Sign in to use this feature.

Years

Between: -

Subjects

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Journals

Article Types

Countries / Regions

Search Results (135)

Search Parameters:
Keywords = convertible UAV

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
22 pages, 2841 KB  
Article
Application of PVDF Transducers for Piezoelectric Energy Harvesting in Unmanned Aerial Vehicles
by Laís dos Santos Gonçalves, Ricardo Morais Leal Pereira, Rafael Salomão Tyszler, Maria Clara A. M. Morais and Carlos Roberto Hall Barbosa
Energies 2025, 18(17), 4759; https://doi.org/10.3390/en18174759 - 7 Sep 2025
Viewed by 943
Abstract
The demand for sustainable energy generation and storage methods has become inevitable. As a result, numerous sectors are investing in research focused on energy harvesting (EH) techniques. In this context, a promising area involves integrating piezoelectric materials into unmanned aerial vehicles (UAVs)—an application [...] Read more.
The demand for sustainable energy generation and storage methods has become inevitable. As a result, numerous sectors are investing in research focused on energy harvesting (EH) techniques. In this context, a promising area involves integrating piezoelectric materials into unmanned aerial vehicles (UAVs)—an application that enables electrical energy generation from the kinetic energies produced during flight. This article aims to use polyvinylidene fluoride (PVDF) piezoelectric transducers coupled to an EH power management unit (LTC3588-1) to convert and store electrical energy generated by wind from the propellers and motor vibration. Methodologically, the motor and transducers are characterized, a model is developed using LTSpice®, and experimental validation of the performance of this coupling is carried out for output voltages (Vout) of 1.8 V, 2.5 V, 3.3 V, and 3.6 V. With a motor rotation speed of 3975 rpm, the transducers generated a voltage amplitude of 17.3 V, enabling the capacitor coupled to the EH power management unit—adjusted to the highest Vout—to be charged in approximately 162 s. Thus, this study demonstrated the feasibility of using PVDF as a piezoelectric nanogenerator in UAVs, enabling onboard electronic circuits and sensors to be powered while reserving the battery solely for propulsion, thereby increasing flight autonomy. Full article
Show Figures

Figure 1

28 pages, 2429 KB  
Article
Neural Network Disturbance Observer-Based Adaptive Fault-Tolerant Attitude Tracking Control for UAVs with Actuator Faults, Input Saturation, and External Disturbances
by Yan Zhou, Ye Liu, Jiaze Li and Huiying Liu
Actuators 2025, 14(9), 437; https://doi.org/10.3390/act14090437 - 3 Sep 2025
Viewed by 352
Abstract
A dual-loop fault-tolerant control scheme is investigated for UAV attitude control systems subject to actuator faults, input saturation, and external disturbances in this paper. In the outer loop of attitude angles, a nonlinear dynamic inversion controller is developed as baseline controller for fast [...] Read more.
A dual-loop fault-tolerant control scheme is investigated for UAV attitude control systems subject to actuator faults, input saturation, and external disturbances in this paper. In the outer loop of attitude angles, a nonlinear dynamic inversion controller is developed as baseline controller for fast response and is augmented by a neural network disturbance observer to enhance the adaptability and robustness. Considering input saturation, actuator faults, and external disturbances in the inner loop of attitude angle velocities, the unbalanced input saturation is first converted into a time-varying system with unknown parameters and disturbances using a nonlinear function approximation method. An L1 adaptive fault-tolerant controller is then introduced to compensate for the effects of lumped uncertainties including system uncertainties, actuator faults, external disturbances, and approximation errors, and the stability and performance boundaries are verified by Lyapunov theorem and L1 reference system. Some simulation examples are carried out to demonstrate its effectiveness. Full article
(This article belongs to the Section Control Systems)
Show Figures

Figure 1

19 pages, 12819 KB  
Article
Radio Signal Recognition Using Two-Stage Spatiotemporal Network with Bispectral Analysis
by Hongmei Bai, Siming Li, Yong Jia and Bowen Xiao
Sensors 2025, 25(17), 5449; https://doi.org/10.3390/s25175449 - 3 Sep 2025
Viewed by 579
Abstract
With the rapid proliferation of unmanned aerial vehicles (UAVs), reliable identification based on radio frequency (RF) signals has become increasingly important for both civilian and security applications. This paper proposes a spatiotemporal feature extraction and classification framework based on bispectral analysis. Specifically, bispectral [...] Read more.
With the rapid proliferation of unmanned aerial vehicles (UAVs), reliable identification based on radio frequency (RF) signals has become increasingly important for both civilian and security applications. This paper proposes a spatiotemporal feature extraction and classification framework based on bispectral analysis. Specifically, bispectral estimation is used to convert one-dimensional RF signals into two-dimensional bispectrum feature maps that capture higher-order spectral characteristics and nonlinear dependencies. Based on these characteristics, a two-stage network was constructed for spatiotemporal feature extraction and classification. The first stage utilizes a ResNet18 network to extract spatial structural features from individual bispectrum maps. The second stage employs an LSTM network to learn temporal dependencies across the sequence of bispectrum maps, capturing the continuity and evolution of signal characteristics over time. The experimental results on a public dataset of UAV RF signals show that this method improves recognition accuracy by 6.78% to 13.89% compared to other existing methods across five categories of UAVs. Full article
(This article belongs to the Section Communications)
Show Figures

Figure 1

21 pages, 4184 KB  
Article
Small UAV Target Detection Algorithm Using the YOLOv8n-RFL Based on Radar Detection Technology
by Zhijun Shi and Zhiyong Lei
Sensors 2025, 25(16), 5140; https://doi.org/10.3390/s25165140 - 19 Aug 2025
Viewed by 777
Abstract
To improve the unmanned aerial vehicle (UAV) detection and recognition rate based on radar detection technology, this paper proposes to take the radar range-Doppler planar graph that characterizes the echo information of the UAV as the input of the improved YOLOv8 network, uses [...] Read more.
To improve the unmanned aerial vehicle (UAV) detection and recognition rate based on radar detection technology, this paper proposes to take the radar range-Doppler planar graph that characterizes the echo information of the UAV as the input of the improved YOLOv8 network, uses the YOLOv8n-RFL network to detect and identify the UAV target. In the detection method of the UAV target, first, we detect the echo signal of the UAV through radar, and take the received echo model as the foundation, utilize the principle of generating range-Doppler planar data to convert the received UAV echo signals into range-Doppler planar graphs, and then, use the improved YOLOv8 network to train and detect the UAV target. In the detection algorithm, the range-Doppler planar graph is taken as the input of the YOLOv8n backbone network, the UAV target is extracted from the complex background through the C2f-RVB and C2f-RVBE modules to obtain more feature maps containing multi-scale UAV feature information; the shallow features from the backbone network and deep features from the neck network are integrated through the feature semantic fusion module (FSFM) to generate high-quality fused UAV feature maps with rich details and deep semantic information, and then, the lightweight sharing detection head (LWSD) is utilized to conduct unmanned aerial vehicle (UAV) feature recognition based on the generated fused feature map. By detecting the collected echo data of the unmanned aerial vehicle (UAV), it was found that the proposed improved algorithm can effectively detect the UAV. Full article
(This article belongs to the Section Radar Sensors)
Show Figures

Figure 1

27 pages, 3200 KB  
Article
IoT-Enhanced Multi-Base Station Networks for Real-Time UAV Surveillance and Tracking
by Zhihua Chen, Tao Zhang and Tao Hong
Drones 2025, 9(8), 558; https://doi.org/10.3390/drones9080558 - 8 Aug 2025
Viewed by 731
Abstract
The proliferation of small, agile unmanned aerial vehicles (UAVs) has exposed the limits of single-sensor surveillance in cluttered airspace. We propose an Internet of Things-enabled integrated sensing and communication (IoT-ISAC) framework that converts cellular base stations into cooperative, edge-intelligent sensing nodes. Within a [...] Read more.
The proliferation of small, agile unmanned aerial vehicles (UAVs) has exposed the limits of single-sensor surveillance in cluttered airspace. We propose an Internet of Things-enabled integrated sensing and communication (IoT-ISAC) framework that converts cellular base stations into cooperative, edge-intelligent sensing nodes. Within a four-layer design—terminal, edge, IoT platform, and cloud—stations exchange raw echoes and low-level features in real time, while adaptive beam registration and cross-correlation timing mitigate spatial and temporal misalignments. A hybrid processing pipeline first produces coarse data-level estimates and then applies symbol-level refinements, sustaining rapid response without sacrificing precision. Simulation evaluations using multi-band ISAC waveforms confirm high detection reliability, sub-frame latency, and energy-aware operation in dense urban clutter, adverse weather, and multi-target scenarios. Preliminary hardware tests validate the feasibility of the proposed signal processing approach. Simulation analysis demonstrates detection accuracy of 85–90% under optimal conditions with processing latency of 15–25 ms and potential energy efficiency improvement of 10–20% through cooperative operation, pending real-world validation. By extending coverage, suppressing blind zones, and supporting dynamic surveillance of fast-moving UAVs, the proposed system provides a scalable path toward smart city air safety networks, cooperative autonomous navigation aids, and other remote-sensing applications that require agile, coordinated situational awareness. Full article
(This article belongs to the Section Drone Communications)
Show Figures

Figure 1

14 pages, 1329 KB  
Article
Lane-Changing Risk Prediction on Urban Expressways: A Mixed Bayesian Approach for Sustainable Traffic Management
by Quantao Yang, Peikun Li, Fei Yang and Wenbo Lu
Sustainability 2025, 17(15), 7061; https://doi.org/10.3390/su17157061 - 4 Aug 2025
Viewed by 606
Abstract
This study addresses critical safety challenges in sustainable urban mobility by developing a probabilistic framework for lane-change risk prediction on congested expressways. Utilizing unmanned aerial vehicle (UAV)-captured trajectory data from 784 validated lane-change events, we construct a Bayesian network model integrated with an [...] Read more.
This study addresses critical safety challenges in sustainable urban mobility by developing a probabilistic framework for lane-change risk prediction on congested expressways. Utilizing unmanned aerial vehicle (UAV)-captured trajectory data from 784 validated lane-change events, we construct a Bayesian network model integrated with an I-CH scoring-enhanced MMHC algorithm. This approach quantifies risk probabilities while accounting for driver decision dynamics and input data uncertainties—key gaps in conventional methods like time-to-collision metrics. Validation via the Asia network paradigm demonstrates 80.5% reliability in forecasting high-risk maneuvers. Crucially, we identify two sustainability-oriented operational thresholds: (1) optimal lane-change success occurs when trailing-vehicle speeds in target lanes are maintained at 1.0–3.0 m/s (following-gap < 4.0 m) or 3.0–6.0 m/s (gap ≥ 4.0 m), and (2) insertion-angle change rates exceeding 3.0°/unit-time significantly elevate transition probability. These evidence-based parameters enable traffic management systems to proactively mitigate collision risks by 13.26% while optimizing flow continuity. By converting behavioral insights into adaptive control strategies, this research advances resilient transportation infrastructure and low-carbon mobility through congestion reduction. Full article
Show Figures

Figure 1

22 pages, 12611 KB  
Article
Banana Fusarium Wilt Recognition Based on UAV Multi-Spectral Imagery and Automatically Constructed Enhanced Features
by Ye Su, Longlong Zhao, Huichun Ye, Wenjiang Huang, Xiaoli Li, Hongzhong Li, Jinsong Chen, Weiping Kong and Biyao Zhang
Agronomy 2025, 15(8), 1837; https://doi.org/10.3390/agronomy15081837 - 29 Jul 2025
Viewed by 520
Abstract
Banana Fusarium wilt (BFW, also known as Panama disease) is a highly infectious and destructive disease that threatens global banana production, requiring early recognition for timely prevention and control. Current monitoring methods primarily rely on continuous variable features—such as band reflectances (BRs) and [...] Read more.
Banana Fusarium wilt (BFW, also known as Panama disease) is a highly infectious and destructive disease that threatens global banana production, requiring early recognition for timely prevention and control. Current monitoring methods primarily rely on continuous variable features—such as band reflectances (BRs) and vegetation indices (VIs)—collectively referred to as basic features (BFs)—which are prone to noise during the early stages of infection and struggle to capture subtle spectral variations, thus limiting the recognition accuracy. To address this limitation, this study proposes a discretized enhanced feature (EF) construction method, the automated kernel density segmentation-based feature construction algorithm (AutoKDFC). By analyzing the differences in the kernel density distributions between healthy and diseased samples, the AutoKDFC automatically determines the optimal segmentation threshold, converting continuous BFs into binary features with higher discriminative power for early-stage recognition. Using UAV-based multi-spectral imagery, BFW recognition models are developed and tested with the random forest (RF), support vector machine (SVM), and Gaussian naïve Bayes (GNB) algorithms. The results show that EFs exhibit significantly stronger correlations with BFW’s presence than original BFs. Feature importance analysis via RF further confirms that EFs contribute more to the model performance, with VI-derived features outperforming BR-based ones. The integration of EFs results in average performance gains of 0.88%, 2.61%, and 3.07% for RF, SVM, and GNB, respectively, with SVM achieving the best performance, averaging over 90%. Additionally, the generated BFW distribution map closely aligns with ground observations and captures spectral changes linked to disease progression, validating the method’s practical utility. Overall, the proposed AutoKDFC method demonstrates high effectiveness and generalizability for BFW recognition. Its core concept of “automatic feature enhancement” has strong potential for broader applications in crop disease monitoring and supports the development of intelligent early warning systems in plant health management. Full article
(This article belongs to the Section Pest and Disease Management)
Show Figures

Figure 1

29 pages, 3661 KB  
Article
Segmented Analysis for the Performance Optimization of a Tilt-Rotor RPAS: ProVANT-EMERGENTIa Project
by Álvaro Martínez-Blanco, Antonio Franco and Sergio Esteban
Aerospace 2025, 12(8), 666; https://doi.org/10.3390/aerospace12080666 - 26 Jul 2025
Viewed by 491
Abstract
This paper aims to analyze the performance of a tilt-rotor fixed-wing RPAS (Remotely Piloted Aircraft System) using a segmented approach, focusing on a nominal mission for SAR (Search and Rescue) applications. The study employs optimization techniques tailored to each segment to meet power [...] Read more.
This paper aims to analyze the performance of a tilt-rotor fixed-wing RPAS (Remotely Piloted Aircraft System) using a segmented approach, focusing on a nominal mission for SAR (Search and Rescue) applications. The study employs optimization techniques tailored to each segment to meet power consumption requirements, and the results highlight the accuracy of the physical characterization, which incorporates nonlinear propulsive and aerodynamic models derived from wind tunnel test campaigns. Critical segments for this nominal mission, such as the vertical take off or the transition from vertical to horizontal flight regimes, are addressed to fully understand the performance response of the aircraft. The proposed framework integrates experimental models into trajectory optimization procedures for each segment, enabling a realistic and modular analysis of energy use and aerodynamic performance. This approach provides valuable insights for both flight control design and future sizing iterations of convertible UAVs (Uncrewed Aerial Vehicles). Full article
(This article belongs to the Section Aeronautics)
Show Figures

Figure 1

28 pages, 7404 KB  
Article
SR-YOLO: Spatial-to-Depth Enhanced Multi-Scale Attention Network for Small Target Detection in UAV Aerial Imagery
by Shasha Zhao, He Chen, Di Zhang, Yiyao Tao, Xiangnan Feng and Dengyin Zhang
Remote Sens. 2025, 17(14), 2441; https://doi.org/10.3390/rs17142441 - 14 Jul 2025
Cited by 3 | Viewed by 887
Abstract
The detection of aerial imagery captured by Unmanned Aerial Vehicles (UAVs) is widely employed across various domains, including engineering construction, traffic regulation, and precision agriculture. However, aerial images are typically characterized by numerous small targets, significant occlusion issues, and densely clustered targets, rendering [...] Read more.
The detection of aerial imagery captured by Unmanned Aerial Vehicles (UAVs) is widely employed across various domains, including engineering construction, traffic regulation, and precision agriculture. However, aerial images are typically characterized by numerous small targets, significant occlusion issues, and densely clustered targets, rendering traditional detection algorithms largely ineffective for such imagery. This work proposes a small target detection algorithm, SR-YOLO. It is specifically tailored to address these challenges in UAV-captured aerial images. First, the Space-to-Depth layer and Receptive Field Attention Convolution are combined, and the SR-Conv module is designed to replace the Conv module within the original backbone network. This hybrid module extracts more fine-grained information about small target features by converting image spatial information into depth information and the attention of the network to targets of different scales. Second, a small target detection layer and a bidirectional feature pyramid network mechanism are introduced to enhance the neck network, thereby strengthening the feature extraction and fusion capabilities for small targets. Finally, the model’s detection performance for small targets is improved by utilizing the Normalized Wasserstein Distance loss function to optimize the Complete Intersection over Union loss function. Empirical results demonstrate that the SR-YOLO algorithm significantly enhances the precision of small target detection in UAV aerial images. Ablation experiments and comparative experiments are conducted on the VisDrone2019 and RSOD datasets. Compared to the baseline algorithm YOLOv8s, our SR-YOLO algorithm has improved mAP@0.5 by 6.3% and 3.5% and mAP@0.5:0.95 by 3.8% and 2.3% on the datasets VisDrone2019 and RSOD, respectively. It also achieves superior detection results compared to other mainstream target detection methods. Full article
Show Figures

Figure 1

15 pages, 17572 KB  
Article
High-Resolution Mapping and Biomass Estimation of Suaeda salsa in Coastal Wetlands Using UAV Visible-Light Imagery and Hue Angle Inversion
by Lin Wang, Xiang Wang, Xiu Su, Shiyong Wen, Xinxin Wang, Qinghui Meng and Lingling Jiang
Appl. Sci. 2025, 15(13), 7423; https://doi.org/10.3390/app15137423 - 2 Jul 2025
Cited by 1 | Viewed by 372
Abstract
Unmanned Aerial Vehicles (UAVs) have become powerful tools for high-resolution, quantitative remote sensing in ecological and environmental studies. In this study, we present a novel approach to accurately mapping and estimating the biomass of Suaeda salsa using UAV-based visible-light imagery combined with hue [...] Read more.
Unmanned Aerial Vehicles (UAVs) have become powerful tools for high-resolution, quantitative remote sensing in ecological and environmental studies. In this study, we present a novel approach to accurately mapping and estimating the biomass of Suaeda salsa using UAV-based visible-light imagery combined with hue angle inversion modeling. By integrating diffuse reflectance standard plates into the flight protocol, we converted RGB pixel values into reflectance and derived hue angle metrics with enhanced radiometric accuracy. A hue angle cutoff threshold of 249.01° was identified as the optimal cutoff to distinguish Suaeda salsa from the surrounding land cover types with high confidence. To estimate biomass, we developed an exponential inversion model based on hue angle data calibrated through extensive field measurements. The resulting model—Biomass = 3.57639 × 10−15 × e0.12201×α—achieved exceptional performance (R2 = 0.99696; MAPE = 3.616%; RMSE = 0.02183 kg/m2), indicating strong predictive accuracy and robustness. This study highlights a cost-effective, non-destructive, and scalable method for the real-time monitoring of coastal vegetation, offering a significant advancement in remote sensing applications for wetland ecosystem management. Full article
(This article belongs to the Section Environmental Sciences)
Show Figures

Figure 1

34 pages, 7507 KB  
Article
Exploring Multi-Channel GPS Receivers for Detecting Spoofing Attacks on UAVs Using Machine Learning
by Mustapha Mouzai, Mohamed Amine Riahla, Amor Keziou and Hacène Fouchal
Sensors 2025, 25(13), 4045; https://doi.org/10.3390/s25134045 - 28 Jun 2025
Viewed by 1634
Abstract
All current transportation systems (vehicles, trucks, planes, etc.) rely on the Global Positioning System (GPS) as their main navigation technology. GPS receivers collect signals from multiple satellites and are able to provide more or less accurate positioning. For civilian applications, GPS signals are [...] Read more.
All current transportation systems (vehicles, trucks, planes, etc.) rely on the Global Positioning System (GPS) as their main navigation technology. GPS receivers collect signals from multiple satellites and are able to provide more or less accurate positioning. For civilian applications, GPS signals are sent without any encryption system. For this reason, they are vulnerable to various attacks, and the most prevalent one is known as GPS spoofing. The main consequence is the loss of position monitoring, which may increase damage risks in terms of crashes or hijacking. In this study, we focus on UAV (unmanned aerial vehicle) positioning attacks. We first review numerous techniques for detecting and mitigating GPS spoofing attacks, finding that various types of attacks may occur. In the literature, many studies have focused on only one type of attack. We believe that targeting the study of many attacks is crucial for developing efficient mitigation mechanisms. Thus, we have explored a well-known datasetcontaining authentic UAV signals along with spoofed signals (with three types of attacked signals). As a main contribution, we propose a more interpretable approach to exploit the dataset by extracting individual mission sequences, handling non-stationary features, and converting the GPS raw data into a simplified structured format. Then, we design tree-based machine learning algorithms, namely decision tree (DT), random forest (RF), and extreme gradient boosting (XGBoost), for the purpose of classifying signal types and to recognize spoofing attacks. Our main findings are as follows: (a) random forest has significant capability in detecting and classifying GPS spoofing attacks, outperforming the other models. (b) We have been able to detect most types of attacks and distinguish them. Full article
(This article belongs to the Section Navigation and Positioning)
Show Figures

Figure 1

13 pages, 2276 KB  
Article
Trajectory Optimization for UAV-Aided IoT Secure Communication Against Multiple Eavesdroppers
by Lingfeng Shen, Jiangtao Nie, Ming Li, Guanghui Wang, Qiankun Zhang and Xin He
Future Internet 2025, 17(5), 225; https://doi.org/10.3390/fi17050225 - 19 May 2025
Viewed by 818
Abstract
This study concentrates on physical layer security (PLS) in UAV-aided Internet of Things (IoT) networks and proposes an innovative approach to enhance security by optimizing the trajectory of unmanned aerial vehicles (UAVs). In an IoT system with multiple eavesdroppers, formulating the optimal UAV [...] Read more.
This study concentrates on physical layer security (PLS) in UAV-aided Internet of Things (IoT) networks and proposes an innovative approach to enhance security by optimizing the trajectory of unmanned aerial vehicles (UAVs). In an IoT system with multiple eavesdroppers, formulating the optimal UAV trajectory poses a non-convex and non-differentiable optimization challenge. The paper utilizes the successive convex approximation (SCA) method in conjunction with hypograph theory to address this challenge. First, a set of trajectory increment variables is introduced to replace the original UAV trajectory coordinates, thereby converting the original non-convex problem into a sequence of convex subproblems. Subsequently, hypograph theory is employed to convert these non-differentiable subproblems into standard convex forms, which can be solved using the CVX toolbox. Simulation results demonstrate the UAV’s trajectory fluctuations under different parameters, affirming that trajectory optimization significantly improves PLS performance in IoT systems. Full article
(This article belongs to the Section Internet of Things)
Show Figures

Figure 1

15 pages, 1828 KB  
Article
Neural Network-Based Path Planning for Fixed-Wing UAVs with Constraints on Terminal Roll Angle
by Qian Xu, Fanchen Wu and Zheng Chen
Drones 2025, 9(5), 378; https://doi.org/10.3390/drones9050378 - 17 May 2025
Viewed by 1083
Abstract
This paper presents a neural network-based path planning method for fixed-wing UAVs under terminal roll-angle constraints. The nonlinear optimal path planning problem is first formulated as an optimal control problem. The necessary conditions derived from Pontryagin’s Maximum Principle are then established to convert [...] Read more.
This paper presents a neural network-based path planning method for fixed-wing UAVs under terminal roll-angle constraints. The nonlinear optimal path planning problem is first formulated as an optimal control problem. The necessary conditions derived from Pontryagin’s Maximum Principle are then established to convert extremal trajectories as the solutions of a parameterized system. Additionally, a sufficient condition is presented to guarantee that the obtained solution is at least locally optimal. By simply propagating the parameterized system, a training dataset comprising at least locally optimal trajectories can be constructed. A neural network is then trained to generate the nonlinear optimal control command in real time. Finally, numerical examples demonstrate that the proposed method robustly ensures the generation of optimal trajectories in real time while satisfying the prescribed terminal roll-angle constraint. Full article
Show Figures

Figure 1

20 pages, 5373 KB  
Article
Construction and Recording Method of a Three-Dimensional Model to Automatically Manage Thermal Abnormalities in Building Exteriors
by Jonghyeon Yoon, Sangjun Hwang, Kyonghoon Kim and Sanghyo Lee
Buildings 2025, 15(9), 1558; https://doi.org/10.3390/buildings15091558 - 5 May 2025
Cited by 1 | Viewed by 657
Abstract
This study proposes an automated three-dimensional (3D)-modeling method that combines convolutional neural networks (CNNs) with unmanned aerial vehicle (UAV) technology for the efficient management of thermal anomalies in building exteriors. Conventional 3D-modeling methods for thermal imaging management either require the processing of large [...] Read more.
This study proposes an automated three-dimensional (3D)-modeling method that combines convolutional neural networks (CNNs) with unmanned aerial vehicle (UAV) technology for the efficient management of thermal anomalies in building exteriors. Conventional 3D-modeling methods for thermal imaging management either require the processing of large volumes of data due to the use of thermal distribution information from entire image regions or involve increased processing time when architectural drawings are unavailable. In this study, RGB and infrared (IR) thermal images collected via UAVs were used to automatically detect windows and thermal anomalies using a CNN-based object detection model (YOLOv5). Subsequently, Global Navigation Satellite System (GNSS)-based coordinate data and image metadata were used to convert the resolution coordinates into actual spatial coordinates, which were then vectorized to automatically generate a 3D model. The resulting 3D model demonstrated high similarity to the actual building, accurately representing the locations of thermal anomalies. This method enabled faster, more objective, and more cost-effective maintenance compared to conventional methods, making it especially beneficial for efficiently managing difficult-to-access high-rise buildings. Full article
(This article belongs to the Section Building Energy, Physics, Environment, and Systems)
Show Figures

Figure 1

23 pages, 500 KB  
Article
Cluster Networking and Cooperative Localization Based on Biogeography Optimization and Improved Super-Multidimensional Scaling for Multi-Unmanned Aerial Vehicles
by Shuhao Zhang, Huimin Zhang, Ying Zhan, Xiaokai Wei and Yang Liu
Sensors 2025, 25(9), 2887; https://doi.org/10.3390/s25092887 - 3 May 2025
Cited by 1 | Viewed by 762
Abstract
The cooperative localization of Unmanned Aerial Vehicles (UAVs) has emerged as a pivotal application in Internet of Things (IoT) tasks. However, the frequent exchange of localization data among UAVs leads to significant energy consumption and escalates the computational complexity involved in multi-UAV cooperative [...] Read more.
The cooperative localization of Unmanned Aerial Vehicles (UAVs) has emerged as a pivotal application in Internet of Things (IoT) tasks. However, the frequent exchange of localization data among UAVs leads to significant energy consumption and escalates the computational complexity involved in multi-UAV cooperative localization tasks. To address these challenges, this paper proposes a cooperative localization algorithm that integrates a biogeography optimization-based cluster networking and adaptive sampling-improved Nystrom super-multidimensional scaling (BOCN-ASNSMS). The proposed method leverages biogeography optimization (BO), prioritizing nodes with higher residual energy and density to serve as cluster heads, thereby optimizing energy usage. Subsequently, an improved adaptive sampling Nystrom super-multidimensional scaling algorithm is employed to dynamically select the kernel matrix row vectors. This selection process not only reduces data processing requirements but also enhances the accuracy of the similarity matrix approximation, thus diminishing computational complexity and achieving precise relative positioning of UAVs. Furthermore, Procrustes analysis and least squares methods are utilized to fuse coordinates across UAV clusters, aligning them into a unified coordinate system and converting them into absolute coordinates, which facilitates high-precision global localization. Theoretical analysis and simulation results underscore that the proposed algorithm substantially reduces computational complexity and energy consumption while enhancing localization accuracy, compared to conventional multi-UAV cooperative localization approaches. Full article
(This article belongs to the Section Communications)
Show Figures

Figure 1

Back to TopTop