended shelf life, and prolonged sensory freshness. Full article
(This article belongs to the Section Aquatic Animals)
Show Figures

Figure 1

16 pages, 4167 KB  
Article
A Novel Lytic Salmonella Phage Harboring an Unprecedented Tail-Protein Domain Combination Capable of Lysing Cross-Host-Transmitted Salmonella Strains
by Ling Zhang, Mingqiang Guo, Xiaoyu Ma, Wei Wang, Wanpeng Ma, Yifan Liu, Junxiang Wei and Zhanqiang Su
Foods 2025, 14(16), 2850; https://doi.org/10.3390/foods14162850 - 17 Aug 2025
Viewed by 494
Abstract
The emergence of multidrug-resistant Salmonella poses a significant threat to global public health and food safety, necessitating the urgent search for new strategies to replace conventional antibiotics. Phages are viruses that can directly target bacteria and have garnered attention in recent years for [...] Read more.
The emergence of multidrug-resistant Salmonella poses a significant threat to global public health and food safety, necessitating the urgent search for new strategies to replace conventional antibiotics. Phages are viruses that can directly target bacteria and have garnered attention in recent years for their development as antibiotic alternatives. In this study, 4458 samples were collected from farms, supermarkets, and human feces, yielding 65 strains of Salmonella, which were serotyped using multiplex PCR. Subsequently, a lytic phage was isolated and identified using the dominant serotype of Salmonella as the host bacterium. We further explored the biological characteristics of this phage through host range, growth properties, and genomic analysis. Finally, we analyzed the potential of the phage to block the cross-host transmission of Salmonella, combining PFGE Salmonella classification, strain sources, and phage lytic phenotypes. The results showed that phage gmqsjt-1 could lyse 69.23% (45/65) of Salmonella, of which 75.56% (34/45) were resistant strains. The optimal multiplicity of infection (MOI) for gmqsjt-1 was 0.01, with a latent period of about 10 min, maintaining high activity within the temperature range of 30 to 60 °C and pH range of 2 to 13. No virulence or resistance genes were detected in the gmqsjt-1 genome, which carries two tail spike proteins (contain FAD binding_2 superfamily, the Tail spike TSP1/Gp66 N-terminal domain, and the Pectin lyase fold) and a holin–lysozyme–spanin lytic system. Phylogenetic classification indicates that phage gmqsjt-1 belongs to a new genus and species of an unnamed family within the class Caudoviricetes. PFGE classification results show a high genetic relationship among human, farm animal, and food source Salmonella, and the comprehensive lytic phenotype reveals that phage gmqsjt-1 can lyse Salmonella with high genetic correlation. These results suggest that this novel lytic Salmonella phage has the potential to inhibit cross-host transmission of Salmonella, making it a promising candidate for developing alternative agents to control Salmonella contamination sources (farms), thereby reducing the risk of human infection with Salmonella through ensuring food system safety. Full article
(This article belongs to the Section Food Microbiology)
Show Figures

Figure 1

16 pages, 1808 KB  
Article
White Lupin and Hairy Vetch as Green Manures: Impacts on Yield and Nutrient Cycling in an Organic Almond Orchard
by Soraia Raimundo, Margarida Arrobas, António Castro Ribeiro and Manuel Ângelo Rodrigues
Agronomy 2025, 15(8), 1974; https://doi.org/10.3390/agronomy15081974 - 15 Aug 2025
Viewed by 407
Abstract
Organic farming systems, which prohibit synthetic fertilizers, often rely on legumes for their ability to fix atmospheric nitrogen (N). In orchards, legumes can be established as cover crops between tree rows to enhance nutrient cycling. This study evaluated the effects of two legume [...] Read more.
Organic farming systems, which prohibit synthetic fertilizers, often rely on legumes for their ability to fix atmospheric nitrogen (N). In orchards, legumes can be established as cover crops between tree rows to enhance nutrient cycling. This study evaluated the effects of two legume cover crops, white lupin (Lupinus albus L.) and hairy vetch (Vicia villosa Roth), compared to a Control treatment with conventional tillage, which is the most commonly used method of soil management in the region, in an organically managed almond [Prunus dulcis (Mill.) D.A.Webb] orchard compliant with European Union standards, in an experiment arranged as a completely randomized design. In the first year, kernel yield was highest in the Control treatment (404 kg ha−1), while significantly lower yields were recorded for white lupin (246 kg ha−1) and hairy vetch (283 kg ha−1), likely due to competition for resources between cover crops and trees. In the second year, however, the trend reversed, with cover crop treatments yielding significantly more (Lupin: 313 kg ha−1; Vetch: 296 kg ha−1) than the Control (199 kg ha−1). The cover crops accumulated over 150 kg ha−1 of N in their tissues, enhancing soil N availability and increasing N concentrations in almond leaves. In addition to N, cover crops influenced the cycling of other nutrients, increasing potassium (K) and boron (B) concentrations while reducing calcium (Ca) and manganese (Mn) in plant tissues. Despite being derived from a two-year study, these results highlight the complexity of interpreting cover crop effects, underscoring the need for further long-term research to provide more comprehensive guidance to growers. Full article
(This article belongs to the Section Horticultural and Floricultural Crops)
Show Figures

Figure 1

19 pages, 4317 KB  
Article
Native Rhizobial Inoculation Improves Tomato Yield and Nutrient Uptake While Mitigating Heavy Metal Accumulation in a Conventional Farming System
by Luis Alberto Manzano-Gómez, Clara Ivette Rincón-Molina, Esperanza Martínez-Romero, Simón Samuel Stopol-Martínez, Amado Santos-Santiago, Juan José Villalobos-Maldonado, Víctor Manuel Ruíz-Valdiviezo and Reiner Rincón-Rosales
Microorganisms 2025, 13(8), 1904; https://doi.org/10.3390/microorganisms13081904 - 15 Aug 2025
Viewed by 501
Abstract
Enhancing crop productivity through biological strategies is critical for agriculture, particularly under conventional farming systems heavily reliant on chemical inputs. Plant probiotic bacteria offer promising alternatives by promoting plant growth and yield. This is the first field study to assess the effects of [...] Read more.
Enhancing crop productivity through biological strategies is critical for agriculture, particularly under conventional farming systems heavily reliant on chemical inputs. Plant probiotic bacteria offer promising alternatives by promoting plant growth and yield. This is the first field study to assess the effects of biofertilization with native rhizobial strains Rhizobium sp. ACO-34A, Sinorhizobium mexicanum ITTG-R7T, and S. chiapasense ITTG-S70T on Solanum lycopersicum (tomato) cultivated under conventional farming conditions. Key parameters assessed include plant performance (plant height, plant stem width, plant dry weight, and chlorophyll content), fruit yield (fruits per plant, fruit height, fruit width, fruit weight, and estimated fruit volume), and macronutrient and micronutrient contents in plant tissue. Additionally, rhizospere bacterial communities were characterized through 16S rRNA amplicon sequencing to evaluate alpha and beta diversity. Inoculation with ITTG-R7T significantly improved plant height, stem width, and plant dry weight, while ITTG-S70T enhanced stem width and chlorophyll content. ACO-34A inoculation notably increased fruit number, size, and yield parameters. Moreover, inoculated plants exhibited reduced Fe and Cu accumulation compared to non-inoculated controls. Metagenomic analyses indicated that rhizobial inoculation did not significantly disrupt the native rhizosphere bacterial community. These findings highlight the potential of rhizobial strains as effective plant probiotics that enhance tomato productivity while preserving microbial community structure, supporting the integration of microbial biofertilizers into conventional farming systems. Full article
(This article belongs to the Special Issue Feature Papers in Plant–Microbe Interactions in North America)
Show Figures

Graphical abstract

21 pages, 595 KB  
Article
Effect of Space Allowance on Pig Performance, Carcass Traits and Meat Quality in Italian Heavy Pigs Reared Under Two Housing Systems
by Paolo Ferrari, Andrea Bertolini, Anna Garavaldi, Valerio Faeti, Monica Bergamaschi, Cecilia Loffi, Anna Pinna and Roberta Virgili
Foods 2025, 14(16), 2817; https://doi.org/10.3390/foods14162817 - 14 Aug 2025
Viewed by 488
Abstract
Consumer demand for high-quality products, combined with expectations for more sustainable production systems and animal welfare, is driving major changes in livestock farming practices. It is known that space allowance plays a central role in pig welfare, promoting resting and reducing the incidence [...] Read more.
Consumer demand for high-quality products, combined with expectations for more sustainable production systems and animal welfare, is driving major changes in livestock farming practices. It is known that space allowance plays a central role in pig welfare, promoting resting and reducing the incidence of injuries and stress-related behaviors; however, there is little scientific evidence on the effect that available space has on the carcass and meat quality. In this study, space allowances were compared, in both an indoor conventional system (1.15, 1.9 and 3 m2/pig) and an indoor organic system with outdoor access (1.4 + 1, 2.6 + 2 and 3.9 + 3 m2/pig). The increase in space available for pigs had no effect on pig performance, carcass and meat quality characteristics, such as pH, drip and cooking loss. However, lowering stocking density in the conventional indoor housing system improved meat tenderness, as assessed by the Slice Shear Force test, while no difference was found between meat tenderness in organic pigs raised with three different stocking densities. Increased space allowance per pig reduced n-3 fatty acids in pig loins from both housing systems and n-6 fatty acids and PUFAs in loins from pigs reared in the organic housing system with both indoor and outdoor space. Full article
Show Figures

Figure 1

14 pages, 2579 KB  
Article
Prediction of Subcutaneous Fat Thickness (SFT) in Pantaneiro Lambs: A Model Based on Adipometer and Body Measurements for Android Application
by Adrielly Lais Alves da Silva, Marcus Vinicius Porto dos Santos, Marcelo Corrêa da Silva, Hélio Almeida Ricardo, Marcio Rodrigues de Souza, Núbia Michelle Vieira da Silva and Fernando Miranda de Vargas Junior
AgriEngineering 2025, 7(8), 251; https://doi.org/10.3390/agriengineering7080251 - 7 Aug 2025
Viewed by 800
Abstract
The increasing adoption of digital technologies in the agriculture sector has significantly contributed to optimizing on-farm routines, especially in data-driven decision-making. This study aimed to develop an application to determine the slaughter point of lambs by predicting subcutaneous fat thickness (SFT) using pre-slaughter [...] Read more.
The increasing adoption of digital technologies in the agriculture sector has significantly contributed to optimizing on-farm routines, especially in data-driven decision-making. This study aimed to develop an application to determine the slaughter point of lambs by predicting subcutaneous fat thickness (SFT) using pre-slaughter parameters such as body weight (BW), body condition score (BCS), and skinfold measurements at the brisket (BST), lumbar (LST), and tail base (TST), obtained using an adipometer. A total of 45 Pantaneiros lambs were evaluated, finished in feedlot, and slaughtered at different body weights. Each pre-slaughter weight class showed a distinct carcass pattern when all parameters were included in the model. Exploratory analysis revealed statistical significance for all variables (p < 0.001). BW and LST were selected to construct the predictive equation (R2 = 55.44%). The regression equations were integrated into the developed application, allowing for in-field estimation of SFT based on simple measurements. Compared to conventional techniques such as ultrasound or visual scoring, this tool offers advantages in portability, objectivity, and immediate decision-making support. In conclusion, combining accessible technologies (e.g., adipometer) with traditional variables (e.g., body weight), represents an effective alternative for production systems aimed at optimizing and enhancing the value of lamb carcasses. Full article
Show Figures

Graphical abstract

Back to TopTop