Sign in to use this feature.

Years

Between: -

Subjects

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Journals

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Article Types

Countries / Regions

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Search Results (833)

Search Parameters:
Keywords = conventional retainer

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
16 pages, 2716 KB  
Article
Application of Activated Carbon/Alginate Composite Beads for the Removal of 2-Methylborneol from Aqueous Solution
by Iresha Lakmali Balasooriya, Mudalige Don Hiranya Jayasanka Senavirathna and Weiqian Wang
AppliedChem 2025, 5(4), 32; https://doi.org/10.3390/appliedchem5040032 - 3 Nov 2025
Abstract
The presence of 2-methylisoborneol (2-MIB) in water is a critical global concern due to its low threshold and resistance to conventional processes. In the present study, activated carbon/alginate (AC/alginate) composite beads were synthesized via ionic gelation method for the removal of 2-MIB from [...] Read more.
The presence of 2-methylisoborneol (2-MIB) in water is a critical global concern due to its low threshold and resistance to conventional processes. In the present study, activated carbon/alginate (AC/alginate) composite beads were synthesized via ionic gelation method for the removal of 2-MIB from aqueous solution. The physicochemical characteristics of the adsorbent were determined using scanning electron microscopy (SEM) and Fourier transform infrared spectroscopy (FTIR) techniques. The effects of contact time, solution pH, initial 2-MIB concentration and adsorbent dose on adsorption were examined. Over 95% of 2-MIB removal was obtained under optimum conditions within 360 min. The adsorption equilibrium was well described by Langmuir (R2 = 0.97) and Freundlich (R2 = 0.96) models suggesting that 2-MIB adsorption involves both monolayer and multilayer adsorption. Kinetic modeling revealed that the pseudo-first order model showed strong fits to the experimental data, indicating the role of surface adsorption in controlling the rate of adsorption. The adsorbent demonstrated reasonable stability, retaining 59% removal efficiency after four adsorption–desorption cycles, highlighting its potential for repeated application in water treatment. Overall, the AC/alginate composite beads were found to be promising for the effective elimination of 2-MIB from water. Full article
Show Figures

Figure 1

15 pages, 2070 KB  
Article
Photogating Regimes in Graphene: Memory-Bearing and Reset-Free Operation
by Afshan Khaliq, Hongsheng Xu, Akeel Qadir, Ayesha Salman, Sichao Du, Munir Ali and Shihua Huang
Nanomaterials 2025, 15(21), 1667; https://doi.org/10.3390/nano15211667 - 2 Nov 2025
Abstract
We demonstrate photogating in a graphene/Si–SiO2 stack, where vertical motion of photogenerated charge is converted into a corresponding change in graphene channel conductance in real time. Under pulsed illumination, holes accumulate at the Si/SiO2 interface, creating a surface photovoltage that shifts [...] Read more.
We demonstrate photogating in a graphene/Si–SiO2 stack, where vertical motion of photogenerated charge is converted into a corresponding change in graphene channel conductance in real time. Under pulsed illumination, holes accumulate at the Si/SiO2 interface, creating a surface photovoltage that shifts the flat-band condition and electrostatically suppresses graphene conductance. A dual-readout scheme—simultaneously tracking interfacial charging dynamics and the graphene channel—cleanly separates optical charge injection (cause) from electronic transduction (effect). This separation allows for the direct extraction of practical figures of merit without conventional transfer sweeps, including flat-band shift per pulse, retention time constants, and trap occupancy. Interface kinetics then define two operating regimes: a fast, resettable detector when traps are sparse or rapid, and a trap-assisted analog-memory state when slow traps retain charge between pulses. The mechanism is CMOS-compatible and needs no cryogenics or exotic materials. Together, these results outline a compact route to engineer integrating photodetectors, pixel-level memory for adaptive imaging, and neuromorphic optoelectronic elements that couple sensing with in situ computation. Full article
(This article belongs to the Special Issue 2D Materials for High-Performance Optoelectronics)
Show Figures

Graphical abstract

14 pages, 815 KB  
Article
Comparing Conduction System Pacing to Biventricular Upgrade in Pacemaker-Induced Cardiomyopathy: A Retrospective Observational Study
by Bernadett Miriam Dobai, Balázs Polgár, Márk Gémesi, Manuella Bogdan, Nikolett Vigh, Mirjam Turáni, Gábor Zoltán Duray and Péter Bógyi
J. Clin. Med. 2025, 14(21), 7745; https://doi.org/10.3390/jcm14217745 - 31 Oct 2025
Viewed by 103
Abstract
Background/Objectives: Pacemaker-induced cardiomyopathy (PICM) develops in up to 30% of patients with chronic right ventricular pacing. While biventricular (BIV) upgrade is the conventional strategy, conduction system pacing (CSP) offers a physiologic alternative recently endorsed by the 2025 ESC/EHRA Consensus Statement. However, comparative [...] Read more.
Background/Objectives: Pacemaker-induced cardiomyopathy (PICM) develops in up to 30% of patients with chronic right ventricular pacing. While biventricular (BIV) upgrade is the conventional strategy, conduction system pacing (CSP) offers a physiologic alternative recently endorsed by the 2025 ESC/EHRA Consensus Statement. However, comparative evidence in PICM is limited. Therefore, we aimed to compare outcomes of PICM patients undergoing CSP versus BIV upgrade. Methods: This retrospective analysis included consecutive PICM patients who were upgraded to CSP or BIV between 2022 and 2024 at a single, experienced center. Follow-up averaged >19 months. Clinical outcomes, lead performance, echocardiographic parameters, complications, and quality of life (QoL) were evaluated. Results: Sixty-three patients were included (CSP: 26; BIV: 37). Mean age and sex distribution were similar; both groups had wide paced QRS complexes and a high ventricular pacing burden. Baseline left ventricular ejection fraction (LVEF) was lower in BIV patients (29 ± 7% vs. 35 ± 6%, p = 0.01). Procedure duration was comparable, but fluoroscopy was shorter with CSP. QRS duration narrowed significantly in both groups (CSP: 163 ± 28→132 ± 12 ms; BIV: 171 ± 23→140 ± 18 ms; both p < 0.05). During follow-up, LVEF improved (CSP: 41 ± 8%; p = 0.008; BIV: 39 ± 8%, p = 0.0001), as did NYHA class, with no significant intergroup differences. The rates of heart failure hospitalization, all-cause mortality, and QoL were similar. Notably, 34.6% of CSP patients retained their existing generator, suggesting procedural and economic benefits. Conclusions: CSP is a feasible and potentially cost-efficient alternative to BIV upgrade in PICM, with comparable improvements in ventricular function, symptoms, and clinical outcomes. Larger prospective trials are warranted. Full article
(This article belongs to the Special Issue Advances in Arrhythmia Diagnosis and Management)
Show Figures

Figure 1

22 pages, 4391 KB  
Article
Laboratory Assessment of Residual Oil Saturation Under Multi-Component Solvent SAGD Coinjection
by Fernando Rengifo Barbosa, Amin Kordestany and Brij Maini
Energies 2025, 18(21), 5743; https://doi.org/10.3390/en18215743 - 31 Oct 2025
Viewed by 82
Abstract
Solvent-assisted steam-assisted gravity drainage (SA-SAGD) is an advanced hybrid oil recovery technique designed to enhance the extraction of heavy oil and bitumen. Unlike the conventional SAGD process, which relies solely on thermal energy from injected steam, SA-SAGD incorporates a coinjected solvent phase to [...] Read more.
Solvent-assisted steam-assisted gravity drainage (SA-SAGD) is an advanced hybrid oil recovery technique designed to enhance the extraction of heavy oil and bitumen. Unlike the conventional SAGD process, which relies solely on thermal energy from injected steam, SA-SAGD incorporates a coinjected solvent phase to improve oil mobility through the combined action of heat and mass transfer. This synergistic mechanism significantly reduces the demand for water and natural gas used in steam generation, thereby improving the energy efficiency and environmental sustainability of the process. Importantly, SA-SAGD retains the same well pair configuration as SAGD, meaning that its implementation often requires minimal modifications to existing infrastructure. This study explores the residual oil saturation following multi-component solvent coinjection in SA-SAGD using a linear sand pack model designed to emulate the properties and operational parameters of the Long Lake reservoir. Experiments were conducted with varying constant concentrations of cracked naphtha and gas condensate to assess their effectiveness in enhancing bitumen recovery. The results reveal that the injection of 15 vol% cracked naphtha achieved the lowest residual oil saturation and the highest rate of oil recovery, indicating superior solvent performance. Notably, gas condensate at just 5 vol% concentration outperformed 10 vol% cracked naphtha, demonstrating its effectiveness even at lower concentrations. These findings provide valuable insight into the phase behaviour and recovery dynamics of solvent–steam coinjection systems. The results strongly support the strategic selection of solvent type and concentration to optimise recovery efficiency while minimising steam consumption. Furthermore, the outcomes offer a robust basis for calibrating reservoir simulation models to improve the design and field-scale application of SA-SAGD, particularly in pilot operations such as those conducted by Nexen Energy ULC in the Athabasca Oil Sands. Full article
(This article belongs to the Special Issue Enhanced Oil Recovery: Numerical Simulation and Deep Machine Learning)
Show Figures

Figure 1

73 pages, 13990 KB  
Review
Computational and Experimental Insights into Blast Response and Failure Mechanisms of Square, Rectangular and Circular Reinforced Concrete Columns: A State-of-the-Art Review
by S. M. Anas, Rayeh Nasr Al-Dala’ien, Mohammed Benzerara and Mohammed Jalal Al-Ezzi
Buildings 2025, 15(21), 3928; https://doi.org/10.3390/buildings15213928 - 30 Oct 2025
Viewed by 136
Abstract
Blast damage to structural members poses serious risks to both buildings and people, making it important to understand how these elements behave under extreme loads. Columns in reinforced concrete (RC) structures are especially critical, as their sudden failure can trigger progressive collapse, unlike [...] Read more.
Blast damage to structural members poses serious risks to both buildings and people, making it important to understand how these elements behave under extreme loads. Columns in reinforced concrete (RC) structures are especially critical, as their sudden failure can trigger progressive collapse, unlike beams or slabs that have more redundancy. This state-of-the-art review brings together the current knowledge of the blast response of RC columns, focusing on their failure patterns, dynamic behavior, and key loading mechanisms. The studies covered include experiments, high-fidelity numerical simulations, emerging machine learning approaches, and analytical models for columns of different shapes (square, rectangular, circular) and strengthening methods, such as fiber reinforcement, steel-concrete composite confinement, and advanced retrofitting. Composite columns are also reviewed to compare their hybrid confinement and energy-absorption advantages over conventional RC members. Over forty specific studies on RC columns were analyzed, comparing the results based on geometry, reinforcement detailing, materials, and blast conditions. Both near-field and contact detonations were examined, along with factors like axial load, standoff distance, and confinement. This review shows that RC columns respond very differently to blasts depending on their shape and reinforcement. Square, rectangular, and circular sections fail in distinct ways. Use of ultra-high-performance concrete, steel fibers, steel-concrete composite, and fiber-reinforced polymer retrofits greatly improves peak and residual load capacity. Ultra-high-performance concrete can retain a significantly higher fraction of axial load (often >70%) after strong blasts, compared to ~40% in conventional high-strength RC under similar conditions. Larger sections, closer stirrups, higher transverse reinforcement, and good confinement reduce spalling, shear failure, and mid-height displacement. Fiber-reinforced polymer and steel-fiber wraps typically improve residual strength by 10–15%, while composite columns with steel cores remain stiff and absorb more energy post-blast. Advanced finite element simulations and machine learning models now predict displacements, damage, and residual capacity more accurately than older methods. However, gaps remain. Current design codes of practice simplify blast loads and often do not account for localized damage, near-field effects, complex boundary conditions, or pre-existing structural weaknesses. Further research is needed on cost-effective, durable, and practical retrofitting strategies using advanced materials. This review stands apart from conventional literature reviews by combining experimental results, numerical analysis, and data-driven insights. It offers a clear, quantitative, and comparative view of RC column behavior under blast loading, identifies key knowledge gaps, and points the way for future design improvements. Full article
(This article belongs to the Section Building Structures)
Show Figures

Figure 1

31 pages, 15266 KB  
Article
Crustacean Protein Kinases A and C: Bioinformatic Characterization in Decapods and Other Non-Model Organisms
by Talia B. Head, Jorge L. Pérez-Moreno, Laura E. Antizzo, David S. Durica and Donald L. Mykles
Int. J. Mol. Sci. 2025, 26(21), 10585; https://doi.org/10.3390/ijms262110585 - 30 Oct 2025
Viewed by 149
Abstract
The AGC kinases constitute a large and ancient gene superfamily with origins that coincided with the appearance of multicellularity. Three AGC kinase families—protein kinase A (PKA), protein kinase G (PKG), and protein kinase C (PKC)—mediate the actions of neuropeptide hormones, biogenic amines, and [...] Read more.
The AGC kinases constitute a large and ancient gene superfamily with origins that coincided with the appearance of multicellularity. Three AGC kinase families—protein kinase A (PKA), protein kinase G (PKG), and protein kinase C (PKC)—mediate the actions of neuropeptide hormones, biogenic amines, and other ligands on various physiological processes in metazoans. Metazoans express two PKG types. Jawed vertebrates express three PKA catalytic (C) subunits, four regulatory (R) subunits, and twelve PKCs, organized into conventional, novel delta-like, novel epsilon-like, atypical, and protein kinase N (PKN) subfamilies. By contrast, invertebrate PKA and PKC sequences are not well characterized. Consequently, limited database resources can result in misidentification or mischaracterization of proteins and can lead to misinterpretation of experimental data. A broad phylogenetic and sequence analysis of CrusTome transcriptome and GenBank databases was used to characterize 640 PKA-C sequences, 1122 PKA-R sequences, and 1844 PKC sequences distributed among the Annelida, Arthropoda, Chordata, Cnidaria, Nematoda, Mollusca, Echinodermata, Porifera, Platyhelminthes, and Tardigrada. Phylogenetic analysis and multiple sequence alignments revealed conservation of certain PKA-C, PKA-R and PKC isoforms across metazoans, as well as diversification of additional taxon-specific isoforms. Decapods expressed four PKA-C isoforms, designated PKA-C1, -CD1, -CGLY1, and -CGLY2; five PKA-R isoforms, designated PKA-RI1, -RID1, -RIIGLY, and -RIID1; and five PKC isoforms, designated PKND1-3, conventional cPKCD1, novel nPKCD1δ and nPKCD1ε, and atypical aPKCD1. PKA-CGLY1, -CGLY2, and -RIIGLY had glycine-rich N-terminal sequences that were unique to crustaceans. These data suggest lineage-specific diversification that retained the core catalytic function of each kinase, while regions outside of the kinase domain may provide specialized regulatory mechanisms and/or spatiotemporal subcellular localization in invertebrate tissues. Full article
Show Figures

Figure 1

22 pages, 6493 KB  
Article
Determination of HSS Model Parameters for Soft Clays in Hangzhou: Statistical Analysis and Engineering Validation
by Xing Zheng, Xiaowu Wang, Kanmin Shen and Xiaoqiang Gu
Buildings 2025, 15(21), 3886; https://doi.org/10.3390/buildings15213886 - 27 Oct 2025
Viewed by 199
Abstract
The hardening soil model with small-strain stiffness (HSS model), capturing nonlinear stiffness of soils at small strains, offers advantages for deformation analysis of tunnels or deep excavations in soft clay areas such as Hangzhou City. However, its complex parameters are rarely determinable via [...] Read more.
The hardening soil model with small-strain stiffness (HSS model), capturing nonlinear stiffness of soils at small strains, offers advantages for deformation analysis of tunnels or deep excavations in soft clay areas such as Hangzhou City. However, its complex parameters are rarely determinable via conventional tests, and regional geological differences render parameter determination methods of other areas inapplicable to Hangzhou. To address this issue, this paper summarizes the geological genesis, spatial distribution, and physical–mechanical properties of Hangzhou soft clays, and clarifies significance and acquisition of HSS model parameters. Via statistical analysis of existing literature data, the relationships between key HSS model parameters and physical indices (e.g., void ratio) were established. A 3D finite element (FE) simulation of a Hangzhou excavation validated the proposed parameter determination method: simulated lateral retaining structure displacement and surface settlement closely matched field measurements. The simulation results employing the model parameters proposed herein are closer to the measurements than those based on the method of Shanghai, providing guidance for excavation design and geotechnical parameter selection in Hangzhou soft soil region. Full article
(This article belongs to the Section Building Structures)
Show Figures

Figure 1

24 pages, 3544 KB  
Article
Preliminary Feasibility Study of Using Hydrogen as a Fuel for an Aquaculture Vessel in Tasmania, Australia
by Hongjun Fan, Peggy Shu-Ling Chen, Andrew Harris, Nagi Abdussamie, Evan Mac A. Gray, Irene Penesis and Javad A. Mehr
J. Mar. Sci. Eng. 2025, 13(11), 2037; https://doi.org/10.3390/jmse13112037 - 24 Oct 2025
Viewed by 460
Abstract
Decarbonising aquaculture support vessels is pivotal to reducing greenhouse gas (GHG) emissions across both the aquaculture and maritime sectors. This study evaluates the technical and economic feasibility of deploying hydrogen as a marine fuel for a 14.95 m net cleaning vessel (NCV) operating [...] Read more.
Decarbonising aquaculture support vessels is pivotal to reducing greenhouse gas (GHG) emissions across both the aquaculture and maritime sectors. This study evaluates the technical and economic feasibility of deploying hydrogen as a marine fuel for a 14.95 m net cleaning vessel (NCV) operating in Tasmania, Australia. The analysis retains the vessel’s original layout and subdivision to enable a like-for-like comparison between conventional diesel and hydrogen-based systems. Two options are evaluated: (i) replacing both the main propulsion engines and auxiliary generator sets with hydrogen-based systems—either proton exchange membrane fuel cells (PEMFCs) or internal combustion engines (ICEs); and (ii) replacing only the diesel generator sets with hydrogen power systems. The assessment covers system sizing, onboard hydrogen storage integration, operational constraints, lifecycle cost, and GHG abatement. Option (i) is constrained by the sizes and weights of PEMFC systems and hydrogen-fuelled ICEs, rendering full conversion unfeasible within current spatial and technological limits. Option (ii) is technically feasible: sixteen 700 bar cylinders (131.2 kg H2 total) meet one day of onboard power demand for net-cleaning operations, with bunkering via swap-and-go skids at the berth. The annualised total cost of ownership for the PEMFC systems is 1.98 times that of diesel generator sets, while enabling annual CO2 reductions of 433 t. The findings provide a practical decarbonisation pathway for small- to medium-sized service vessels in niche maritime sectors such as aquaculture, while clarifying near-term trade-offs between cost and emissions. Full article
(This article belongs to the Special Issue Infrastructure for Offshore Aquaculture Farms)
Show Figures

Figure 1

17 pages, 3124 KB  
Article
Fit Accuracy of Plate-Type Retainers Fabricated Using Dental CAD/CAM Systems: A Controlled In Vitro Comparison Using Typodont-Derived Models
by Kosuke Nomi, So Koizumi, Masatoshi Shimura, Kazuhide Seimiya, Osamu Nikaido, Heetae Park, Reina Hatanaka, Masahiro Takahashi, Shinya Fuchida and Tetsutaro Yamaguchi
Dent. J. 2025, 13(11), 487; https://doi.org/10.3390/dj13110487 - 23 Oct 2025
Viewed by 220
Abstract
Objectives: This study aimed to compare the fit accuracy between retainers fabricated using conventional cold-curing resin (hereinafter referred to as “conventional retainers”) and those fabricated using three-dimensional (3D) printing based on computer-aided design/computer-aided manufacturing (CAD/CAM) technology (hereinafter referred to as “CAD/CAM retainers”). Furthermore, [...] Read more.
Objectives: This study aimed to compare the fit accuracy between retainers fabricated using conventional cold-curing resin (hereinafter referred to as “conventional retainers”) and those fabricated using three-dimensional (3D) printing based on computer-aided design/computer-aided manufacturing (CAD/CAM) technology (hereinafter referred to as “CAD/CAM retainers”). Furthermore, the study aimed to compare two different methods to evaluate the fit accuracy: the impression replica technique and the 3D triple-scan protocol. Methods: For each of the 20 working models derived from a maxillary typodont, one conventional retainer and one CAD/CAM retainer were fabricated. The fit accuracy was evaluated using the impression replica technique and the 3D triple-scan protocol. Measurements were taken at 12 points on each model, and the differences in thickness (gap) were analyzed using Wilcoxon’s signed-rank test. Moreover, the correlation between thickness and measurement site was evaluated using Spearman’s rank correlation coefficient. Results: In both evaluation methods, the CAD/CAM retainers exhibited superior fit accuracy compared to the conventional retainers. Notably, the 3D triple-scan protocol clearly demonstrated that the fit accuracy differed depending on the measurement site. Conclusions: CAD/CAM retainers demonstrated superior fit accuracy compared to conventional retainers, possibly because digital design can account for polymerization shrinkage. In the impression replica technique, the median (interquartile range) thickness for the conventional retainers was 0.169 (0.120–0.260) mm, whereas that for the CAD/CAM retainers was 0.136 (0.096–0.198) mm. The CAD/CAM retainers showed significantly smaller gap values (p < 0.001). Within the limitations of this in vitro study, CAD/CAM retainers showed significantly smaller gap values than conventional retainers, indicating improved fit accuracy. In particular, the 3D triple-scan protocol accurately captured site-specific variations in fit accuracy among the anterior, canine, and molar regions. Full article
(This article belongs to the Section Digital Technologies)
Show Figures

Graphical abstract

11 pages, 2538 KB  
Article
Enabling Ultra-Stable Bearing Performance: Design of a Self-Lubricating PI Composite Retainer
by Zhining Jia and Caizhe Hao
Lubricants 2025, 13(11), 465; https://doi.org/10.3390/lubricants13110465 - 23 Oct 2025
Viewed by 304
Abstract
To address challenges such as temperature rise, operational instability, and premature failure in rolling bearings caused by retainer friction, this study designed and developed a high-performance polyimide (PI)-based composite self-lubricating retainer to enable “ultra-stable” bearing operation. Both solid and oil-porous self-lubricating retainers were [...] Read more.
To address challenges such as temperature rise, operational instability, and premature failure in rolling bearings caused by retainer friction, this study designed and developed a high-performance polyimide (PI)-based composite self-lubricating retainer to enable “ultra-stable” bearing operation. Both solid and oil-porous self-lubricating retainers were fabricated through material composition and structural design. Systematic tests under controlled load and speed conditions were conducted to compare their temperature rise behavior and wear morphology. The results demonstrated that the temperature rise in the YSU-PI1 bearing with a solid retainer decreased by approximately 57% compared to a conventional bearing. The YSU-PA2 bearing with an oil-porous retainer exhibited a further improvement in thermal performance. Notably, under high-speed conditions, the equilibrium temperature of the YSU-PA2 bearing was lower than that under low-speed conditions, confirming a centrifugal-force-driven self-regulating oil-supply mechanism. Wear surface analysis revealed that the porous structure promoted the formation of a continuous and uniform transfer film, effectively mitigating wear and pitting. This study successfully integrates “material–structure–function” innovation. The oil-porous PI-based composite retainer transforms centrifugal force—typically considered detrimental—into a beneficial lubrication mechanism, effectively suppressing temperature rise and enabling “ultra-stable operation”. These findings provide crucial theoretical and technical support for developing bearings for high-end equipment. Full article
Show Figures

Figure 1

25 pages, 3411 KB  
Review
Retinal Laser Therapy Mechanisms, Innovations, and Clinical Applications
by Xinyi Xie, Luqman Munir and Yannis Mantas Paulus
Photonics 2025, 12(11), 1043; https://doi.org/10.3390/photonics12111043 - 22 Oct 2025
Viewed by 611
Abstract
Retinal laser therapy has been a mainstay for treating proliferative diabetic retinopathy, retinal vascular disease, and retinal breaks since 1961. However, conventional millisecond photocoagulation can cause permanent scarring and procedure discomfort, motivating the development of damage-sparing approaches that preserve the neurosensory retina. Clinically, [...] Read more.
Retinal laser therapy has been a mainstay for treating proliferative diabetic retinopathy, retinal vascular disease, and retinal breaks since 1961. However, conventional millisecond photocoagulation can cause permanent scarring and procedure discomfort, motivating the development of damage-sparing approaches that preserve the neurosensory retina. Clinically, panretinal photocoagulation remains effective for proliferative disease but trades off peripheral visual field and night vision. This review synthesizes development, mechanisms, and clinical evidence for laser modalities, including short-pulse selective retinal therapy (SRT), subthreshold diode micropulse (SDM), and pattern-scanning photocoagulation. We conducted a targeted narrative search of PubMed/MEDLINE, Embase, Web of Science, and trial registries (1960–September 2025), supplemented by reference list screening. We prioritized randomized/prospective studies, large cohorts, systematic reviews, mechanistic modeling, and relevant preclinical work. Pulse duration is the primary determinant of laser–tissue interaction. In the microsecond regime, SRT yields retinal pigment epithelium (RPE)-selective photodisruption via microcavitation and uses real-time optoacoustic or OCT feedback. SDM 100–300 µs delivers nondamaging thermal stress with low duty cycles and titration-based dosing. Pattern-scanning platforms improve throughput and tolerance yet remain destructive photocoagulation. Feedback-controlled SRT shows anatomic/functional benefit in chronic central serous chorioretinopathy and feasibility in diabetic macular edema. SDM can match threshold macular laser for selected DME and may reduce anti-VEGF injection burden. Sub-nanosecond “rejuvenation” lasers show no overall benefit in intermediate AMD and may be harmful in specific phenotypes. Advances in delivery, dosimetry, and closed-loop feedback aim to minimize collateral damage while retaining therapeutic effect. Key gaps include head-to-head trials (SRT vs. PDT/SDM), standardized feedback thresholds across pigmentation and devices, and long-term macular safety to guide broader clinical adoption. Full article
(This article belongs to the Special Issue Novel Techniques and Applications of Ophthalmic Optics)
Show Figures

Figure 1

15 pages, 1717 KB  
Article
Study on the Dynamic Responses of a Concrete-Block-Panel-Wrapped Reinforced Soil Retaining Wall: A Model Test
by Jiannan Xu, Xiancai Zhou, Zhiwen Song and He Wang
Buildings 2025, 15(20), 3797; https://doi.org/10.3390/buildings15203797 - 21 Oct 2025
Viewed by 217
Abstract
Reinforced soil retaining walls (RSWs) for railways are key subgrade structures that bear cyclic loads from trains, and their long-term durability directly affects railway operation safety. The mechanical behavior of RSWs under cyclic loading has been extensively investigated in previous studies, primarily focusing [...] Read more.
Reinforced soil retaining walls (RSWs) for railways are key subgrade structures that bear cyclic loads from trains, and their long-term durability directly affects railway operation safety. The mechanical behavior of RSWs under cyclic loading has been extensively investigated in previous studies, primarily focusing on seismic conditions or conventional structural configurations. While these works have established fundamental understanding of load transfer mechanisms and deformation patterns, research on their responses to long-term train-induced vibrations, particularly for concrete-block-panel-wrapped RSWs, an improved structure based on traditional concrete-block-panel RSWs, remains limited. To investigate the dynamic responses of the concrete-block-panel-wrapped RSW, a model test was conducted under cyclic loading conditions where the amplitude was 30 kPa and the frequency was 10 Hz. The model size was 3.0 m in length, 1.0 m in width, and 1.8 m in height, incorporating six layers of geogrid. Each layer of geogrid was 2.0 m in length with a vertical spacing of 0.3 m or 0.15 m. The results indicate that as the number of load cycles increases, deformation, acceleration, static and dynamic stresses, and geogrid strain also increase and gradually stabilize, exhibiting only marginal increments thereafter. The maximum horizontal displacement reaches 0.08% of the wall height (H), with horizontal displacement increasing uniformly along the height of the wall. The vertical acceleration in the non-reinforced soil zone is lower than that in the reinforced soil zone. The horizontal dynamic stress acting on the back of the panel remains minimal and is uniformly distributed along the height of the wall. The maximum geogrid strain was found to be 0.88%, corresponding to a tensile stress amounting to 20.33% of its ultimate tensile strength. The predicted failure surface approximates a bilinear configuration, consisting of one line parallel to the wall face at a distance of 0.3H from the back of the soil bags and another line inclined at an angle equal to the soil’s internal friction angle (φ) relative to the horizontal plane. This study has important reference significance for the application of concrete-block-panel-wrapped RSWs in railways. Full article
(This article belongs to the Section Building Structures)
Show Figures

Figure 1

16 pages, 2743 KB  
Article
Unique Design of Functionalized Covalent Organic Frameworks for Highly Selective Removal of Cyano-Neonicotinoids
by Yan Yang, Shuojie Wang, Wenxin Mai, Shiyu Wei, Guixiang Teng, Peng Pu, Jiaxing Zhao and Yongqiang Tian
Nanomaterials 2025, 15(20), 1596; https://doi.org/10.3390/nano15201596 - 20 Oct 2025
Viewed by 274
Abstract
Acetamiprid (ACE) and thiacloprid (THIA) are the dominant cyano-substituted neonicotinoids detected in fruit juices and bottled water, which raises food-safety concerns and regulatory scrutiny. Conventional purification with activated carbon or advanced oxidation shows limited selectivity and has a high energy demand. Covalent organic [...] Read more.
Acetamiprid (ACE) and thiacloprid (THIA) are the dominant cyano-substituted neonicotinoids detected in fruit juices and bottled water, which raises food-safety concerns and regulatory scrutiny. Conventional purification with activated carbon or advanced oxidation shows limited selectivity and has a high energy demand. Covalent organic frameworks (COFs) offer tunable chemistry for targeted adsorption, yet no strategy exists to engineer COF sites that preferentially recognize the cyano group of ACE/THIA. Here, we synthesized a magnetic core-shell adsorbent, Fe3O4@COF(TBTD-BD)-Au, by growing cyano-affinitive Au nanoparticles on a Cl-decorated COF shell surrounding a Fe3O4 core. Under optimized conditions (pH 6.0, 25 °C), the Fe3O4@COF(TBTD-BD)-Au achieved maximum adsorption capacities of 157 mg g−1 (ACE) and 156 mg g−1 (THIA). Uptake followed pseudo-second-order kinetics and the Freundlich isotherm; thermodynamic analysis confirmed an endothermic, spontaneous process. Competitive tests showed >80% removal of ACE and THIA in the presence of four co-occurring neonicotinoids, and the adsorbent retained 91.5% of its initial capacity after six adsorption–desorption cycles. Synergistic Au-cyano coordination, Cl-mediated hydrogen bonding, and π–π stacking confinement confer high selectivity and capacity. This ligand-guided, post-functionalized COF provides promising potential in the field of food sample treatment for contaminant removal. Full article
(This article belongs to the Section Inorganic Materials and Metal-Organic Frameworks)
Show Figures

Figure 1

14 pages, 4613 KB  
Article
Cochlospermum regium Leaf Extract Gel: A Natural Strategy Against Methicillin-Resistant Staphylococcus aureus
by Fernanda Galvão, Cleison Leite, João Andrade, Pamella Castilho, Thiago Castro, Claudia Cardoso, Deisiany Ferreira, Melyssa Negri, Fabiana Dantas and Kelly Oliveira
Gels 2025, 11(10), 831; https://doi.org/10.3390/gels11100831 - 17 Oct 2025
Viewed by 286
Abstract
Background: Skin infections caused by Staphylococcus aureus represent a major public health concern, and plant extracts, such as those from Cochlospermum regium, have emerged as promising therapeutic alternatives. Methods: This study developed carbopol-based gel formulations containing ethanolic leaf extracts of C. regium [...] Read more.
Background: Skin infections caused by Staphylococcus aureus represent a major public health concern, and plant extracts, such as those from Cochlospermum regium, have emerged as promising therapeutic alternatives. Methods: This study developed carbopol-based gel formulations containing ethanolic leaf extracts of C. regium (CRG 0.5% and 1%) and evaluated their physicochemical stability, antibacterial activity against S. aureus and a methicillin-resistant wound isolate, antioxidant potential, and biocompatibility. Results: Both CRG 0.5% and 1% were physically stable and maintained antibacterial activity for up to 90 days at 8 °C, while at 25 °C only CRG 1% retained activity throughout the evaluation period. In ex vivo pig skin assays, CRG 1% reduced methicillin-resistant S. aureus contamination by 99%, outperforming the conventional topical antibacterial agent (neomycin + bacitracin), which achieved 66% inhibition. The extract also exhibited high antioxidant activity without mutagenic or hemolytic effects. Although phenolic and flavonoid contents decreased over time, CRG 1% preserved adequate levels for therapeutic application. Conclusions: These findings indicate that CRG 1% has potential as a stable, safe, and effective alternative for the treatment of topical infections, particularly those caused by methicillin-resistant S. aureus. Full article
Show Figures

Graphical abstract

39 pages, 2307 KB  
Review
Repurposing the Tyrosine Kinase Inhibitors Targeting FGFR and VEGFR Pathways for Cancer Therapy: A Comprehensive Review
by Sergei Boichuk and Tatyana Gessel
Cancers 2025, 17(20), 3354; https://doi.org/10.3390/cancers17203354 - 17 Oct 2025
Viewed by 681
Abstract
Resistance to conventional anti-tumor drugs is one of the significant challenges in oncology, responsible for treatment failure and patient death. Introduction of the targeted drugs (e.g., small molecule tyrosine kinase inhibitors (TKIs) and monoclonal antibodies) in cancer therapy significantly improved overall survival (OS) [...] Read more.
Resistance to conventional anti-tumor drugs is one of the significant challenges in oncology, responsible for treatment failure and patient death. Introduction of the targeted drugs (e.g., small molecule tyrosine kinase inhibitors (TKIs) and monoclonal antibodies) in cancer therapy significantly improved overall survival (OS) and progression-free survival (PFS) rates for selected groups of cancer patients and delayed the progression of advanced forms of human malignancies. However, the development of secondary resistance to the targeted drugs remains an unbeatable obstacle to a successful outcome in the long run, thereby making prognosis unfavorable for cancer patients with advanced, recurrent, and metastatic forms of disease. The review focuses on several mechanisms that regulate cancer resistance to conventional chemotherapies. This includes the upregulation of main types of ABC transporters (e.g., ABCB1, ABCC1, and ABCG2), which provides the efflux of chemotherapeutic agents from cancer cells. Additionally, the activation of diverse DNA damage repair (DDR) pathways, epithelial-to-mesenchymal transition (EMT), and the population of cancer stem cells (CSCs) are also discussed in detail, thereby illustrating the diverse molecular mechanisms of cancer sensitivity to chemotherapies. Recently, several TKIs, including those that were initially developed to specifically target FGFR and VEGFR pathways, have also been reported to exhibit “off-target” effects by interacting with ABC transporters and inhibiting their function. This, in turn, illustrates their potency in retaining chemotherapeutic agents within cancer cells and possessing a chemosensitizing function. Of note, FGFR and VEGFR inhibitors may behave as inhibitors or substrates of ABC transporters, depending on the expression of specific pumps and affinity for them, concentrations, and types of co-administered agents, thereby disclosing the complexity of this scenario. Additionally, the aforementioned RTKI can interfere with the other molecular mechanisms regulating tumor sensitivity to conventional chemotherapies, including the regulation of diverse DDR pathways, EMT, and the population of CSCs. Thereby, the aforementioned “off-target” functions of FGFR and VEGFR inhibitors can open novel approaches towards anti-cancer therapies and strategies aimed at counteracting cancer multidrug resistance (MDR), which is important especially as second- or third-line treatments in patients who have progressed on modern chemotherapeutic regimens. Notably, the strategy of using TKIs to potentiate the clinical efficacy of chemotherapies can extend beyond inhibitors of FGFR and VEGFR signaling pathways, thereby providing a rationale for repurposing existing TKIs as an attractive therapeutic approach to overcome cancer chemoresistance. Full article
Show Figures

Figure 1

Back to TopTop